
Information Decomposition Based on

Cooperative Game Theory

Nihat Ay

1,2,3
, Daniel Polani

4
, Nathaniel Virgo

1,5

September 27, 2019

1Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2University of Leipzig, Leipzig, Germany
3Santa Fe Institute, Santa Fe, NM, USA

4University of Hertfordshire, UK
5Earth-Life Science Institute (ELSI), Tokyo, Japan

Abstract

We o↵er a new approach to the information decomposition problem in
information theory: given a ‘target’ random variable co-distributed with
multiple ‘source’ variables, how can we decompose the mutual informa-
tion into a sum of non-negative terms that quantify the contributions of
each random variable, not only individually but also in combination? We
derive our composition from cooperative game theory. It can be seen as
assigning a “fair share” of the mutual information to each combination
of the source variables. Our decomposition is based on a di↵erent lattice
from the usual ‘partial information decomposition’ (PID) approach, and
as a consequence our decomposition has a smaller number of terms: it has
analogs of the synergy and unique information terms, but lacks terms cor-
responding to redundancy. Because of this, it is able to obey equivalents
of the axioms known as ‘local positivity’ and ‘identity’, which cannot be
simultaneously satisfied by a PID measure.

Keywords: partial information decomposition, information geometry,
cooperative game theory

1 Introduction

We are interested in understanding the flow of information in dynamical sys-
tems. Several tools for this have been developed over recent decades. These
include the transfer entropy (Schreiber, 2000; Lizier, 2014), which assumes a
dynamical systems framework and that the system consists of identifiable com-
ponents which can be tracked through time, and the causal information flow
(Ay and Polani, 2008), which is defined in terms of general causal Bayesian net-
works and the interventional calculus (Pearl, 2009). These techniques provide
ways to quantify the amount of influence that one part of the network has on
another.

However, there is a growing awareness that it would be useful to quantify
causal influences in a more fine-grained way than o↵ered by current techniques.

1



Even in one of the simplest cases, in which multiple random variables exhibit
a causal influence on a single ‘target’ variable, it would be desirable to have
more detailed understanding in information theoretic terms, not only of how
each variable a↵ects the target individually, but of how multiple causes interact
in bringing about their e↵ects.

Of the existing approaches to this question, perhaps the best known is the
Partial Information Decomposition (PID) framework, due to Williams and Beer
(2010). The PID framework proposes that the mutual information between sev-
eral ‘source’ variables and a single ‘target’ can be decomposed into a sum of
several terms. In the case of two sources, these terms are (i) the information
that the two sources provide redundantly about the target (known as redundant
information, shared information or common information); (ii) the information
provided uniquely by each of the two sources, and (iii) the synergistic or com-
plementary information, which can only be obtained by knowing both of the
sources simultaneously.

However, the axioms proposed by Williams and Beer do not completely
determine these quantities. As a result, many PID measures have been proposed
in the literature, each satisfying di↵erent additional properties beyond the ones
given by Williams and Beer. Several approaches have been proposed. Among
these are several that are based on information geometry (Harder et al., 2013;
Bertschinger et al., 2014; Perrone and Ay, 2016; Olbrich et al., 2015; Gri�th
and Koch, 2014; James et al., 2019), which we build upon here.

Generalizing towards the case of three or more input variables has turned
out to be more problematic under the PID framework. One of the most intuitive
additional axioms proposed is known as the identity axiom, proposed by Harder
et al. (2013), but it was shown by Rauh et al. (2014) that no measure can exist
that obeys both Williams and Beer’s axioms (including “local positivity”) and
the identity axiom. Because of this, there are a number of proposed PID
measures that relax either the identity axiom or the local positivity axiom of
Williams and Beer, or both. Such approaches include (Ince, 2017; Finn and
Lizier, 2018; Kolchinsky, 2019). Another promising class of approaches involve
changing to a slightly di↵erent perspective, for example, by considering the
full joint distribution between multiple random variables, rather than singling
out a single variable as the target (Rosas et al., 2016; James and Crutchfield,
2017). In the present paper, we present a di↵erent decomposition of the mutual
information between a set of sources and a target. Our decomposition obeys
analogs of both the local positivity and identity axioms, but it has a smaller
number of terms than the partial information decomposition.

A related, but di↵erent, approach to multivariate information can be found
in a family of measures that attempt quantify the complexity of a set of random
variables, often also divided into input and output variables. These include
Amari’s hierarchical decomposition (Amari, 2001), as well as Ay’s measure of
complexity (Ay, 2015), and several measures that have arisen in the context
of Integrated Information Theory (IIT), such as (Oizumi et al., 2016). This
family of measures is reviewed in (Amari et al., 2016), which describes their
relationships in terms of information geometry.

In this paper we are interested in a similar setup to the PID framework, in
which several random variables, X1, X2, . . . Xn

, which we term input random
variables, exhibit causal influences on a target random variable Y . This results
in a joint distribution between X1, X2, . . . Xn

and Y . The mutual information
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and conditional mutual information can be used to quantify the influence of each
cause individually, as well as the conditional influence that one input variable
has, once the value of another has been taken into account. However, in general
it would be desirable to decompose the relationships between the causal influ-
ences more finely than the traditional conditional mutual information makes
possible.

The promise of the PID approach was that it would o↵er a ready-made or
at least preferred solution to this question. A PID measure would have allowed
us to quantify not only the overall influence of X1 upon Y , but also the extent
to which it has a unique causal influence, which could be interpreted as distinct
from that of the other causes; additionally, it would also allow synergistic or
redundant causal influences to be quantified. This could be done simply by
applying the PID to the joint distribution X1X2 . . . Xn

Y . This is, broadly
speaking, the approach taken by Lizier et al. (2014). However, the lack of a
non-negative PID measure for three or more input variables makes it di�cult
to interpret the decomposition in the case of three or more causes.

Here we propose a di↵erent approach, with slightly more modest goals than
PID, in that we do not attempt to quantify redundancy. Instead, we provide
a decomposition of the mutual information I(X1, X2, . . . , Xn

;Y ) into a sum of
terms corresponding to every possible subset of the causes (e.g. {X1}, {X1, X2},
etc.). These terms resemble the unique information and synergy terms in the
PID framework. We show that the terms represent, in a well-defined sense, a
uniquely “fair apportionment” of the total mutual information into the contri-
bution provided by each subset of sources. A set such as {X1, X2} will make
a contribution of zero if it provides no new information beyond that which is
already provided by its subsets. How to achieve this will be made precise below.
In this sense our measure plays a similar role to that of synergy in the PID
lattice. However, our measure does not attempt to quantify redundancy, and
as such it is not a solution to the PID problem. Because of this, we are able
to give a non-negative decomposition for an arbitrary number of inputs, which
obeys an analog of the identity axiom for PID measures.

To state our problem more precisely: we consider random variablesX1, . . . , Xn

,
the input variables, and Y , the output variable. We restrict ourselves to the case
where these variables have finite state sets X

i

, i = 1, . . . , n, and Y, but we expect
our measure to generalise well to cases such as Gaussian models in which the
state spaces are continuous.

We write V for the set of all input variables. Our goal is a decomposition of
the mutual information, I(X1, . . . , Xn

;Y ) into a sum of terms corresponding to
every subset of {X1, . . . , Xn

}. We refer to a set of input variables as a predictor .
In other words, we will write

I(X1, . . . , Xn

;Y ) =
X

A22V

I
A

(X1, . . . , Xn

;Y ) ,

where we write 2V for the power set of V . For a given predictor A, the term
I
A

(X1, . . . , Xn

;Y ) shall indicate the proportion of the total mutual information
that is contributed by A, beyond what is already provided by its subsets. How to
do this will be made precise below. We call I

A

(X1, . . . , Xn

;Y ) the information
contribution of A to Y .

To construct our measure of information contribution we proceed in two
steps. We begin by defining the mutual information provided by certain sets
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of predictors, i.e. sets of sets of input variables. We do this via a sublattice
of the lattice of probability distributions that James et al. (2019) termed the
“constraint lattice.” The same lattice has appeared in the literature previously,
within the topic of reconstructability analysis (Zwick, 2004). Having established
the information contribution of each set of predictors, we then assign a contri-
bution to each individual predictor by a method that involves summing over the
maximal chains of the constraint lattice.

We then show that this procedure of summing over maximal chains can be
derived using cooperative game theory. We can conceptualise our measure in
terms of a cooperative game, in which each set of predictors is thought of as
a coalition of players. Each coalition is assigned a score corresponding to the
information they jointly provide about the target. Our measure can then be
derived via a known generalisation of the Shapley value due to Faigle and Kern
(1992), which assigns a score to each individual player (i.e. predictor) based on
its average performance among all the coalitions in which it takes part, while
respecting additional precedence constraints.

Since our measure is based on the constraint lattice, we review this concept
in depth in section 2. We approach the constraint lattice from the perspective
of information geometry and state its relationship to known results in that field.
In section 3 we consider a sublattice of the constraint lattice which we term the
input lattice, which allows us to define a quantity corresponding to the informa-
tion that a set of predictors provides about the target. From this we derive our
measure by summing over the maximal chains of the input lattice. After prov-
ing some properties of our information contribution measure and giving some
examples (sections 5 and 6), we then make the connection to cooperative game
theory in section 7, proving that our measure is equivalent to the generalised
Shapley value of Faigle and Kern (1992).

2 Background: the constraint lattice

We begin by defining the so-called “constraint lattice” of James et al. (2019),
which has also been defined previously in the context of reconstructability anal-
ysis (Zwick, 2004). This section serves to summarise previous work and to
establish notation for the following sections.

2.1 Lattices of simplicial complexes

Suppose we have a setW of co-distributed random variables,W = {Z1, Z2, . . . , Zm

}.
Subsets ofW may also be considered as random variables. For example, {Z1, Z2},
which we also write Z1Z2, can be thought of as a random variable whose sam-
ple space is the Cartesian product of the sample spaces of Z1 and Z2. The
constraint lattice is defined in terms of members of the power set 2W .

For reasons that will be explained below, we want to put some restrictions on
which members of 2W are permitted as elements of the lattice. This may be done
in terms of of two di↵erent concepts, antichains or simplicial complexes. It is
standard in the literature to define the constraint lattice in terms of antichains.
However, in making the connection to cooperative game theory it will be more
convenient to talk in terms of simplicial complexes instead. For this reason, we
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(Z1)(Z2)(Z3)

(Z1Z2)(Z3) (Z1Z3)(Z2) (Z2Z3)(Z1)

(Z1Z2)(Z1Z3) (Z1Z2)(Z2Z3) (Z1Z3)(Z2Z3)

(Z1Z2)(Z1Z3)(Z2Z3)

(Z1Z2Z3)

Figure 1: The Hasse diagram for the constraint lattice, as defined by (Zwick,
2004; James et al., 2019), for three random variables, W = {Z1, Z2, Z3}.

define both terms here, but define the constraint lattice in terms of simplicial
complexes.

A set of sets S is called an antichain if for every A 2 S, no subset B ⇢ A is
a member of S, i.e.

A 2 S, B ⇢ A ) B /2 S . (1)

Similarly, a set of sets S is called a simplicial complex if for every A 2 S, every
subset B ⇢ A is a member of S,

A 2 S, B ⇢ A ) B 2 S . (2)

Both of these concepts can be defined more generally in terms of arbitrary
partial orders, but here we need only their definitions in terms of sets. In some
contexts the empty set is considered a simplicial complex, but for most of this
paper we consider only non-empty simplicial complexes.

We note that one can convert an antichain S into a simplicial complex by
adding every subset of every member of S, and one can restore the antichain
by removing every element that is a subset of some other element. This gives a
one-to-one correspondence between antichains and simplicial complexes, which
allows us to use the two concepts somewhat interchangeably.

We define the constraint lattice in terms of simplicial complexes whose mem-
bers cover W , meaning those simplicial complexes S for which each element of
W appears at least once in one of the members of S. That is, S covers W if
S

A2S A = W . Such a simplicial complex is termed a simplicial complex cover
of W .

The following partial order may be defined on simplicial complexes:

S  S 0 if and only if 8A 2 S, 9B 2 S 0:A ✓ B . (3)

The constraint lattice is composed of the simplicial complexes that cover W,
with this partial order.

The resulting lattice is illustrated in fig. 1. In the figures and elsewhere,
we use the following shortcut notation for simplicial complexes: we take the
corresponding antichain, write its elements as lists surrounded by parentheses,
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and concatenate them. For example, the notation (Z1Z2)(Z3) refers to the
simplicial complex {{Z1, Z2}, {Z1}, {Z2}, {Z3}, ;}.

It is helpful to introduce some definitions from lattice theory. We write
S < T if S  T and S 6= T . We say that a lattice element T covers an element
S, written S � T , if S < T and there exists no element U such that S < U < T .
A sequence of elements S1, . . . ,Sk

is called a chain if S1 < S2 < · · · < S
k

. If we
have in addition that S1 � S2 � · · · � S

k

, then it is called a maximal chain.
In fig. 1, the relationship S � T is indicated by drawing T above S and

connecting the elements with an edge. The resulting graph is called the Hasse
diagram of the lattice. The maximal chains are the directed paths from the
bottom node in fig. 1 to the top node.

2.2 Constraints and split distributions

Let p = p(Z1, . . . , Zm

) be the joint probability distribution of the members
of W . We call this the true distribution. Following (James et al., 2019) and
(Zwick, 2004), we now wish to associate with each simplicial complex cover S
of W a joint distribution pS = pS(Z1, . . . , Zm

). In the spirit of (Ay, 2015;
Oizumi et al., 2016; Amari et al., 2016) we term these split distributions. Each
split distribution captures only some of the correlations present in the true
distribution, and we can think of the remaining correlations as being split apart,
or forced to be as small as possible.

Specifically, each split distribution pS is constructed so that it captures the
correlations associated with the members of S, in the sense that pS(A) = p(A),
for every A 2 S. This defines a family of distributions, and from this family we
choose the one with the maximum entropy. Intuitively, the maximum entropy
distribution is the least correlated one in the family, so it excludes any additional
correlations aside from those specified by S.

In the remainder of this section, we define the split distributions more rigor-
ously, alongside some related objects, and we point out an important property,
which follows from the so-called Pythagorean theorem of information geometry.
This section is largely a review of previous work, and makes a connection be-
tween the constraint lattice of (James et al., 2019; Zwick, 2004) and the language
of information geometry (Ay et al., 2017, chapter 2).

Let � be the set of all joint probability distributions of the random variables
in W . For a simplicial complex cover S, let

MS = {q 2 � : 8A 2 S, q(A) = p(A)} .

That is, MS is the set of all probability distributions for which the members
of S have the same marginal distributions as in the true distribution p. Note
that if the constraint q(A) = p(A) holds for some A ✓ W , then it will also
automatically hold for B ✓ A. This is the reason for considering simplicial
complexes. MS is a mixture family, and we have that S  T =) MS ◆ MT .

We can now define the split distribution pS as

pS = argmax
q2MS

H(q). (4)

Equivalently, we can instead define the split distributions in terms of the Kullback-
Leibler divergence, as we will see below. This has the advantage that it is likely
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to generalise to cases such as Gaussian models in which the state space is not
discrete.

There is another interpretation of the split distributions, which is interesting
to note. In addition to the mixture family MS , we can also define an exponential
family corresponding to a given node in the constraint lattice. This can be seen
as a family of split models, i.e. probability distributions in which some kinds of
correlation are forced to be absent. The split distribution pS can be seen as the
closest member of this exponential family to the true distribution.

To see this, we define the exponential family

ES =

(

q 2 � : q(z1, . . . , zm) =
Y

A2S
µ
A

(z1, . . . zm), for some set of functions µ
A

)

,

(5)
where the functions µ

A

have the additional requirements that µ
A

(z1, . . . , zm)
depends only on z

i

for Z
i

2 A, and µ
A

(z1, . . . , zm) > 0. ES is an exponential
family, and we have S < T =) ES ✓ ET .

Finally, we let ES be the topological closure of the set ES , meaning that ES
contains every member of ES , and in addition also contains all the limit points
of sequences in ES . The di↵erence is that ES does not contain distributions
with zero-probability outcomes, whereas the closure ES does.

Note that we cannot obtain ES by simply relaxing the condition that µ
A

(z1, . . . , zm) >
0. This is because although every member of ES must factorise according to
eq. (5), the limit points on the boundary of the simplex can fail to factorise in
the same way. An example of this is given by (Lauritzen, 1996, Example 3.10).
These limit points must be included in order to make sure the split distribution
is always defined.

It is a known result in information geometry (Ay et al., 2017, Theorem 2.8)
that for any S, the sets MS and ES intersect at a single point. In fact this point
is the split distribution pS . With the Kullback-Leibler divergence

DKL(qkp) =
X

z1,...,zm

q(z1, . . . , zm) log
q(z1, . . . , zm)

p(z1, . . . , zm)
,

we can equivalently characterise pS by

pS = argmin
q2MS

DKL(qku) , (6)

where u denotes the uniform distribution. This directly follows from (4). A
further equivalent characterisation of pS is given by

pS = argmin
q2ES

DKL(pkq) . (7)

In the terminology of information geometry, eq. (6) is an I-projection (infor-
mation projection) and eq. (7) is an rI-projection (reverse I-projection). The
classical theory of these information projections has been greatly extended by
Csiszár and Matúš (2003, 2004).

We also have the so-called Pythagorean theorem of information geometry
(Amari and Nagaoka, 2007), which in our notation says that for simplicial com-
plex covers S < T < U ,

DKL(pUkpS) = DKL(pUkpT ) +DKL(pT kpS) . (8)
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Equation (8) can be extended to any chain of elements in the constraint lattice
S1 < S2 < · · · < S

k

, to give

DKL(pSkkpS1) =
k

X

i=2

DKL(Si

kS
i�1) . (9)

This will be crucial in defining our information contribution measure below.
Consider the top node in the constraint lattice, given by (Z1, . . . , Zm

), which
we denote >. We have p> = p. That is, the split distribution corresponding to
> is equal to the true distribution.

Since we are considering only simplicial complex covers of W , the bottom
node of the lattice is given by (Z1) . . . (Zm

), which we denote ?. We have
p?(z1, . . . , zm) = p(z1) . . . p(zm). That is, its split distribution is given by the
product of the marginal distributions for all the members of W .

Together with eq. (6), this allows us to interpret pS as the distribution
that is as decorrelated as possible (i.e. closest to the product distribution, in
the Kullback-Leibler sense), subject to the constraint that the marginals of the
members of S match those of the true distribution. Alternatively, via eq. (7), we
can see it as the distribution that is as close to the true distribution as possible,
subject to the constraint that it lies in the closure of the exponential family ES .

For a general antichain cover S, the split distribution pS may not have
an analytical solution, and instead must be found numerically. One family of
techniques for this is iterative scaling (Csiszár and Shields, 2004, chapter 5),
which was used to calculate the examples below. Alternatively, one may solve
eq. (6) as a numerical optimisation problem, starting from an element such as
? with a known split distribution. This yields a convex optimisation problem
with linear constraints, but it is not always well conditioned.

Finally, given an antichain cover S, we define IS := DKL(p>kpS). This
can be thought of as the amount of information that is present in the true
distribution p> but is not present in pS . Note that due to the Pythagorean
relation (eq. (8)) we have DKL(pT kpS) = IS � IT , for any antichain covers
S  T . The quantity IS turns out to be a useful generalisation of the mutual
information, as shown in the following examples.

Example 2.1. Independence. Suppose W = {Z1, Z2}, and let S = (Z1)(Z2).
Then ES is the set of distributions q that can be expressed as a product
q(z1, z2) = µ1(z1)µ2(z2), which we may also write q(z1, z2) = q(z1)q(z2). So
ES is the set of distributions for which Z1 and Z2 are independent. We have
that pS = p(z1)p(z2), and consequently, it is straightforward to show that in
this example, DKL(p>kpS) = I(X1;X2).

Example 2.2. Conditional independence. Suppose W = {Z1, Z2, Z3}, and let
S = (Z1Z3)(Z2Z3). Then ES is the set of distributions q that can be expressed
as a product q(z1, z2, z3) = µ1(z1, z3)µ2(z2, z3). These are the distributions
for which q(z1, z2, z3) = q(z3)q(z1|z3)q(z2|z3), i.e. for which Z1 ??

q

Z2 | Z3.
So in this case ES can be seen as a conditional independence constraint. It
is straightforward to show that that pS(z1, z2, z3) = p(z3)p(z1|z3)p(z2|z3), and
consequently DKL(p>kpS) = I(X1;X2|X3).

Example 2.3. Amari’s triplewise information. Suppose W = {Z1, Z2, Z3}, and
let S = (Z1Z2)(Z1Z3)(Z2Z3). Then ES is the set of distributions q that can

8



be expressed as a product q(z1, z2, z3) = µ1(z1, z2)µ2(z1, z3)µ3(z2, z3). Unlike
the previous two examples, there is no analytic expression for µ1, µ2 and µ3

in terms of the probabilities q(z1, z2, z3). However, Amari (2001) argued that
ES can be interpreted as the set of distributions in which there are no three-
way, or “triplewise” interactions between the variables Z1, Z2 and Z3, beyond
those that are implied by their pairwise interactions. The split distribution
pS can be calculated numerically as described above, in order to obtain the
quantity DKL(p>kpS), which quantifies the amount of information present in
the triplewise interactions. Amari (2001) gives a straightforward generalisation,
allowing n-way interactions to be quantified, among n or more random variables.
As an example of triplewise information, consider the case where Z1 and Z2 are
uniformly distributed binary variables, and Z3 = Z1 xorZ2. In this case, in the
split distribution p(Z1Z2)(Z1Z3)(Z2Z3) all three variables are independent. The
split distribution has 8 equally likely outcomes while the true distribution has
4 equally likely outcomes, leading to a triplewise information of 1 bit.

3 The input lattice

The constraint lattice is defined in terms of an arbitrary set of random variables
W = {Z1, . . . , Zm

}. We are interested specifically in the case where W is
composed of a set of input variables X1, . . . , Xn

and a target variable Y . We
write V for the set of input variables, so W = V [ {Y }.

We wish to decompose the mutual information I(X1, . . . , Xn

;Y ) into a sum
of terms I

A

(X1, . . . , Xn

;Y ), one for each subset A of the input variables. To do
this, we start by noting that

I(X1, . . . , Xn

;Y ) = DKL(p(X1,...,Xn,Y )kp(X1,...,Xn)(Y )) .

Because of this, we can use the constraint lattice to derive decompositions of
the mutual information.

Consider the set of lattice elements S such that (X1, . . . , Xn

)(Y )  S. This
set forms a sublattice of the constraint lattice, i.e. a lattice under the same
partial order. We call this sublattice the input lattice. The input lattice is
highlighted in red in fig. 2, left.

Each element of the input lattice may be associated with a simplicial complex
over the input variables only. That is, a non-empty set S of subsets of V , with
the condition that every subset of a member must also be a member. (Unlike
the elements of the constraint lattice, S need not cover V .) We use a Fraktur
font for simplicial complexes over the input variables only, to distinguish them
from simplicial complex covers of W . Their relationship to the input sublattice
can be seen by noting that if (X1 . . . Xn

)(Y )  S then S must include the
element {X1, . . . Xn

} and its subsets. In addition S contains elements of the
form A [ {Y }, where A is a subset of the input variables. These sets of input
variables must by themselves form a simplicial complex, in order for S to be a
simplicial complex. This is the simplicial complex S over the input variables
corresponding to S.

Formally, given a simplicial complex S over the input variables, the corre-
sponding member of the constraint lattice is given by

�(S) = (X1 . . . Xn

) [
�

A [ {Y } : A 2 S
 

.
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(X1X2)(Y )

(X1X2)(X1Y ) (X1X2)(X2Y )

(X1X2)(X1Y )(X2Y )

(X1X2Y )

(X1)(X2)(Y )

(X1Y )(X2) (X2Y )(X1)

(X1Y )(X2Y )

?in

[X1] [X2]

[X1][X2]

[X1X2]

Figure 2: (Left) the Hasse diagram for the constraint lattice for W =
{X1, X2, Y }. Highlighted in red bold is the sublattice that we call the input
lattice, which provides decompositions of I(X1, X2, . . . , Xn

;Y ). (Right) the in-
put lattice alone, with the nodes labelled using simplicial complexes over the
input random variables, rather than all random variables. The square brack-
ets indicate simplicial complexes over the inputs, rather than over all random
variables. The two lattices are related by the mapping �, defined in the text.

For any S, we have that �(S) is a simplicial complex cover of W , and �(S) �
(X1 . . . Xn

)(Y ). In fact, � is an order-preserving invertible map from the lattice
of simplicial complexes S over X to the sublattice of simplicial complex covers
ofW given by (X1 . . . Xn

)(Y )  S. This allows us to think of the elements of the
input lattice as corresponding to simplicial complexes over the input variables.

The mapping is illustrated in fig. 2. When writing simplicial complexes over
the input variables explicitly we use square brackets, in order to distinguish
them from simplicial complexes over W . So for example, the simplicial com-
plex [X1][X2] over the input variables corresponds to the simplicial complex
(X1X2)(X1Y )(X2Y ) over W . We write the bottom node of the input lattice as
?in, which is equal to {;} when considered as a simplicial complex over the in-
put variables, or (X1 . . . Xn

)(Y ) when considered as a simplicial complex cover
of W .

Every chain in this sublattice provides a decomposition of I(X1, . . . , Xn

;Y )
into a sum of non-negative terms. An example of such a decomposition is the
chain rule for mutual information,

I(X1, X2;Y ) = I(X1;Y ) + I(X2;Y |X1) ,

which can be derived by applying the Pythagorean theorem to the (not maximal)
chain

?in < [X2] < [X1X2] .

This corresponds to

(X1X2)(Y ) < (X1X2)(X1Y ) < (X1X2Y )
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when considered as elements of the constraint lattice. Applying Equation 8, we
have

DKL(p(X1X2Y )kp(X1X2)(Y )) = DKL(p(X1X2)(X1Y )kp(X1X2)(Y ))

+DKL(p(X1X2Y )kp(X1X2)(X1Y )), (10)

which corresponds term-by-term to the chain rule for mutual information. While
this chain is not maximal, considering the maximal chain, however, yields a more
fine-grained decomposition:

?in < [X2] < [X1][X2] < [X1X2] ,

This, in turn, yields an information decomposition with three non-negative
terms,

I(X1, X2;Y ) = I(X1;Y ) +
�

I(X2;Y |X1)� I3(X1, X2, Y )
�

+ I3(X1, X2, Y ) ,

where I3(X1, X2, Y ) is Amari’s triplewise information. (See example 2.3 above.)
In this way we can write I(X1, . . . , Xn

;Y ) as a sum of non-negative terms in
many di↵erent ways. However, these decompositions in general treat the input
variables asymmetrically. The decompositions are “path-dependent,” in the
sense that they depend on which particular chain is chosen. In the next section
we turn these path-dependent decompositions into a single path-independent
one by suitably averaging over the maximal chains.

4 Defining the information contribution as a sum

over chains

We now extend the decomposition along individual chains of the input lattice to
a path-independent information decomposition: this decomposition will define
a separate information contribution for each of the non-empty subsets A of V .

In order to do so, consider the set � of all maximal chains in the input
lattice, that is, all directed paths from ?in to [X1, . . . , Xn

]. Consider a maximal
chain � 2 �. For any index l in the chain, the collection �(l) of subsets forms a
simplicial complex and for each transition from �(l) to �(l+1) a subset A of V is
added to the simplicial complex �(l) until the topmost simplicial complex which
ends up containing all subsets of V . In particular, the chain has the property
that all non-empty subsets A of V are being added at some point along a chain
�.

In particular, this ensures that there is exactly one l
�

(A) that satisfies the
following condition: all simplicial complexes �(l), 0  l < l

�

(A), do not contain
A, and all simplicial complexes �(l), l

�

(A)  l  2n�1, do contain A; i.e. l
�

(A)
denotes the step in the chain � at which A is added (note that the empty set ;
is necessarily contained in the first complex of each chain, i.e. l

�

(;) = 0).
Based on this, we now derive a decomposition of the mutual information

between inputs and output “aligned” with respect to a particular subset A of
inputs. For this purpose, consider the set E

A

of all edges (S,S0) where S0 is
obtained from S by adding A, i.e. where S0 = S ] {A}:

11



A

S0

S

A

A

We furthermore now subdivide the set � into classes of maximal chains,
grouped by specific edges (S,S0). Denote by �(S,S0) the set of all maximal
chains � 2 � that contain this particular edge (S,S0):

A

A

A

�(S,S0)

Then, for any non-empty subset A, one has the following partition:

� =
]

(S,S0)2EA

�(S,S0) .

Every maximal chain is accounted for in this disjoint union, because for every
maximal chain there is exactly one step (edge) at which the set A is added.
This is illustrated in fig. 3 for the case of three input variables.

We now consider a probability weighting over the maximal chains, that is, a

12



?

[X1] [X2][X3]

[X1][X2][X1][X3] [X2][X3]

[X1][X2][X3][X1X2][X1X3] [X2X3]

[X1X2][X3][X1X3][X2] [X2X3][X1]

[X1X2][X1X3] [X1X2][X2X3][X1X3][X2X3]

[X1X2][X1X3][X2X3]

[X1X2X3]

16 1616

88 8 88 8

124124 12 4

1212 1244 4

8 88 8 88

16 1616

48

Figure 3: The input lattice for three inputs. Each edge is labelled with the total
number of maximal chains that pass through that that edge. The edges where
the subset {X1, X2} appears for the first time are highlighted in red. Each
maximal chain passes through exactly one of these edges. The contribution of
{X1, X2} to the total information is calculated by averaging over these edges,
weighted by their path counts (the numbers in red.) In this lattice there are 48
maximal chains in total.
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set of weights µ(�) such that
P

�2� µ(�) = 1. We obtain

I(X1, . . . , Xn

;Y ) = DKL(p[X1,...,Xn] k p?in) (11)

=
X

�2�

µ(�)
2n�1
X

l=1

DKL(p
�(l) k p�(l�1)) (12)

=
X

�2�

µ(�)
X

;6=A✓V

DKL(p
�(l�(A)) k p�(l�(A)�1)) (13)

=
X

;6=A✓V

X

�2�

µ(�)DKL(p
�(l�(A)) k p�(l�(A)�1)) (14)

=
X

;6=A✓V

X

(S,S0)2EA

8

<

:

X

�2�(S,S0)

µ(�)

9

=

;

| {z }

=1

DKL(pS0 k pS) (15)

=
X

;6=A✓V

X

(S,S0)2EA

µ(S,S0)DKL(pS0 k pS) (16)

Here, we used the short-hand notation µ(S,S0) for µ(�(S,S0)) =
P

�2�(S,S0) µ(�).
The equality (12) follows because of the Pythagorean theorem (eq. (9)) and the
normalization of the weights µ. Note, via (15), that the non-negative weights
in the decomposition (16) satisfy the following condition:

X

(S,S0)2EA

µ(S,S0) = 1 . (17)

This allows us to interpret

I
(µ)
A

(X1, . . . , Xn

; Y ) :=
X

(S,S0)2EA

µ(S,S0)DKL(pS0 k pS) (18)

as the mean information in A that is not contained in a proper subset of A.
This gives us a non-negative decomposition of I(X1, . . . , Xn

;Y ) into terms
corresponding to each subset of the input variables, but note that this decom-
position is dependent on the choice of weights µ.

A natural choice for the weights µ would be simply to choose the uniform
distribution, i.e. µ(�) = 1/|�| for all �. It is not completely straightforward to
justify the uniform distribution over maximal chains, because there is no obvious
symmetry that transforms one maximal chain into another. Note, for example,
that the connectivity of the node [X1][X2][X3] in fig. 3 is di↵erent from that of
other nodes on the same level.

Nevertheless, we will now proceed with the uniform distribution as a rea-
sonable intuitive choice. It will be shown in section 5 that choosing µ this way
gives rise to a decomposition of I(X1, . . . , Xn

;Y ) that has some intuitively de-
sirable properties. For the special choice of µ as the uniform distribution we

will write I
(µ)
A

(X1, . . . , Xn

; Y ) simply as I
A

(X1, . . . , Xn

; Y ). We denote this
as the information contribution of A to Y . In section 7 we will then proceed to
show that above originally merely intuitive choice of µ as uniform distribution
finds a deeper justification in the theory of cooperative game theory.
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For the practical calculation of I
A

we first calculate the number n(S,S0)

of maximal chains that pass through each edge (S,S0) in the Hasse diagram
of the input lattice. These numbers are shown in fig. 3, as well as the total
number of maximal chains, |�|. For each node S in the lattice we calculate the
distribution pS by iterative scaling (Csiszár and Shields, 2004, chapter 5), from
which we obtain DKL(pSkp{;}). We then find the set E

A

of edges in which a
given predictor A is added for the first time in a maximal chain (for the example
of A = {X1, X2} this is shown in red in fig. 3). We then calculate our measure
I
A

from the Kullback-Leibler gains accrued on these paths by adding the set A
of interest, weighted by the chain counts n(S,S0) of the respective edges:

I
A

(X1, . . . , Xn

; Y ) =
1

|�|
X

(S,S0)2EA

n(S,S0)

�

DKL(pS0kp{;})�DKL(pSkp{;})
�

.

(19)

5 Properties of the information contribution

We now prove the following properties of the information contribution, as a
decomposition of the mutual information.

Theorem 1. For A ✓ {X1, . . . , Xn

} we have

I. I
A

(X1, . . . , Xn

; Y ) � 0 (nonnegativity)

II.
P

A22V I
A

(X1, . . . , Xn

; Y ) = I(X1, . . . , Xn

; Y ) (completeness)

III. I
A

(X1, . . . , Xn

; Y ) is invariant under permutations of X1, . . . , Xn

. (sym-
metry)

IV. I
A

(X1, . . . , Xn

; (X1, . . . , Xn

)) = 0 if |A| > 1. (singleton)

V. if X
i

= (X 0
i

, X 00
i

) for all i, Y = (Y 0, Y 00), and

p(x1, . . . , xn

, y) = p(x0
1, . . . , x

0
n

, y0) p(x00
1 , . . . , x

00
n

, y00) ,

then

I
A

(X1, . . . , Xn

; Y ) = I
A

0(X 0
1, . . . , X

0
n

; Y 0) + I
A

00(X 00
1 , . . . , X

00
n

; Y 00) ,

where A0 = {X 0
i

: (X 0
i

, X 00
i

) 2 A} and A00 = {X 00
i

: (X 0
i

, X 00
i

) 2 A}. (addi-
tivity)

As we discuss below, the singleton property is somewhat analogous to the iden-
tity axiom proposed by (Harder et al., 2013) for partial information decompo-
sition measures, which e↵ectively says that there should be no synergy terms if
the output is simply an indentical copy of the input.

Proof. (I) follows from the nonnegativity of the Kullback-Leibler divergence.
(II) is proved in Section 4 above. (III) is true by construction, since the values
of the Kullback-Leibler divergences do not depend on the order in which the
input variables are considered, and the uniform distribution over maximal chains
is invariant to reordering the input variables.
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To prove (IV), write Y = (X1, . . . , Xn

), where X
i

is considered to be a copy
of X

i

, in the sense that X
i

and X
i

are separate random variables but we have

p(x1, . . . , xn

, x1, . . . , xn

) =

(

p(x1, . . . , xn

) if x1 = x1, . . . , xn

= x
n

,

0 otherwise ,
(20)

which implies that p(x
i

, x
i

) = �
xi,xip(xi

), for every i. We then have

p?in(X1, . . . , Xn

, X1, . . . , Xn

) = p(X1) . . . p(Xn

)p(X1, . . . , Xn

) .

Consider now any edge (S\{A},S) in the Hasse diagram of the input lattice.
There are two cases to consider:

(i) A = {X
i

} for some i. In this case �(S) contains the element {X
i

, Y }.
Therefore, from its definition, the marginal pS(X

i

, Y ) must match the true
marginal p(X

i

, Y ), which implies that pS(x
i

, x
i

) = �
xi,xip(xi

). However,
�(S \ {A}) does not contain the element {X

i

, Y }, and so the marginal
pS\{A}(xi

, x
i

) may in general di↵er from �
xi,xip(xi

), and DKL(pSkpS\A)
can be nonzero.

(ii) |A| > 1. Consider first the case that A = {X
i

, X
j

}. Because S is a
simplicial complex, we have that {X

i

} 2 S\{A} and {X
j

} 2 S\{A}.
Therefore pS\{A} has to match the constraints pS\{A}(xi

, x
i

) = �
xi,xip(xi

)
and pS\{A}(xj

, x
j

) = �
xj ,xjp(xj

). We also have, from eq. (20), that
pS\{A}(xi

, x
j

) = p(x
i

, x
j

). From these constraints we have

pS\A(xi

, x
j

, x
i

, x
j

) = p(x
i

, x
j

)�
xi,xi�xj ,xj = p(x

i

, x
j

, x
i

, x
j

) .

Therefore pS\A already meets the constraint that the marginals forX
i

, X
j

, Y
match those of the true distribution and minimising DKL(pSkpS\A) sub-
ject to this constraint must result in zero. The proof of this is similar if
|A| > 2.

Therefore every term in eq. (16) will be zero if |A| > 1, but in general they can
be nonzero if |A| = 1.

To prove (V) we first note the following general additivity property of the
Kullback-Leibler divergence. Let Z 0 and Z 00 be two co-distributed random vari-
ables, let p0(z0, z00) = p0(z0)p0(z00) for each z0, z00 in the sample spaces of Z 0, Z 00,
that is, render the two random variables independent according to the distri-
bution p0. Then let M be a mixture family defined by constraints that depend
only on either Z 0 or Z 00. That is,

M =
n

q :
X

z

0

q(z0)f (i)(z0) = F (i) (i = 1, . . . , r) ,

X

z

00

q(z00)g(j)(z00) = G(j) (j = 1, . . . , s)
o

.
(21)

Calculating argmin
p2M

DKL(pkp0), introducing Lagrange multipliers in the usual
way, gives us

p(z0, z00) = p0(z
0)p0(z

00)e
P

i �if
(i)(z0)+

P
j ⌘jg

(j)(z00)� = p(z0)p(z00) ,
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where p(z0) = p0(z0)e
P

i �if
(i)(z0)� 0

and p(z00) = p0(z00)e
P

j ⌘g
(j)(z00)� 00

. Note
that these are the same distributions that would be obtained if the projection
were performed on each of the marginals rather than the joint distribution. We
have both that Z 0 and Z 00 remain independent after projecting onto M , and also
that DKL(p(Z 0, Z 00) k p0(Z 0, Z 00)) = DKL(p(Z 0) k p0(Z 0))+DKL(p(Z 00) k p0(Z 00)).

Now consider constructing a system of random variables X
i

= (X 0
i

, X 00
i

),
Y = (Y 0, Y 00), according to the condition of property V. Each of the split distri-
butions is defined as a projection from the product distribution onto a mixture
family. By construction, all of these mixture families satisfy eq. (21). Because
of this, every term in eq. (18) can be written as a sum of the corresponding
terms for the systems {X 0

1, . . . , X
0
n

, Y 0} and {X 00
1 , . . . , X

00
n

, Y 00}. The additivity
property follows from this.

We note that these properties do not uniquely determine the information
contribution measure. In particular, one could choose a di↵erent measure µ
over the maximal chains besides the uniform measure; there are in general many
such measures that would yield an information measure satisfying theorem 1.
To see this, note that properties I, II, IV and V do not depend on the choice of
measure µ, and hence don’t constrain it. Property III does restrict the choice
of measure, but for more than two inputs the number of paths in the lattice
is greater than the number of inputs, and consequently the symmetry axiom
does not provide enough constraint to uniquely specify µ. However, as argued
above, the uniform measure is a natural choice, and we will show below that
its use can be more systematically justified from the perspective of cooperative
game theory.

5.1 Comparison to partial information decomposition

As noted above, the information contribution I
A

is not a partial information
decomposition (PID) measure, because it decomposes the mutual information
into a di↵erent number of terms than the latter. In the case of two input vari-
ables X1 and X2, the PID has four terms (synergy, redundancy, and two unique
terms), whereas the information contribution has only three, I{X1}, I{X2} and
I{X1,X2}. The joint term, I{X1,X2}, behaves somewhat similarly to a synergy
term, and the two singleton contributions I{X1} and I{X2} are roughly analo-
gous to the two unique information terms, but there is no term corresponding
to shared/redundant information. For more than two inputs, the terms of a
partial information measure can be expressed in terms of a lattice known as
the redundancy lattice Williams and Beer (2010), which is di↵erent from the
constraint lattice or the input lattice discussed above.

Within the PID framework, (Harder et al., 2013) introduced the identity
axiom, which states that a measure of redundant information I\, should satisfy

I\(X1, X2; (X1, X2)) = I(X1;X2) .

This is equivalent to saying that the corresponding measure of synergy, I[,
should be zero in the case where the output is a copy of its two input variables:

I[(X1, X2; (X1, X2)) = 0 . (22)
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It was proven by Rauh et al. (2014) that there can be no non-negative PID mea-
sure that satisfies all of Williams and Beer’s axioms together with the identity
axiom. This can be achieved if we restrict ourselves to two input variables, but
for three or more inputs there are distributions for which it cannot be achieved.
(See Example RBOJ below.)

While our information contribution measure is not a PID measure, if we take
the joint term I{X1,X2} to be analogous to a synergy term, then the singleton
decomposition property (property IV), for two inputs, is roughly analogous to
eq. (22). Therefore our measure obeys an analog of the identity axiom for PID
measures, alongside analogs of the non-negativity and symmetry axioms for PID
measures. This is possible only because the information contribution is not a
PID measure, and hence does not have to obey the precise set of Williams-Beer
lattice axioms.

It is also worth comparing our information decomposition measure with the
framework proposed by James and Crutchfield (2017), which seeks a di↵erent
kind of information decomposition from PID. In this framework, instead of
decomposing the mutual information between a set of sources and a target, one
instead wishes to decompose the joint entropy H(Z1, . . . , Zn

) of several jointly
distributed random variables, into a sum of terms corresponding to each subset
of the variables. Our framework sits somewhere between this approach and
PID, since we have the distinction between the inputs and the target, but we
decompose I(X1, . . . , Xn

;Y ) into a sum of terms corresponding to subsets of
the inputs, in a similar manner to James and Crutchfield’s proposal.

6 Examples

We now explore a few examples of our information contribution measure (which
we will also sometimes denote by Shapley information decomposition, as will
be justified by the game-theoretic analysis in section 7 below). Here, we apply
it to joint distributions between a target and two or three inputs. Note that
our framework does not require any restrictions on these joint distributions. In
particular, it is expressly not assumed that the inputs are independent of one
another. Importantly, the measures will in general be a↵ected by dependent
inputs, which is a desirable property of such a measure, because it has been
observed before that appropriate attributions of joint interactions should depend
on input correlations (see the discussion on source vs. mechanistic redundancy
in Harder et al., 2013).

We take most of our examples from the literature on partial information
decomposition, in particular (Williams and Beer, 2010; Gri�th and Koch, 2014;
Harder et al., 2013; Bertschinger et al., 2014). These examples are relatively
standardised, and give some intuition for how our measure compares to PID
measures.

We first explore some basic examples with two predictors, which are pre-
sented in table 1. For each of these examples, the method attributes an amount
of information contribution to the predictors {X1}, {X2} and {X1, X2}. The
numbers assigned to these sets are nonnegative and, together, they sum up
to the mutual information I(X1, X2;Y ). This is in many ways similar to the
partial information decomposition framework, but we note again that the infor-
mation contribution decomposition has fewer terms than the partial information
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decomposition (e.g. three rather than four in the two-input case).
In the example Rdn in table 1, the two inputs share a single bit of informa-

tion about the target. In the PID framework, this typically corresponds to one
bit of shared or redundant information. However, the Shapley decomposition
does not try to identify redundancy as a separate term, and instead assigns half
a bit to each of the predictors. The joint predictor {X1, X2} is assigned a zero
contribution. This reflects the fact that once the correlations between Y and
the two individual predictors are known the three-way correlations are already
determined, and so learning them does not reveal any extra information.

In the second example, Xor, we have Y = X1�X2, where � is the exclusive-
or function. In this example, no contribution is assigned to the individual pre-
dictors X1 and X2, but one bit is assigned to the joint predictor {X1, X2}. This
can be seen as a kind of synergy measure — it says that all of the information
that the predictors give about the target is found in the three-way correlations
between X1, X2 and Y , and none in the pairwise correlations between either
predictor and the target. Interpreting this causally, it means that the causal
influences of X1 and X2 on Y are strongly tied together. While the Shapley
decomposition does not have a term corresponding to redundancy, we see that
it characterises synergy in a rather intuitive way.

Our third and fourth examples are discussed in (Harder et al., 2013). The
“two bit copy” operation plays an important role in the PID literature in the
context of the identity axiom. The Shapley decomposition assigns one bit each
to both of the predictors and none to the joint predictor, reflecting the fact that
the two inputs each provide a di↵erent piece of information about the target.
This can be compared to the PID framework, since it is usually seen as desirable
for a PID measure to assign zero bits of synergy in this case. Note, however,
that because our decomposition does not try to identify redundancy, it does
not distinguish between this case and the case of Rdn, where the information
is also shared equally between the two predictors. The results for the And
distribution are similar, telling us that there is also no synergy in this case.
This is because for And the joint distribution can be inferred completely by
knowing the marginals (X1, Y ), (X2, Y ) and (X1, X2), and consequently there
is no triplewise information.

Our final two-predictor example is SynRdn, which can be formed by com-
bining the Xor example with an independent copy of the Rdn example. The
values assigned to the two predictors and the joint predictor are simply the sum
of their values in the original two examples, which is a result of the additivity
property (theorem 1, part V).

Table 2 shows the results for three input variables. In this case the method
assigns an amount of information to every non-empty subset of {X1, X2, X3},
representing the share of the mutual information provided by that set of inputs.
The first example, Parity, is a three-input analog of the Xor example, since
Y = X1 �X2 �X3. In this example it is not possible to infer anything about
the value of Y until the values of all three inputs are known. Correspondingly,
the method assigns all of the total mutual information (1 bit) to the predictor
{X1, X2, X3} and none to the others.

Our second example, XorMultiCoal (which we take from (Gri�th and
Koch, 2014)) has the property that knowing any single input gives no infor-
mation about the target, but any pair of predictors completely determines it.
This is reflected in the contributions assigned by the Shapley decomposition:
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Rdn

X1 X2 Y p
0 0 0 1/2
1 1 1 1/2

predictor contribution (bits)

{X2} 1/2
{X1} 1/2

{X1, X2} 0

Xor

X1 X2 Y p
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

predictor contribution (bits)

{X2} 0
{X1} 0

{X1, X2} 1

2 bit copy

X1 X2 Y p
0 0 0 1/4
0 1 1 1/4
1 0 2 1/4
1 1 3 1/4

predictor contribution (bits)

{X2} 1
{X1} 1

{X1, X2} 0

And

X1 X2 Y p
0 0 0 1/4
0 1 0 1/4
1 0 0 1/4
1 1 1 1/4

predictor contribution (bits)

{X2} 0.40563765
{X1} 0.40563762

{X1, X2} 0

SynRdn

X1 X2 Y p
0 0 0 1/8
0 1 1 1/8
1 0 1 1/8
1 1 0 1/8
2 2 2 1/8
2 3 3 1/8
3 2 3 1/8
3 3 2 1/8

predictor contribution (bits)

{X2} 1/2
{X1} 1/2

{X1, X2} 1

Table 1: Examples of the Shapley information decomposition for several simple
two-predictor cases. For each example the joint distribution is shown on the left,
and on the right we tabulate I{X1}, I{X2} and I{X1,X2}, the contributions made
by the two singleton predictors {X1} and {X2} and the joint predictor {X1, X2}.
These three values always sum to the mutual information I(X1, X2;Y ). All log-
arithms are taken to base 2, so that the numbers are in bits. The interpretation
of these examples is given in the text.
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Parity

X1 X2 X3 Y p
0 0 0 0 1/8
0 0 1 1 1/8
0 1 0 1 1/8
0 1 1 0 1/8
1 0 0 1 1/8
1 0 1 0 1/8
1 1 0 0 1/8
1 1 1 1 1/8

predictor contribution (bits)

{X1} 0
{X2} 0
{X3} 0

{X1, X2} 0
{X1, X3} 0
{X2, X3} 0

{X1, X2, X3} 1
total 1

XorMultiCoal

X1 X2 X3 Y p
4 0 4 0 1/8
0 2 2 0 1/8
1 1 0 0 1/8
5 3 6 0 1/8
5 1 4 1 1/8
1 3 2 1 1/8
0 0 0 1 1/8
4 2 6 1 1/8

predictor contribution (bits)

{X1} 0
{X2} 0
{X3} 0

{X1, X2} 1/3
{X1, X3} 1/3
{X2, X3} 1/3

{X1, X2, X3} 0
total 1

RBOJ

X1 X2 X3 Y p
0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 2 1/4
1 1 0 3 1/4

predictor contribution (bits)

{X1} 2/3
{X2} 2/3
{X3} 2/3

{X1, X2} 0
{X1, X3} 0
{X2, X3} 0

{X1, X2, X3} 0
total 2

three way And

X1 X2 X3 Y p
0 0 0 0 1/8
0 0 1 0 1/8
0 1 0 0 1/8
0 1 1 0 1/8
1 0 0 0 1/8
1 0 1 0 1/8
1 1 0 0 1/8
1 1 1 1 1/8

predictor contribution (bits)

{X1} 0.18118725
{X2} 0.18118724
{X3} 0.18118724

{X1, X2} 0
{X1, X3} 0
{X2, X3} 0

{X1, X2, X3} 0
total 0.54356444

Table 2: Some examples of our measure, applied to joint distributions between
a target and three inputs. The interpretation of these examples is given in the
text.
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the singleton predictors {X1}, {X2} and {X3} each make no contribution to
the total. Instead, the total one bit of mutual information is shared equally be-
tween the three two-input predictors, {X1, X2}, {X1, X3} and {X2, X3}. The
three-input predictor {X1, X2, X3} makes no contribution, because the target
is already fully determined by knowing any of the pairwise predictors.

The third example, RBOJ, played an important role in the literature on PID,
because it was used in (Rauh et al., 2014) to prove that no partial information
decomposition is possible that obeys the so-called identity axiom, along with the
axioms of Williams and Beer (2010) and local-positivity. In particular, no such
decomposition is possible for this distribution. In this joint distribution, the
inputs X1, X2 and X3 are related by the exclusive-or function, and the target
Y is in a one-to-one relationship with its inputs. As a result, each input provides
one bit (in the usual sense) of information about the target, and each pair of
inputs provides two bits, which completely determine the target. Consequently,
learning the third input adds no new information about the target, if the other
two are already known. Because our decomposition is di↵erent from PID, it
is able to assign non-negative values to each of the predictors. It shares out
the total two bits of mutual information equally between the three singleton
predictors, {X1}, {X2} and {X3}. This can be seen as a compromise between
the fact that the contributions of each member of a pair of input variables are
independent (similarly to the 2-bit copy) and that they, at the same time, need
to be fairly allocated to three variables.

We finish with an example, Three way And, in which the decomposition
is less intuitive. In this case, the target is 1 if and only if all three inputs
are 1. Similarly to the And example, our measure divides the information
contributions between the three singleton predictors, assigning none to the two-
or three-input predictors. The reason for this is similar to the And example.
Because of this, from the perspective of our measure, this example looks similar
to the RBOJ example.

7 Cooperative game theory and weighted path

summation

In section 4 we defined the information contribution I
A

(X1, . . . , Xn

; Y ) based
on a uniform weighting of the maximal chains in the input lattice. In this section
we return to the question of how this uniform distribution would be justified.

To do so, we use the notion of the Shapley value (Shapley, 1953) from cooper-
ative game theory. Informally, the idea of the Shapley value is that one has a set
of players N = {A

i

, i = 1 . . . |N |}. Subsets of the players are called coalitions,
and each coalition is assigned a total score (we will use this term interchangeably
with payo↵ ), which is to be interpreted as how well that set of players could do
at some task, without the participation of the remaining non-coalition players.
Given this data, the problem is to assign a score to each individual player, such
that the scores of each individual player sum up to the total score. The players’
scores should reflect their “fair” contribution in achieving the total score.

For this assignment of scores to be uniquely characterized, Shapley pos-
tulates that the scores assigned to players should be a linear function of the
coalitions’ scores, a notion of relevance (explained below) and a notion of sym-
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Shapley Theory Information in Simplicial Complexes

player A,B,C set (simplex) A,B,C
coalition simplicial complex
empty coalition ; empty1 simplicial complex S(0) = {}
coalition of all players N all subsets of {1, . . . , n} = [n], i.e. 2[n]

value of a coalition S DKL(pSkp{;}) (0 if S = {})
Shapley value �

A

(v) information contribution I
A

(X1, . . . , Xn

; Y )

Table 3: Correspondence between our quantities and coalitional game theory.
Note that the empty coalition/simplicial complex is included at the bottom of
the lattice.

metry amongst the players (where players whose contribution to value cannot
be distinguished via a symmetrical exchange of players should attain the same
Shapley value). The basic Shapley value assumes that all subsets of N are pos-
sible as coalitions. Since Shapley’s original work, many generalizations of the
Shapley value have been developed (Bilbao, 1998; Bilbao and Edelman, 2000;
Grabisch and Michel, 2009; Faigle and Grabisch, 2012; Ulrich Faigle and Michel
Grabisch, 2013).

The purpose of our measure I
A

(X1, . . . , Xn

; Y ) is to assign to each predictor
A a unique share of the mutual information I(X1, . . . , Xn

; Y ). Equation (19)
calculates this as a linear function of the quantities DKL(pSkp{;}), which can be
thought of as the information provided by S, which is a set of predictors. This
is closely reminiscent to the task of the Shapley value to identify contribution of
a particular player when the values of all valid coalitions of players are known.

In fact, we can apply cooperative game theory directly to our problem, by
treating sets A of input variables (i.e. predictors) as players in a cooperative
game, in which the score of a coalition S is given by DKL(pSkp{;}), and hence
the total score is I(X1, . . . , Xn

; Y ). The only complication is that not every set
of players forms a viable coalition, because S is constrained to be a simplicial
complex. We thus need a formulation which permits us to restrict the possible
coalitions to the ones imposed by the simplicial partial order  on the set D of
all simplicial complexes. This restriction also necessitates a modification of the
symmetry axiom of the original Shapley value to guarantee that the generalized
Shapley allocation becomes uniquely determined.

Concretely, here we argue that the specific quantity in Eq. (18) can be inter-
preted precisely as the generalized Shapley value under precedence constraints
in the sense of Faigle and Kern (1992).

We will use similar notation for cooperative games to the notation we have
used this far for information quantities. We use the symbols A,B,C, . . . for
players, and similarly S,S0, . . . for coalitions, D for the set of all feasible coali-
tions, to keep a coherent notation. Finally, let N denote the set of all players.
Table 3 gives the relationship between game-theoretic quantities and the quan-
tities defined in previous sections. To simplify the exposition and render it
coherent with respect to existing literature on cooperative game theory, we ad-
ditionally include the empty coalition (simplicial complex) below the coalition
{;} and assign to it the value 0. This will not a↵ect any of the results on the
input lattice.

1In previous chapters, we considered {;} as bottom node of the input lattice. Here, we
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In what follows, we introduce Faigle and Kern’s extension of the Shapley
value, and then show that that applying it to this ‘information game’ is indeed
equivalent to eq. (18) with µ taken as the uniform distribution over maximal
chains, resulting in eq. (19). This demonstrates that our measure obeys the
axioms of Linearity, Carrier and Hierarchical strength, described below, which
are used to derive Faigle and Kern’s result.

7.1 Shapley Value under Precedence Constraints

We now proceed to define the (generalized) Shapley value under precedence con-
straints as defined in (Faigle and Kern, 1992). For brevity, when we henceforth
say “Shapley value”, we will refer to this variant unless stated otherwise.

Let N be a finite partially ordered set of players, where for A,B 2 N the
relation B  A enforces that, if A 2 S for any coalition S ✓ N, one also
has B 2 S (compare with (2)). Under this constraint, not necessarily every
subset of N is a valid coalition. Let D be the set of all valid coalitions. D is
closed under intersection and union operations, but not necessarily under the
complement operation.

A cooperative game on N is now a function

v : D ! R (23)

such that v(;) = 0. Consider the vector space ⌥ of all cooperative games on N,
then the Shapley value is defined as a function

� : ⌥ ! RN (24)

which defines, for each player A from N, their share �
A

(v) for the game v.
Several axioms are postulated for the Shapley value.

Axiom 1 (Linearity). For all c 2 R, v, w 2 ⌥, demand

�(c v) = c�(v)

�(v + w) = �(v) + �(w)

Axiom 2 (Carrier). Call a coalition U 2 D a carrier of v 2 ⌥ if v(S) = v(S\U)
for all S 2 D. Then, if U is a carrier of v, we have

X

A2U

�
A

(v) = v(U) . (25)

The carrier axiom needs a brief explanation. It unifies two intuitive axioms
that are sometimes used instead, the dummy axiom (a player that does not
a↵ect the value (or payo↵) of any coalition attains a Shapley value of 0) and
the e�ciency axiom (the sum of the Shapley values of all players sums up to
the total payo↵ of the whole set of players).

The third axiom of the traditional Shapley value postulates that players
whose contribution to coalition payo↵s are equivalent with respect to a sym-
metric permutation will also receive the same Shapley allocation. This axiom

also include the node below {;}, interpreted as coalition, namely, the empty coalition in the
lattice.
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cannot be used in our case, because it requires all subsets of N to be feasible
coalitions. To obtain a unique characterization of the generalized Shapley value
discussed here, a stronger requirement needs to be imposed. There are several
axiom sets which are equivalent on the ordered coalition games discussed here
(see introduction of section 7 above). We follow (Faigle and Kern, 1992) in
choosing the formulation via hierarchical strength.

We need a number of definitions. Call an injective map

⇡ : N ! {1, 2, . . . , |N|}

a (feasible) ranking of the players in N if for all A,B 2 N we have that A < B
(i.e. A  B and A 6= B) implies ⇡(A) < ⇡(B).

The ranking ⇡ of N induces a ranking ⇡S : S ! {1, 2, . . . , |S|} on all
coalitions S 2 D via ⇡S(A) < ⇡S(B) if and only if ⇡(A) < ⇡(B) for all
A,B 2 S. Note that only ordering, but not numbering are equivalent in ⇡ and
⇡S.

We say that player C 2 S is S-maximal in the ranking ⇡ if ⇡S(C) = |S|
which is the same as saying that ⇡(C) = max

A2S ⇡(A) or that there is no player
A in coalition S with C < A.

We are now ready to express the concept of hierarchical strength: the hi-
erarchical strength hS(C) of the player C in S is defined as the proportion of
(total) rankings ⇡ in which C is S-maximal. Formally,

hS(C) :=
1

|R(N)| |{⇡ 2 R(N) | C is S-maximal for ⇡}| (26)

where R(N) is the set of all rankings for the set N of players.
Define now a particular fundamental game type, the inclusion game over S,

called ⇣S via:

⇣S(T) :=

(

1 if S ✓ T

0 otherwise .
(27)

In other words, the payo↵ of the game is 1 if the tested coalition T encompasses
a given reference coalition S and vanishes otherwise. We mention without proof
that these games form a basis of ⌥ and thus it is su�cient to define the Shapley
value over all inclusion games on N. Inclusion games form a preferred set of
coalitions in the study of coalitional games since they are closely related to
elementary games (games where only a specific coalition achieves a non-zero
payo↵) and have an intuitive interpretation.

Finally, we can now define

Axiom 3 (Hierarchical Strength (Equivalence)). For any S 2 D, A,B 2 S, we
demand:

hS(A)�
B

(⇣S) = hS(B)�
A

(⇣S) (28)

Informally, the Shapley value of a player B in a coalition S for the inclusion
game is weighted against that of another player A in the same coalition via
their hierarchical strength. All else being equal, the Shapley values of the two
players relate to each other as their hierarchical strengths — a larger value of the
hierarchical strength corresponds to a larger Shapley value, i.e. larger allocation
of payo↵.
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Faigle and Kern (1992) note that the hierarchical strength emphasizes the
given player being on top of its respective coalition in the given ranking rather
than, say, considering its average rank. This is insofar an intuitive choice for the
generalized Shapley value, since it is only the top-ranked player in a coalition
which determines whether that particular coalition is formed at all. In other
words, it is a measuring in how many rankings (relative to the total number
of rankings) that particular player has the power to decide whether the given
coalition will be formed or not.

It turns out this has a straightforward reinterpretation and generalization in
the context of Markovian coalition processes (Ulrich Faigle and Michel Grabisch,
2012) In addition, there are many other formulations equivalent with it (see
references mentioned in the introduction to the present chapter section 7). We
opted for the formulation via hierarchical strength since it is the most widely
established generalization of the symmetry axiom for the classical Shapley value
in the literature.

We state here without proof that the unique payo↵ allocation is given by

�
C

(v) =
1

|R(N)|
X

T2D
C2T+

|R(T \ {C})| · |R(N \ T)|
�

v(T)� v(T \ {C})
�

(29)

where we trivially assume |R(;)| = 1 and where C 2 T+ sums over all
coalitions T for which C is maximal. The (generalized) Shapley value of C
is given by the marginal contribution of C to all coalitions T for which it is
maximal, weighted by the proportion of rankings for which this is the case.

We now show that our definition of information contribution of a sim-
plex (eq. (19)) is equivalent to the generalized Shapley value under prece-
dence constraints if the value is the mutual information between input variables
X1, . . . , Xn

and output variable Y . Thus, the information contribution has a
natural interpretation in the context of game-theoretic payo↵ allocation.

7.2 Equivalence of Generalized Shapley Value and the Sum

over Maximal Chains

Theorem 2. We now prove that, under the identifications of table 3, the infor-
mation contribution of a set A is identical with its Shapley value under prece-
dence constraints, with A interpreted as a player. More precisely:

X

(S,S0)2EA

µ(S,S0)DKL(pS0 k pS) =

X

S2D
A2S+

|R(S \ {A})| · |R(2[n] \S)|
|R(2[n])|

⇥

DKL(pS||p{;})�DKL(pS\{A}||p{;})
⇤

, (30)

where the weighting of the lattice chains µ is chosen as the uniform distribution,
µ(�) = 1/|�|. To permit consistency between lattice and Shapley model, we
furthermore define the bracketed term on the right side to be 0 for S = ;.

Proof. Consider N = 2[n]. Identify the elements A 2 N, i.e. the subsets of [n],
with the players in a Shapley coalition game with partial ordering defined via
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the subset relation, i.e. via

B  A :() B ✓ A .

Per definition, the partial order-compatible coalitions S then precisely consti-
tute the simplicial complexes of N.

We now show that, under these identifications, the (feasible) rankings of
players define precisely the maximal chains over simplicial complexes. In other
words, there is a one-to-one correspondence between the rankings of the or-
dered coalition game and the maximal chains over its corresponding simplicial
complexes.

The intuition of the proof is as follows: in the Hasse diagram for the input
lattice section 4, each maximal chain is formed by successively adding each of
the predictors, one at a time, in such a way that each step of the chain remains a
simplicial complex. We will demonstrate that the orders in which the predictors
are added in a maximal chain correspond precisely to the feasible rankings of
the predictors interpreted as Shapley players. We now proceed to show this
formally.

We first show well-definedness, i.e. that each ranking defines a maximal
chain. Let ⇡, a (feasible) ranking over the set of players N, be given (we remind
that each player is a subset of [n]). Define the sequence

S0 := ;,S1,S2, . . . ,S|N| (31)

where for k = 1, . . . , |N|

S
k

:= {A 2 N | ⇡(A)  k} (32)

= ⇡�1({1, . . . , k}) . (33)

We now need to show now that this sequence (S
k

)
k=0,...,|N| is, first, a chain

of simplicial complexes (equivalently, feasible coalitions) and, second, maximal.
If k = 0, then S

k

= ; is trivially a simplicial complex. Else, let 1  k  |N|.
Consider now A 2 S

k

, and any B 2 N with B ✓ A. We have ⇡(B)  ⇡(A) 2
{1, . . . , k} per ranking property, and thus ⇡(B) 2 {1, . . . , k}, and thus B 2 S

k

and S
k

is a simplicial complex.
From (33) it follows that, for k  l, S

k

✓ S
l

. Therefore, if A 2 S
k

, also
A 2 S

l

and thus S
k

 S
l

and the (S
k

)
k

form a chain.
This chain is maximal. To show this, consider successive simplicial complexes

S
k

,S
k+1, k = 0, . . . , |N| � 1 in the sequence. Consider eS such that S

k


eS  S

k+1 according to the natural partial order  on simplicial complexes.
If S

k

6= eS, then there exists a B 2 eS \ S
k

and, since eS  S
k+1, one has

B ✓ C for some C 2 S
k+1. This means that ⇡(B)  ⇡(C). Since B /2 S

k

, also
⇡(B) /2 {1, . . . , k}, so, per construction of S

k+1, necessarily ⇡(B) = k + 1 and

B = ⇡�1(k + 1) = C 2 S
k+1. It follows that eS must be either S

k

or S
k+1,

thus, S
k

� S
k+1 and the chain is maximal. This shows that the mapping from

rankings to maximal chains is well-defined.
We show now that mapping rankings to maximal chains (31) via (33) is

injective. For this, consider two rankings ⇡ 6= ⇢. We have to show that they
induce di↵erent maximal chains.
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Consider B with ⇡(B) 6= ⇢(B). Assume, without loss of generality, ⇡(B) <
⇢(B). If we consider the chain (S⇡

k

)
k

induced by ⇡ (and analogously (S⇢

k

)
k

for
⇢), then observe that the chain can be written in the form of inclusion chain as

; ✓ S⇡

0 ✓ S⇡

1 ✓ · · · ✓ S⇡

⇡(B)
"
first time where B appears in (S⇡

k )k

✓ · · · ✓ S⇡

|N| = N . (34)

In this chain, the first simplicial complex to contain B is the one with index
⇡(B). Under the same consideration for the chain induced by ⇢, the first member
of the chain to contain B is the one with index ⇢(B). However, ⇡(B) < ⇢(B)
and therefore the chains must di↵er and assigning chains to rankings via (31) is
injective.

Show now surjectivity: for each maximal chain, there is a ranking that
produces it. Let

; = S0 ✓ S1 ✓ · · · ✓ S|N| = N (35)

be a maximal chain. We show now that each step adds exactly one C 2 N.
Assume none of the steps in the sequence is trivial, i.e. we always have S

j

(
S

j+1. AllS
k

are at the same time simplicial complexes as well as — equivalently
— order-compatible coalitions. Choose C 2 S

j+1 \Sj

minimal (i.e. such that
for any B 2 S

j+1 \Sj

with B ✓ C, we have B = C).
Since C 2 S

j+1, for any B ✓ C, we have B 2 S
j+1. It follows that either

B 2 S
j

or B 2 S
j+1 \Sj

; in the latter case, however, because of minimality of
C in S

j+1 \Sj

, it follows B = C. Thus S
j

[ {C} is a simplicial complex, and
because of maximality of the chain, it must be identical to S

j+1. In summary,
in each step of the maximal chain precisely one simplicial complex is added.

Finally, given a maximal chain

; � S1 � S2 � · · · � S|N| = N , (36)

define for every j = 1, . . . , |N| the inverse ranking ⇡�1(j) to map onto the unique
set (player) in S

j

\ S
j�1. The maximal chain (36) is induced by the ranking

⇡; we have thus shown the mapping (33) of rankings to maximal chains to be
surjective (for every maximal chain there is a ranking that is mapped to it).
With the injectivity shown earlier, this mapping is thus bijective. In short, we
have shown that to each maximal chain corresponds one and only one feasible
ranking.

Consider now (S,S0) 2 E
A

, i.e. an edge where S0 = S [ {A} is obtained
by adding A to S. For the set �(S,S0) of (maximal) chains (S

k

)
k

who pass
through this edge, i.e. for which S

j

= S and S
j+1 = S0 for some j, one has, in

analogy to the derivation above, a one-to-one map to the pairs of the rankings
over S0 \ {A} and those over N \S0:

R(S0 \ {A})⇥R(N \S0) . (37)

This is seen by replacing the full ranking with two subrankings, one over the
lower sublattice with S as top element instead of N and one over the upper one
which has S0 as bottom element replacing S0. It follows that we have

|�(S,S0)| = |R(S0 \ {A})| · |R(N \S0)| . (38)
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Consider a particular edge (S,S0) 2 E
A

. We note that this edge corresponds
precisely to the simplicial complexes S0 2 D where A is maximal in S0, i.e. A 2
S0+. We had earlier the short-hand notation µ(S,S0) =

P

�2�(S,S0) µ(�) where
�(S,S0) ranges over all chains containing a particular edge. If all chains/paths
� are equally weighted, their weight is given by

1

|�| =
1

|R(N)| =
1

|R(2[n])|
(39)

Finally, note that

DKL(pS0 k pS) = DKL(pS0 ||pS(0))�DKL(pS0\{A}||pS(0)) (40)

because of the Pythagorean relation (9). This completes the proof of (30).

Note that, when constructing the correspondence between the input lattice
to the Shapley value, for the former we had the maximal chains start at {;}
rather than at ; as bottom of the lattice. However, the property from theorem 2
continues to hold in this case, since the bottom step from ; to {;} is unique and
does not a↵ect the path counts.

8 Discussion

In the search for a partial information measure that allocates informational
contributions to various input variable sets (i.e. predictors) we relinquished the
demand to quantify redundancy and instead applied the Pythagorean decom-
position to characterize the additional contribution of an input variable set as
it is added on the relevant maximal chains. This “longitudinal” contribution is
chain-dependent, though. To be able to talk about a contribution of an indi-
vidual predictor, though, we need to express this contribution independently of
the particular chain.

Intuitively, this can be done by assigning a probability distribution over the
chains and averaging a predictor’s contribution over all these chains; most nat-
urally, the equidistribution could be chosen for this purpose. A more justified
reasoning for this choice can be derived by observing that the setup of informa-
tion contribution precisely matches the situation of a coalition game where the
value of a coalition is the contribution of that coalition to the overall “value”,
i.e. information about the target variable; and that contribution can be fairly
assigned via the Shapley value concept. Of course, with the natural precedence
order of predictors, not all coalitions of predictors (i.e. players in the language
of game theory) are viable. We needed to resort to the variant of the Shapley
value under precedence constraints which, as it turns out, corresponds precisely
to the averaging over all maximal chains of the input lattice, strengthening both
the confidence in the appropriateness of the measure and the intuition behind
it.

While the view of a predictor contribution stemming from averaging over
chains (paths) through the lattice seems abstract and artificial, the Shapley
value-based interpretation justifies its use. In fact, this perspective finds, again,
additional justification from more recent coalition game theory in which coali-
tions are not considered as immutable, but can change as per a stochastic process
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via local incentives (Ulrich Faigle and Michel Grabisch, 2012). In our context,
this would correspond to a dynamically chosen path in an input lattice. At this
stage, however, we are interested in the static contributions of the predictors;
whether there will be an incentive to invoke a complex trajectory in the input
lattice over which the contributions will be averaged, remains a question for the
future.

Acknowledgement

DP would like to acknowledge support by H2020-641321 socSMCs FET Proac-
tive project. NA and NV acknowledge the support of the Deutsche Forschungs-
gemeinschaft Priority Programme “The Active Self” (SPP 2134).

References

Amari, S.-i. (2001). Information geometry on hierarchical decomposition of
stochastic interactions. IEEE Transaction on Information Theory, 47:1701–
1711.

Amari, S.-i. and Nagaoka, H. (2007). Methods of information geometry, volume
191. American Mathematical Soc.

Amari, S.-i., Tsuchiya, N., and Oizumi, M. (2016). Geometry of information
integration. In Information Geometry and its Applications IV, pages 3–17.
Springer.

Ay, N. (2001/2015). Information geometry on complexity and stochas-
tic interaction. Entropy, 17(4):2432–2458. Originally published in 2001
as MiS-Preprint 95/2001. Journal version published 2015. Preprint URL
https://www.mis.mpg.de/publications/preprints/2001/prepr2001-95.html.
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