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Abstract: it is commonplace in the educational literature on mathematical practice to 

argue for a general conclusion from isolated quotations from famous mathematicians. 

In this paper, we supply a critique of this mode of inference. We review empirical results 

that show the diversity and instability of mathematicians’ opinions on mathematical 

practice.  Next, we compare mathematicians’ diverse and conflicting testimony on the 

nature and purpose of proof.  We lay especial emphasis on the diverse responses 

mathematicians give to the challenges that digital technologies present to older 

conceptions of mathematical practice.  We examine the career of one much cited and 

anthologised paper, WP Thurston’s ‘On Proof and Progress in Mathematics’ (1994).  This 

paper has been multiply anthologised and cited hundreds of times in educational and 

philosophical argument.  We contrast this paper with the views of other, equally 

distinguished mathematicians whose use of digital technology in mathematics paints a 

very different picture of mathematical practice.    

The interesting question is not whether mathematicians disagree—they are human so 

of course they do.  The question is how homogenous is their mathematical practice. If 

there are deep differences in practice between mathematicians, then it makes little 

sense to use isolated quotations as indicators of how mathematics is uniformly or 

usually done. The paper ends with reflections on the usefulness of quotations from 

research mathematicians for mathematical education. 
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1 Introduction 

The reflections and reminiscences of mathematicians are a rich source of data for 

mathematics education and the philosophy of mathematical practice.  Mathematical 

research practice is hard to study, because it takes place in private and semi-private 

places (offices, seminar rooms) and in the minds of mathematicians.  In addition, it is 

technically difficult.  For these reasons, we need the reflective testimony of 

mathematicians to help us to understand what they are doing.  On the other hand, the 

usual reservations about practitioner-testimony apply to mathematics.  Adepts in any 

practice can fail to understand what they are doing, how they are doing it and what 

conditions make it possible.  Moreover, they can disagree among themselves about the 

meaning and nature of the practice, in which case the testimony of any one practitioner 

cannot be taken as a reliable guide to the whole.  

In this paper, we first review empirical results in cognitive psychology that show the 

diversity and instability of mathematicians’ spontaneous opinions on selected aspects of 

mathematical practice.  Next, we compare mathematicians’ diverse and conflicting 

testimony on the nature and purpose of proof.  We lay especial emphasis on the diverse 

practical responses mathematicians give to the challenges that digital technologies 

present to older conceptions of mathematics.  We examine the career of one much 

cited and anthologised paper, WP Thurston’s ‘On Proof and Progress in Mathematics’ 

(1994).  This paper has been multiply anthologised and cited hundreds of times in 

educational and philosophical argument.  We contrast this paper with the views of 

other, equally distinguished mathematicians whose advocacy of digital technology in 

mathematics paints a very different picture of mathematical practice.    

The interesting question is not whether mathematicians disagree—they are human so 

of course they do.  The question is how homogenous is their mathematical practice. If 

there are deep differences in practice between mathematicians, then it makes little 

sense to use isolated quotations as indicators of how mathematics is uniformly or 

usually done. 

2 Empirical studies on consensus among mathematicians 

Mathematicians certainly disagree about some of the features of mathematics that 

interest educators and philosophers.  For example, mathematicians and philosophers 

have written about properties of proofs such as elegance and explanatory power 

(Cellucci, 2015; Lang, 1985; Resnik & Kushner, 1987; Rota, 1997; Steiner, 1978).  Many 

philosophical2 papers in this area assume that the proofs that feature in their analyses 

 
2 As one referee pointed out, here we see philosophers (rather than mathematicians or educationalists) 
assuming that practice is homogenous.  It does not matter for our argument who it was who provoked the 
psychologists we cite to test the homogeneity hypothesis empirically.  All that matters for our purpose are 
the methods and the results of the experiments.   
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are obviously elegant (or not) or explanatory (or not).  If these properties are obvious 

features of the proofs, one would expect to see a consensus among mathematicians 

about which proofs instantiate them.  This assumption has recently faced empirical 

challenges (see especially Inglis & Aberdein, 2016).  These empirical studies indicate that 

consensus among mathematicians regarding the elegance and explanatory power of 

proofs cannot be assumed.   

The qualities of proofs 

In a pair of papers, Matthew Inglis and Andrew Aberdein have subjected the assumption 

of consensus among mathematicians to an empirical test.  Their first paper in this area 

(2015) analysed the adjectives that mathematicians commonly use to describe proofs 

and found that they form four clusters: aesthetics, intricacy, precision and utility.  This 

work used the same method as the classic studies that identified five dimensions to 

human personality (Goldberg, 1981). With this result in hand, they were able to test the 

level of consensus about the nature of a given proof and to check the robustness of 

judgments by comparing the scores for words in the same cluster.  This they did in their 

second paper (2016). 

In this second study, they used a proof of the Sylvester-Gallai theorem taken from 

Aigner and Ziegler (2000).  This proof has some obvious advantages: it is short (so 

reading it does not take up much of the participants’ time), it is non-trivial and, since it is 

taken from a book of famously neat proofs, there is a good chance that some 

participants would describe it in decisively positive terms.  Their survey asked 112 

mathematicians to judge the accuracy of twenty adjectives that might describe the 

proof, using a five-point Likert scale.  Inglis and Aberdein (2016) found that the 

mathematicians’ answers formed three groups.  The first group rated the proof high on 

adjectives associated with aesthetics, precision and utility, but low on intricacy.  The 

second group rated it low on aesthetics, intricacy and precision, but high on utility.  The 

third group rated it low on all dimensions, and especially on aesthetics (p. 171).  

Statistical tests to check for correlations with area of expertise or career stage were 

non-significant.  It seems that this sample of mathematicians took very different views 

of the qualities of this particular proof, for reasons that are not revealed by the data.  

Notably, a majority of them rated it below the midpoint of the aesthetic scale, even 

though it is taken from a book of proofs selected for their beauty.  This is, of course, just 

one study awaiting replication and it is logically possible that there might have been 

something atypical about this proof or the method of recruiting participants that 
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produced this result.  On the other hand, there has been no outcry among 

mathematicians about the choice of proofs in Aigner and Ziegler (2000).3 

There has been one replication of this study by the same authors (forthcoming).  They 

ran the same experiment, but with an additional feature: half of the participants were 

told that the proof in the study was taken from Aigner and Ziegler’s Proofs from the 

book.  In their analysis, Aberdein and Inglis distinguished between pure and applied 

mathematicians (the latter including statisticians).  The information that the proof is in 

Proofs from the book made no difference to applied mathematicians.  However, among 

pure mathematicians, the ones who knew its provenance rated it higher on the 

aesthetic dimension than the ones who did not (on average).  A natural explanation for 

this is that pure mathematicians are more likely to know that Aigner and Ziegler’s book 

is an attempt to realise Erdős’s idea of the Book of perfectly elegant proofs.  Knowing 

that this is a proof that one is supposed to admire for its beauty seems to have nudged 

them towards admiring it themselves.  This should not be a surprise.  It means that 

mathematicians are human and that they modify their opinions to conform with their 

in-group consensus just like everyone else.  On the other hand, it does mean that 

research into the question of what makes a proof beautiful cannot start by assuming 

that mathematicians agree which proofs are beautiful, nor that such agreement as there 

is results simply from mathematicians having insight into the beauty of proofs.  

Mathematicians are far from unanimous in their judgments about the qualities of 

proofs, in spite of whatever social pressure they may feel from each other. 

One might respond to this result by observing that of the categories in Inglis and 

Aberdein’s list, ‘aesthetic’ is a matter of taste, or at least of personal judgment and 

‘utility’ is relative to context.  Perhaps it is not surprising that such judgments vary 

among mathematicians just as they do among members of any other professional 

group.  If we were to invite a random sample of architects to judge whether a given 

structure is elegant or functional, we might expect a similar diversity, not because such 

judgments are entirely personal but just because there are distinct traditions and 

schools of thought within architecture.  Despite this diversity, there may still be 

something called ‘architectural practice’, though we should not expect to learn about it 

by asking just one architect or by collecting data on the assumption that it is 

homogenous.  What, though, about features of proofs that are not matters of taste?  

We have already seen that mathematicians can disagree about the precision and 

intricacy of a proof.  What about the safety of inferences?  What about rigour?  One 

might expect mathematicians to agree about that, even if they disagree about the 

 
3 One computer scientist did say that he suspected that the number of proofs from graph theory in this 
book was evidence of a campaign by graph theorists to advance their sub-discipline, but even he did not 
complain that the proofs selected are too ugly to deserve selection (private communication).   
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beauty, precision, usefulness and intricacy of proofs.  We turn now to experiments that 

test for consensus on proof-validity.   

The validity of a proof 

In a study (Inglis et al, 2013) with a similar design to the ones on aesthetics, it was found 

that the mathematicians who responded did not agree when asked whether a given 

proof was valid, and those who judged it to be invalid gave three different reasons why 

it was not valid.  The proof used in this study is probably not a candidate for the Book, as 

it is a piece of undergraduate-level real analysis that proceeds by making substitutions 

and taking limits, for the familiar conclusion that∫𝑥−1 𝑑𝑥 = ln 𝑥 + 𝑐.  Of the 109 

participants who completed the survey, 29 (27%) judged the argument valid, and 80 

(73%) judged it invalid.  The study had some additional features—it analysed the results 

by area of expertise and gave participants an opportunity to revise their judgment when 

presented with a reason why the proof might be invalid.  For the present purpose, 

however, all we need is that there was substantial disagreement among expert 

mathematicians about whether a relatively elementary proof is valid (though, there was 

a clear ¾ majority for judging it to be invalid).  It would be too quick to conclude from 

this that mathematicians disagree about what ‘validity’ means.  We do not know how 

carefully the participants examined the proof, and if they read it quickly, they would be 

especially vulnerable to the common human tendency to attribute soundness to 

arguments for conclusions that are already believed to be true.  Moreover, a printed 

proof always has gaps, and is best regarded as a series of instructions for the reader to 

create a mathematical argument of their own.  These instructions can be more or less 

detailed (the shortest we know of is on page 96 of Awoday (2010) and simply consists of 

the words ‘diagram chase’).  Perhaps the judgment of the 29 mathematicians who 

thought this proof is valid was that ‘in my hands, this is the recipe for a valid argument’.  

Perhaps all the mathematicians in this study would agree with a general definition of 

proof validity even though they disagree about whether this proof satisfies that 

definition.  Nevertheless, even if this study does not give us the exciting conclusion that 

mathematicians disagree about what ‘validity’ means, it does show that mathematicians 

cannot be relied on to be unanimous even on apparently technical questions about 

elementary calculus.   

One feature of this study that makes it hard to interpret is that it asked mathematicians 
to assess an entire proof for validity.  We might expect more agreement about specific 
inferences, which was addressed by the next study. 

Graphical inferences  

The next group of experiments we consider asks about the validity of specific inferences.  

According to the dominant view in mathematics and philosophy, graphical or pictorial 
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inferences are not rigorous and strictly speaking have no place in mathematical proofs.4  

However, they do play an essential role in ancient Euclidean geometry, and Manders 

(2008a, 2008b) has argued that ancient Euclidean proof-practice is perfectly rigorous.  

To make this argument, Manders introduced a distinction between metrical and non-

metrical information expressed in a diagram5.  Metrical information is sensitive to small 

deformations in the diagram (such as measured angles and lengths) whereas non-

metrical information is not so sensitive (such as one figure being inside another).  

Manders’ argument is that Euclidean plane geometry is rigorous because its proofs only 

ever take non-metrical information from its diagrams.  This, on his view, is how 

geometers are able to make good arguments on badly drawn diagrams.   

Zhen et al (2016) set out to discover whether students conform to the view that 

graphical inferences are not rigorous, and their study distinguished between metrical 

and non-metrical graphical inferences.  They found that students do not regard metrical 

graphical inferences as acceptable, but many of the same students do seem to accept 

non-metrical graphical inferences.  So, it seems that they failed to learn the standard 

view that graphical inferences of any sort are unrigorous.  Moreover, they distinguish 

between metrical and non-metrical graphical inferences.  They must have learned this 

distinction from somewhere.  Weber and Mejia-Ramos (2019) investigated the obvious 

suspects: mathematics professors.   They ran the same experiment, this time with 

professors as participants rather than students.  They got a similar result: very few 

professors were willing to accept metrical graphical inferences, but a little more than 

half were willing to accept non-metrical graphical inferences.   

 

 
4 The locus classicus is Bolzano 1817.  In the twentieth century, the view that diagrams have no place in 
proofs is associated with Bourbaki (see Brown 1999 p. 172).  Littlewood, presenting himself as resisting 
the trend, complains that his students “will not use pictures” and blames this on “heavy warnings” 
intended to break students from school mathematics (Littlewood 1953 p.36).  Moreover, the rejection of 
diagrams in proofs is a consequence of the view that the inferences in a mathematical proof should be 
purely logical, that is, make no reference to specific subject matter.  An inference that depends crucially 
on a diagram obviously violates that rule. This view has its origins in the work of Pasch, Frege and Hilbert.  
For a recent expression, see Hales 2012 p. x.  
5 Manders used the terms ‘exact’ and ‘co-exact’.  ‘Metrical’ and ‘non-metrical’ are the terms used by 
Zhen et al, and by Weber and Mejia-Ramos.  Since we discuss their argument, we use their terms rather 
than Manders’.   
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In this experiment, Weber and Mejía-Ramos studied cases from undergraduate real 

analysis, because here it is common to draw graphs of functions, and one can ask 

whether these graphs are merely aids to intuition or whether they play a role in proofs.  

For example, one might look at a graph of 𝑥 − sin 𝑥 and infer that it has a root at zero, 

that it is strictly increasing, and that it has no other roots (fig. 1).  The first two 

inferences are metrical, in that they rely on the graph being precisely drawn.  In order to 

draw these inferences, we have to know that this is not a slightly deformed graph of 

some other function, such as (1 −
1

10100
) 𝑥 −

sin (𝑥 +
1

10100
), but we cannot judge that by 

inspection of the graph.  On the other hand, if we 

know that the function is strictly increasing, then 

we can infer from the graph that it has no other 

roots besides the one at or close to zero.  This 

inference does not depend on the graph being 

precisely drawn and so is non-metrical.   

As always with empirical research, a single study 

can never be wholly conclusive, and it is easy to 

think of ways to criticise the experimental set-up.  

One point that the authors discuss is that these inferences were presented as happening 

in a class, so the question is not whether they are rigorous mathematics in some 

absolute sense but rather whether they are acceptable as undergraduate mathematical 

reasoning.  Since the aim of the study of professors was to compare with the 

experiment on students, it is reasonable that the same conditions were specified.  In 

some cases, one might wonder whether they are properly described as graphical or 

pictorial reasoning.  Nevertheless, the results pass standard tests for significance, so we 

can be confident that the experiment has identified something, and that professors are 

successfully imparting whatever it is to their students.  For our purposes, all we need is 

that there seems to be a disagreement among mathematicians on a question—the 

nature of rigour—where one might have expected unanimity.  One would like to see 

another experiment of the same sort, except with the proofs presented in a professional 

research context, so that the question becomes whether either sort of graphical 

inference is acceptable for publication in a journal or presentation at a conference.  

Even if the discovered effect were to disappear in that context, we would have 

discovered a lack of unity in what mathematicians teach their students.  We therefore 

cannot speak univocally of ‘rigour as understood in undergraduate classes’. 

3 Mathematicians discuss mathematics 

So far, we have only considered the judgments of single, isolated mathematicians 

(because the experiments so far reported ask participants to give their judgments 
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without discussing the questions with others).  But stable mathematical knowledge is 

the result of a social process.  As David Hume put it,  

There is no Algebraist nor Mathematician so expert in his science, as to place 

entire confidence in any truth immediately upon his discovery of it, or regard 

it as any thing, but a mere probability. Every time he runs over his proofs, his 

confidence encreases; but still more by the approbation of his friends; and is 

rais’d to its utmost perfection by the universal assent and applauses of the 

learned world.6 

Hume may have underestimated the confidence that some individual mathematicians 

have in their own judgment.  Nevertheless, our interest is in whether mathematical 

practice is stable and relatively homogenous, or whether it shows the sort of change 

and variety that is typical of architectural practice.   One might reasonably7 object to the 

experiments cited so far that they leave out the stabilising, homogenising effects of 

interaction between mathematicians.  Sure, mathematicians might make different 

judgments in isolation, but the practice of mathematics includes sharing notes, 

eliminating each other’s errors and critical discussion.  We turn, therefore, to public 

debates about mathematics among mathematicians and in particular to debates about 

the nature and purpose of mathematical proof.  This is because our interest in the 

testimony of mathematicians concerns the use that philosophers and mathematics 

educators make of it, so we should look at discussions of the sorts of issues that interest 

them.  Here, then, we encounter the sorts of texts from which philosophers and 

researchers in mathematics education tend to draw the quotations that they reproduce 

in isolation and without context.     

Testimony of mathematicians   

Within the educational and philosophical literature on mathematical proof, one 

discussion stands out and within that discussion, one paper in particular has become a 

canonical source of quotations: William Thurston’s (1994) ‘On proof and progress in 

mathematics’, his response to (Jaffe & Quinn, 1993).   This essay has been lifted from its 

 
6 Hume (1888), Book I, PART IV. of the sceptical and other systems of philosophy.   SECTION I. Of 
scepticism with regard to reason. 
7 Matthew Inglis has argued that this objection is not as reasonable as it sounds, because in shifting from 

cognitive science to ethnography, we are changing the object of study.  “’Mathematical practice’ can be 
interpreted from an individualist cognitive perspective or an individualist social psychological perspective, 
or a sociological perspective (roughly speaking I’d say that the difference between the latter two is that 
the object of study for a social psychologist is the individual in a social setting, whereas the object of study 
for the sociologist is the social setting itself)… It is like a sociologist saying, ‘cognitive experiments don’t 
consider social factors’ or a cognitivist saying ‘ethnographies don’t consider cognitive processing’. Both 

those statements are true, but they’re not sensible objections.” (private communication, 2018).  
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original polemical context, reprinted as Thurston (1995) and anthologised in Tymoczko 

(1998) and Hersh (2006).  These four editions of Thurston’s article have over 900 Google 

Scholar citations between them, including in works by the present authors, such as 

Hanna (1995) and Larvor (2012, 2019).  Amongst other things, this article includes a 

version of the idea we pursue here, i.e. that we should not assume that, “there is 

uniform, objective and firmly established theory and practice of mathematical proof” 

(p. 161).  Understanding why this one article took off would indicate what philosophers, 

mathematicians, and mathematics educators find useful in such testimony.   

Before considering Thurston’s article, it is worth recalling what this debate was about.  

Jaffe and Quinn’s paper of 1993 presented a vision of mathematics in danger.  Their 

article claimed that the distinction between mathematical speculation—including 

informed, reasoned speculation with plausible arguments—and rigorously proven 

mathematics has frayed.  Their diagnosis had two parts: first, the arrival of ever more 

powerful computers has allowed the emergence of ‘experimental’ mathematics, and 

second, theoretical physics offers a scientific milieu where mathematicians can do 

serious and interesting mathematical work without having to produce the proofs that 

mathematics journals would normally demand.  Their concern was chiefly not with what 

is done, but with how it is published.  Mathematicians, they insist, should not be 

allowed to rush into print and claim results that have not been proved in detail, even if 

they have a sketch of how the proof will go when they get around to writing it out.  

Aside from the possibility of publishing erroneous claims, they argue, such premature 

publication reduces the motivation for working out the needed details.  If the honour of 

discovering a result has already been claimed by a senior mathematician who published 

it along with a proof-strategy or sketch, then there is little incentive for others to fill in 

the gaps (Jaffe & Quinn, 1993, p. 8).  Jaffe and Quinn give various cases that they 

present as examples of this effect, including work by Thurston.  Jaffe and Quinn are not 

widely quoted in the philosophical and educational literature, for the obvious reason 

that their image of mathematical proof—in which the formal published document is the 

paradigm of ‘proper proof’—has more distinguished expositors.  Anyone looking for a 

quotation to express or illustrate this view would look elsewhere, to David Hilbert or 

Bertrand Russell, for example, or to Saunders Mac Lane or Thomas Hales.   

The success of Thurston’s riposte (at least as measured by citations in philosophical and 

educational writing) cannot be simply a function of his fame or distinction.  After all, 

fifteen equally famous mathematicians replied to Jaffe and Quinn (Atiyah et al, 1993), 

but their responses have not been mined for quotations to anything like the same 

degree.  Unlike the other mathematicians under fire from Jaffe and Quinn, Thurston 

replied with a full-length, wide-ranging essay that started from the question of why 

anyone should do mathematics at all.  His answer focussed on the importance of 

understanding mathematics, both the proofs and the results.  The core of his defence is 

that the understanding of mathematical ideas is a necessary condition for the formal 
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checking that Jaffe and Quinn care about.  One of the points at issue between Thurston 

and Jaffe and Quinn was that, according to Thurston, the paper record of mathematics 

published in journals is incapable of sustaining the shared understanding that 

mathematicians need in order to do their work.  Real mathematical understanding 

depends on real mathematical communication, which for him meant in-person dialogue.  

In particular, several statements in Thurston’s response appealed to researchers in 

mathematics education who are (justifiably) preoccupied with mathematical 

understanding (and were so before he published this article—see, for example, Hanna & 

Winchester, 1990; Hanna, 1989; de Villiers, 1990).  Because researchers in mathematics 

education fear, rightly or wrongly, that excessive emphasis on rigour or on formal proof 

could hinder comprehension, they find the following statement from Thurston’s essay 

highly quotable:  

…we should recognize that the humanly understandable and humanly 

checkable proofs that we actually do are what is most important to us, and 

that they are quite different from formal proofs. For the present, formal 

proofs are out of reach and mostly irrelevant: we have good human 

processes for checking mathematical validity. (Thurston, 1994, p. 171) 

Thurston’s essay stands out because it does not merely affirm the importance of 

mathematical understanding (which no one would deny), but further claims that 

rigorous proof depends on mathematical understanding.  The ‘good human processes’ 

he refers to here are only possible because mathematicians have an intimate 

understanding of the subject-matter of these ‘humanly understandable and humanly 

checkable’ proofs.  This was the core of his defence of his practice of talking about 

results in public before he published verified proofs: he had to teach the mathematics 

community to understand the concepts he was working with.  Otherwise, there would 

be no one able to review and validate his work.  A similar situation seems to be holding 

up a decision on Shinichi Mochizuki’s claimed proof of the ABC conjecture.  Mochizuki 

developed a new body of mathematics called Inter-universal Teichmüller theory in order 

to prove it.  So far, the few mathematicians who understand it are mostly Mochizuki’s 

students or associates.  This makes it very difficult for the international mathematics 

community to reach a consensus on the reliability of his proof.  Here too, the option of 

sending the proof for review in advance of presenting it publicly was not available (see 

Klarreich, 2018).   

Thurston’s insistence that communal understanding precedes proof-checking makes it 

attractive to recruit him to the ‘understanding first’ side of a struggle over mathematics 

teaching in secondary schools (the other side being the ‘procedural first drill’ faction)—

so long as his remarks are ripped from the context in which he made them.  (See Barwell 

and Abtahi (2017) for the construction of this conceptual vs. rote-learning division in the 

news media; also see Manin (1998) for further discussion of Thurston’s argument.)  
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Thurston’s argument is that the mathematical community needs to get itself into a 

position to review and validate new mathematics by spending time learning it.  Peer 

review assumes the existence of peer reviewers with the appropriate expertise, and 

when whole new subfields are being created, it takes time and collective work to realise 

this assumption.  This point applies only to research mathematics and then only in the 

relatively rare circumstance where one individual pioneers a whole new body of 

thought.  It has no obvious direct application or relevance to school classrooms, yet 

Thurston’s paper is quoted by education researchers who are principally interested in 

school mathematics.  It’s true that Thurston starts with some general remarks about the 

importance of understanding in mathematics, but these are a statement of common 

ground.  Everyone agrees that understanding is important.  The serious discussion is 

about its logical and developmental relations with other aspects of mathematical 

practice: formal proof in research and procedural drill in school.  Jaffe and Quinn can 

retort that it’s important to be sure that whatever we try to understand is true.  The 

‘drill first’ faction in school education will say that real understanding depends on a firm 

foundation of familiarity with basic facts and procedures.  However, this parallel is 

misleading.  Thurston’s argument is about his research community as a whole coming to 

understand and validate new knowledge, whereas the debate about school 

mathematics concerns individual students getting to grips with material that was 

validated long ago.  Tying these together logically would require some version of the old 

(and largely discredited) idea that ontogenesis must recapitulate phylogenesis.  As soon 

as Thurston’s argument moves beyond the truism that understanding is desirable, it 

loses much of its relevance to schoolteaching.   

4 The challenges and opportunities of computer mathematics 

Examination of the polemical context of Thurston’s article has shown that he did not 

speak for all research mathematicians, knew he did not, and his vision of mathematics 

cannot be taken as an unproblematic description of a homogenous item called 

‘mathematical research practice’.  In the present section, we consider some of the 

technological changes that have taken place in the quarter century since Thurston 

published his article.  As we shall see, these have multiplied and deepened divisions 

among research mathematicians about what constitutes good proving practice.  We 

take no sides in these controversies; our aim here is only to record them.   

One of the ambiguities in the Jaffe and Quinn controversy is the sense of ‘formal’.  Jaffe 

and Quinn write of ‘formal’ proof, by which they mean proofs that are sufficiently 

detailed and regimented for publication in a research journal.  However, this is not what 

logicians or computer scientists mean by ‘formal’.  Mathematicians writing for 

mathematics journals do not normally specify their notation in advance or make explicit 

the strength of the logic of their inferences, as may be done in logic or computer 

science.  Mathematicians consider proofs suitable for publication when they display an 
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organized structure, show the relevance of lemmas and definitions, and provide enough 

information – sufficient, but not necessarily complete – to convince an informed reader 

(that is, a trained mathematician) that the conclusion follows from the stated premises. 

Reviewers usually apply these same standards when evaluating the merits of a proof 

submitted for publication. There is even some evidence that the refereeing process is 

more about deciding which papers are of sufficient interest and novelty than about 

assessing their correctness – with the result that some published mathematical papers 

may contain errors (Geist et al, 2010). Over the last decade, some prominent 

mathematicians  have expressed their dissatisfaction with seeing too many reasoning 

errors in informal proofs (Hales, 2008; Voevodsky, 2014).   Whether the proofs are their 

own or offered by others, they would like to have a higher level of confidence in their 

correctness than the heretofore acceptable methods can provide, and so are coming to 

prefer more formal methods—formal, that is, in the sense of formal logic.  Computers 

play a vital role in this development.8 

A formal proof in this sense, though it may be have been inspired by an intuitive grasp 

of its subject matter, in itself makes no appeal to intuition.  Rather, it makes explicit 

every single step of the derivation, respecting the rules of logic, and thus is less 

susceptible to subtle logical errors. This is so because a formal proof (in this sense) is a 

finite sequence of well-formed formulas, each of which is an axiom, an assumption, or 

follows from the preceding formulas in the sequence by a rule if inference. 

Mathematical logic, built upon formal axiomatic deduction, offers just such a model of 

proof, one that is capable of attaining the desired higher level of rigour, precision, and 

certainty. But a purely formal proof in mathematical logic, written entirely in a symbolic 

language, would require an enormous effort to produce, would be much longer, and 

would be very difficult if not impossible to understand. Thus, logicians face the same 

difficulty as mathematicians, and like them tend to rely on informal inferences, writing 

their proofs in a combination of natural and symbolic language that is relatively easy to 

read and understand. 

It was never feasible for practicing mathematicians or logicians to construct a 

formal proof of any complexity by hand. The advent of computers, however, and 

recent advances in proof-assistance technology, have made it possible to consider 

widening the use of formal proof through machine-assisted translation of informal 

proofs into formal ones. Thurston’s claim that “formal proofs are out of reach and 

mostly irrelevant” (Thurston, 1994, p. 171) is facing a growing challenge.  Formal 

 
8 One reviewer wondered whether, in this section, we are ourselves guilty of argument by isolated 
quotation.  We don’t think so, because we don’t take these mathematicians to speak for the whole of 
mathematics, and besides the argument of this section appeals to a change in mathematical practice.  The 
mathematicians we cite here are doing mathematics differently, and that is what breaks up the 
homogeneity of current practice.   
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proofs are increasingly feasible and for a growing minority of mathematicians, far 

from irrelevant.   

Mathematicians promoting the use of technology 

As mentioned above, the interest of some mathematicians in formal proof stems from a 

desire for more thorough verification of their own research and from a perception that 

the conventional refereeing process is far from adequate (Hales, 2008; Harrison, 2008; 

Geist et al, 2010). As Harrison put it: “We welcome the prospect of formalizing 

mathematics.  In our view, the traditional social process is an anachronism to be swept 

away by formalization, just as empiricism replaced a similar ‘social process’” (Harrison, 

2008, p. 1400).  Here, then, is a movement of senior mathematicians who are so 

unimpressed by Thurston’s ‘good human processes’ for proof evaluation that they are 

going to the considerable trouble of replacing them with machine checking.   

With a view to promoting the use of formal methods in mathematics, the Notices of the 

American Mathematical Society published a Special Issue on Formal Proof (Notices, 

2008, vol. 55, no. 11). They state that “Using computers in proofs both extends 

mathematics with new results and creates new mathematical questions about the 

nature and technique of such proofs. This special issue features a collection of articles 

by practitioners and theorists of such formal proofs which explore both aspects.” This 

special issue points out that mathematicians now have access to very promising ways to 

construct formal proofs and thus to gain increased confidence in their correctness. 

With the development over the past forty years of computer programs known as “proof 

checkers” or “proof assistants”, checking the correctness of a formalized proof has 

reached a level that no ordinary proof can match (Avigad & Harrison, 2014). According 

to Wiedijk (2008), these programs have been successful in checking the validity of the 

proofs of several well-known theorems, such as the Fundamental Theorem of Algebra 

(2000), the Jordan Curve Theorem (2005), the Fundamental Theorem of Calculus (1996), 

the Four Colour Theorem (2004), and the Prime Number Theorem (2008) and more. In 

addition, computer scientists have added a number of features to proof checkers and 

designed interactive proof assistants so that computers can now both discover new 

mathematics and verify the correctness of mathematical claims. These interactive proof 

assistants also known as “automated theorem provers” can help mathematicians 

translate their informal proofs into formal ones written in a well-defined logic accepted 

by the system they are using and can even help mathematicians in the process of 

reasoning (Bundy, 1991, 2013). Automated proof assistants interact with the 

mathematician to find a formal proof.  

All four contributors to the special issue agreed that the use of formal proof is a trend 

that will continue and that will contribute to enhancing rigour and gaining confidence in 

the correctness of long and complex proofs that are not amenable to human 
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verification. They all described in detail how proof assistants help mathematicians attain 

the utmost level of reliability, adding that in addition to reliability, the formalization of 

mathematical proofs can be a very worthwhile activity in its own right as it combines 

computer programming with pure mathematics. Aside from increased rigour, another 

attraction is that many such programs have generated a large number of new 

conjectures in several areas of mathematics.  

Fields medallist Vladimir Voevodsky was one of the strongest supporters of this third 

revolution. He found the use of proof assistants to be extremely helpful and even 

necessary in verifying his own proofs, since they are capable of checking every inference 

for correctness.  Here, he describes his use of computers:  

“And I now do my mathematics with a proof assistant … at least I don’t have 

to go home and worry about having made a mistake in my work ... nor do I 

have to worry about my arguments being too complicated or about how to 

convince others that my arguments are correct. I can just trust the 

computer. There are many people in computer science who are contributing 

to our program, but most mathematicians still don’t believe that it is a good 

idea. And I think that is very wrong.” (Voevodsky, 2014, p. 9.)  

Ten years after the publication of the special issue on formal proof in 2008, the Notices 

of the AMS published a paper by Jeremy Avigad, “The Mechanization of Mathematics” 

(2018) that could be considered as a follow-up to this issue. Avigad recounts the 

development of formal methods in computer science and their application to 

mathematics, describing how they can be used both for mathematical verification and 

for mathematical discovery.  Referring to the current state of mathematical practice, he 

concedes that “it may seem premature to predict that formally verified proof will 

become common practice” p. 685.  

Regarding the role of the new technologies in mathematical discovery, Avigad notes 

that the use of formal methods in discovery is even less advanced than their use in 

verification.  He attributes this lag to the fact that mathematicians may not yet have 

enough experience with using formal methods in mathematical discovery to be able to 

appreciate their power. He hopes that in the course of time, mathematicians will be  

 … open to the possibility that new technologies can open new mathematical 

vistas and afford new types of mathematical understanding. The prospect of 

ceding a substantial role in mathematical reasoning to the computer may be 

disconcerting, but it should also be exhilarating, and we should look forward 

to seeing where the technology takes us.” (Avigad, 2018, p. 688).  

Bundy (2011) cites a few reasons given by mathematicians for not using automated 

provers, among them the following: automated provers are too hard to use, they are 
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not powerful enough to prove novel conjectures, and why give up the fun of proving? 

(p. 13).  According to Ganesalingam and Gowers (2017), the main obstacle to the wider 

use of automated assistants seems to be that currently available systems cannot do 

mathematics in a “human style”. They believe that a theorem prover capable of 

producing proofs that ‘explain what is going on’ (unfortunately, not in existence yet) 

would likely be more appealing to mathematicians. Nevertheless, a sub-community of 

mathematicians does use proof assistants (also known as interactive theorem provers). 

Perhaps the majority of mathematicians are waiting for automated assistants to be 

more user-friendly and to build a track record in generating conjectures -- and perhaps 

even to take a qualitative step from assistance with formal proofs to the validation and 

construction of heuristic arguments.  For our purposes, the significance of these quoted 

opinions is that they are trying to understand the pace of change in the practice of 

mathematical research (and why it is not quicker).  That some very distinguished 

mathematicians have changed the way they work is not in dispute.   

These observations return us to Thurston’s claim, as quoted above:  

…we should recognize that the humanly understandable and humanly 

checkable proofs that we actually do are what is most important to us, and 

that they are quite different from formal proofs. For the present, formal 

proofs are out of reach and mostly irrelevant: we have good human 

processes for checking mathematical validity.” (Thurston, 1994, p. 172)).  

The last sentence is no longer true, if it ever was.  We do not seem to have good human 

processes for checking the validity of Mochizuki’s purported proof of the ABC conjecture 

(to name but one example), and formal proofs of some theorems (‘formal’ in the sense 

of logic and computer science) are within reach and some mathematicians find them 

relevant.  Mathematical practice changes, it is still changing, and (in spite of the 

impression that one may gain from some history books) it does not change uniformly, 

with all mathematicians marching in step.  New challenges and opportunities, in this 

case from technology, introduce further heterogeneity.   

5 Concluding thoughts 

Citing a text is a paradigmatic move in humanities disciplines, and should be carried out 

with appropriate rigour.  This means paying attention to the context of the quoted lines.  

To take our leading example, Thurston’s paper is often quoted as if it were a collection 

of disinterested observations by a senior mathematician who has decided to share the 

collective wisdom of top researchers in his field.  In fact, in this paper Thurston is 

defending his professional practice against a very aggressive attack.  Jaffe and Quinn 

effectively accused him of claiming honours that he did not deserve, of having 

presented as proved theorems what were, then, no more than conjectures supported 

by vague proof-sketches.  There are few more serious crimes in mathematics.  Notice 



As Thurston says… 

16 
 

that philosophers and educational researchers who quote Thurston do not usually quote 

the part where he advises us not to assume that, “there is uniform, objective and firmly 

established theory and practice of mathematical proof” (p. 161).  This, after all, is 

precisely the assumption that one must make in order to lift a quotation from 

Thurston’s article and present it uncritically as part of the truth about mathematics.  

Knowing the polemical context of Thurston’s article reminds us that it is not a 

description of mathematical practice, but rather an argument about mathematical 

practice.  This puts one on the alert to look out for its premises, in case they do not carry 

over into the context where a quotation from it might be deployed.  We have already 

seen this: strictly speaking, by its own logic, his argument applies only to pioneering 

mathematical research that runs ahead of the capacity of the mathematical community 

to assess proofs that use its new ideas.  Thurston does not state this restriction, but he 

was careful to specify that his argument may only apply to his area of mathematics, 

because other fields may have less use for spatial and kinematic intuition.  Rigour, in the 

humanities disciplines that rely on textual quotation, means taking proper account of 

the context from which the quotation is taken.  Doing this with Thurston’s article 

dramatically reduces its relevance to mathematics education. 

There are, of course, innocent ways of using a quotation.  One might quote an author 

simply because they have captured a point with unusual elegance, pith or wit.  One 

might quote a text because it is the standard reference point for the thought one wishes 

to discuss (and this may be one reason why Thurston is so widely quoted—he has 

become canonical).  One might quote a text in order to refute it (in philosophy, one of 

the most common reasons to quote an author is to show that they really did commit to 

the thesis that one is about to attack).  A quoted opinion from a senior mathematician 

can supply a hypothesis for researchers, who can set out to find out how widely the 

opinion is shared.  Quotations have an obvious place in biographies and in history—if 

used with the standards of rigour that apply to such writing.  Quotations from senior 

mathematicians can suggest interpretations of raw empirical data on mathematical 

practice, so long as the interpretation does not rely on the seniority of the 

mathematician for its plausibility.  Finally, one might quote a text as expert testimony, 

but this is the weakest and slipperiest reason, because in philosophy and education 

there is almost certainly another expert of similar standing who holds the opposite view.  

In these areas of enquiry, having an expert commit to an opinion in print does not 

establish that the opinion is true.  It only establishes that it is discussable.  Without 

embarking on a survey of the 900+ citations of Thurston’s article, we cannot say for sure 

how many writers on mathematics education are guilty of using Thurston as an 

authority on the nature of mathematics in general.  Nevertheless, the fact that his 

article is quoted orders of magnitude more frequently than everyone else does suggest 

that much of this mass of quotations may be more rhetorical than rigorous (because 
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rigorous examination of expert opinion would require quotations on a similar scale of 

voices disagreeing with him).   

Beyond this narrow point about textual quotation, there is a larger question about the 

unity of mathematical practice.  The interesting question is not whether mathematicians 

disagree—they are human so of course they do.  The question is: how homogenous is 

their mathematical practice? If there are deep differences in practice between 

mathematicians, then it makes little sense to use isolated quotations as indicators of 

how mathematics is uniformly or usually done. We saw that studies in cognitive science 

suggest that mathematicians disagree about the aesthetic and logical features of proofs.  

Furthermore, we have seen that mathematicians do in fact disagree explicitly about the 

nature and value of proofs and the validation process for mathematical research.  One 

might, therefore, be tempted simply to say that there is no such thing as mathematical 

practice.  However, this would be premature.  First, our evidence for diversity in 

mathematical norms was the result of extensive searches, and was found in relatively 

obscure corners such as mathematicians’ views about graphical inferences or the very 

frontiers of technological developments where the discipline is still deciding what it 

thinks.  It would be an error to focus on these cases and ignore the great swathes of 

normative judgment where mathematicians agree among themselves.  The analogy with 

architecture is instructive here: there are schools and trends in architectural practice 

that prevent one from announcing on a slender evidential basis that architects think this 

or that.  Nevertheless, buildings and theorems have to meet more exacting standards 

than simply being fashionable or well-regarded.   
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