
YAO et al.: ROBUST MULTIMODE FUNCTION SYNCHRONIZATION 1

Robust Multimode Function Synchronization of
Memristive Neural Networks with Parameter

Perturbations and Time-Varying Delays
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Abstract—Currently, some works on studying complete syn-
chronization of dynamical systems are usually restricted to its
two special cases: power-rate synchronization and exponential
synchronization. Therefore, how to give a generalization of these
types of complete synchronization by mathematical expression is
an open question which needs to be urgently solved. To begin
with, this paper proposes multimode function synchronization by
mathematical expression for the first time, which is a generaliza-
tion of exponential synchronization, power-rate synchronization,
and logarithmical synchronization and so on. Moreover, two
adaptive controllers are designed to achieve robust multimode
function synchronization of memristive neural networks (MNNs)
with mismatched parameters and uncertain parameters. Each
adaptive controller includes function r(t) and update gain σ.
By choosing different types of r(t), multiple types of complete
synchronization including power-rate synchronization and expo-
nential synchronization can be obtained. And update gain σ can
be used to adjust the speed of synchronization. Therefore, our
results enlarge and strengthen the existing results. Two examples
are put forward to verify the validity of our results.

Index Terms—Memristive neural networks (MNNs), complete
synchronization, multimode function synchronization, adaptive
controller, mismatched parameters, uncertain parameters.

I. INTRODUCTION

IN 1971, memristor was first assumed by Chua [1], and the
nanoscale material object of memristor was achieved by HP

laboratory in 2008 [2]. Due to the excellent properties, such as
nonvolatile memory and low power, memristor has very broad
application prospects in chaotic circuits, neural networks and
so on [3-12].

Memristive neural network (MNN) can be designed by
replacing resistor of neural network with memristor to imi-
tate the synapse [12-14], [18, 19], [24-41]. MNN has broad
applications in some fields [12-14], such as higher brain
functions, logical operations, image processing, etc. Hence,
it is necessary to research the dynamical properties of MNN
[16-41], one of which is synchronization. Recently, there
are many works on synchronization problems of dynamical
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systems [16]-[46], because of its broad application prospects
[15, 16], including information processing and secure commu-
nication. Up to now, some types of concepts of synchronization
were investigated, for example, power-rate synchronization
[42, 43], exponential synchronization [26-31], [35], [37],
anti-synchronization [33, 34], projective synchronization [36],
function projective synchronization [24], lag synchronization
[17-19], cluster synchronization [20], multisynchronization
[21-23] and so on. Currently, synchronization of dynamical
systems can be realized by using feedback control [26-37].
For instance, anti-synchronization with linear feedback control
was investigated in [33] and [34]. Power-rate synchronization
by impulsive control was addressed in [42]. Exponential syn-
chronization was studied via state feedback control [26, 27],
[35], pinning control [28], delay-dependent feedback control
[30], state feedback control or adaptive feedback control [31],
[37]. In [36], finite-time projective synchronization by linear
feedback control was achieved. Different feedback controllers
are designed to achieve different types of synchronization and
meet different needs. For instance, if a general type of syn-
chronization is required, projective synchronization [36] and
function projective synchronization [24] are suited. Projective
synchronization (or function projective synchronization) can
be regarded as a general form of complete synchronization
and anti-synchronization. Actually, power-rate synchronization
[42, 43] and exponential synchronization [26-31], [35], [37]
are two special cases of complete synchronization. Currently,
complete synchronization has been extensively investigated in
some literatures [26-31], [35], [37], [42, 43]. However, these
works are usually restricted to power-rate synchronization
and exponential synchronization. Therefore, how to generalize
these types of complete synchronization by mathematical
expression is an open question which needs to be urgently
solved.

Because of environmental disturbances and dependence on
state for parameters of MNNs, we usually cannot acquire
parameter values without deviation and the parameters of drive
and response MNNs may be mismatched [38-41]. Uncertain
parameters and mismatched parameters of MNNs may lead to
instability and some unpredictable influence for the systems.
Therefore, the effect of uncertain parameters and mismatched
parameters cannot be neglected. In recent years, there are
some researches on robust synchronization of MNNs with
uncertain parameters or mismatched parameters [38-41]. For
example, Li et al. investigated robust synchronization of
MNNs with mismatched coefficients and mismatched time-
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varying delays [38]. Finite-time robust synchronization and
asymptotical robust synchronization of MNNs were studied
with mismatched parameters in [40] and [39], respectively.
When there exist uncertain parameters in multiple MNNs,
the robust synchronization problem was investigated in [41].
However, there is no work on robust synchronization of
drive and response MNNs with mismatched parameters and
uncertain parameters.

Inspired by the above-mentioned discussions, we focus
attention on robust complete synchronization of drive and
response MNNs with mismatched parameters and uncertain
parameters. For the purpose of investigating complete synchro-
nization of drive/response dynamical systems, the multimode
function synchronization is proposed, which can generalize
some existing definitions of complete synchronization includ-
ing power-rate synchronization and exponential synchroniza-
tion. This paper will deal with the robust multimode function
synchronization problem between drive MNN system and
response MNN system. Robust multimode function synchro-
nization means that the states of drive and response MNN
systems with parameter perturbations are identical via multiple
convergence methods. It is worth mentioning that power-
rate synchronization [42, 43] and exponential synchronization
[26-31], [35], [37] can be viewed as two special cases of
multimode function synchronization. Compared with power-
rate synchronization [42, 43] and exponential synchronization
[26-31], [35], [37], multimode function synchronization is
more convenient to be used in practical applications and can
meet more requirements due to its flexible and multiple types
of complete synchronization. Therefore, multimode function
synchronization enlarges the existing results and has gener-
ality. Moreover, this paper designs two adaptive controller-
s to achieve robust multimode function synchronization of
MNNs with parameter perturbations and time-varying delays.
Compared with linear feedback control [33], [34], [36] and
state feedback control [26, 27], [31], [35], [37], [39], adaptive
control is more flexible. The main contributions can be sum-
marized as follows. 1) Multimode function synchronization,
which is a generalization of power-rate synchronization, ex-
ponential synchronization, and logarithmical synchronization
and so on, is proposed for the first time. Thus multimode
function synchronization is suitable for power-rate synchro-
nization and exponential synchronization. 2) Two adaptive
controllers are designed to achieve robust multimode function
synchronization of MNNs with mismatched parameters and
uncertain parameters. 3) Each adaptive controller in this paper
includes function r(t) and update gain σ. Function r(t) can
be freely chosen, such as exponential function, polynomial
function, logarithmical function, then corresponding robust
complete synchronization can be obtained. And update gain
σ can be applied to adjust synchronization speed according to
the practical needs.

The rest of the paper is organized as follows. In Section
II, MNNs with parameter perturbations and the definition
of multimode function synchronization are introduced. Two
adaptive controllers are designed to realize robust multimode
function synchronization of MNNs in Section III. Section IV
presents numerical simulations to verify the effectiveness of

the obtained results. Finally, conclusions are given in Section
V.

II. MEMRISTIVE NEURAL NETWORK SYSTEM AND
PRELIMINARIES

Notations: For vector ϑ = (ϑ1, ϑ2, . . . , ϑl)
T ∈ ℜl,

∥ϑ∥ =
[∑

l
m=1ϑ

2
m

] 1
2 . Γ1 and Γ2 denote |xm(t)| ≤

κm and |xm(t)| > κm, respectively; Ω1 and Ω2 denote
|ym(t)| ≤ κm and |ym(t)| > κm, respectively; and κm

represents switching threshold. ς̂mz = max {|ς̇mz| , |ς̈mz|};
ρ̂mz = max {|ρ̇mz| , |ρ̈mz|}; β̂mz = max

{∣∣∣β̇mz

∣∣∣ , ∣∣∣β̈mz

∣∣∣} and

ω̂mz = max {|ω̇mz| , |ω̈mz|}; where ς̇mz , ς̈mz , ρ̇mz , ρ̈mz , β̇mz ,
β̈mz , ω̇mz and ω̈mz are constants; m, z = 1, 2, . . . , l.

We consider MNN system with time-varying delays as:

ẋm(t) = −cmxm(t) +
l∑

z=1
ςmz(xm(t))fz(xz(t))

+
l∑

z=1
ρmz(xm(t))gz(xz(t− τz(t))) + Im(t),

t ≥ 0, m = 1, 2, . . . , l,

(1)

where the self-inhibition cm of neuron xm(t) is positive
constant; fz(.) and gz(.) are activation functions; ςmz(xm(t))
and ρmz(xm(t)) are memristive connection weights; τz(t) is
the time-varying delay and 0 ≤ τz(t) ≤ τ (τ is a positive
constant); and Im(t) is the external input.

According to the simple memeristor model [36], the mem-
ristive connection weights ςmz(xm(t)) and ρmz(xm(t)) can
be written as:

ςmz(xm(t)) =

{
ς̇mz, Γ1;
ς̈mz, Γ2;

(2)

and

ρmz(xm(t)) =

{
ρ̇mz, Γ1;
ρ̈mz, Γ2;

(3)

As described above, due to environmental disturbances and
dependence on state for parameters of MNNs, there inevitably
exist mismatched parameters and uncertain parameters in
MNNs in reality. Thus, the MNN system with time-varying
delays in (1) can be rewritten as a more realistic one.

ẋm(t) = −cmxm(t) +
l∑

z=1
[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

+
l∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t))) + Im(t),

t ≥ 0, m = 1, 2, . . . , l,
(4)

where ∆ςmz(t) and ∆ρmz(t) represent the uncertain pa-
rameters. The initial condition is x(s) = ϕ(s) =
(ϕ1(s), ϕ2(s), . . . , ϕl(s))

T . Similar to paper [41], uncertain
parameters ∆ςmz(t) and ∆ρmz(t) are bounded, namely,

|∆ςmz(t)| ≤ µmz, |∆ρmz(t)| ≤ υmz,

where µmz and υmz are positive constants.
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Set (4) as the drive MNN, then the corresponding realistic
response MNN can be represented as:

ẏm(t) = −cmym(t) +
l∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
l∑

z=1
[βmz(ym(t)) + ∆βmz(t)]gz(yz(t− τz(t)))

+Im(t) + um(t), t ≥ 0, m = 1, 2, . . . , l,
(5)

where um(t) represents appropriate feedback control;
ωmz(ym(t)) and βmz(ym(t)) denote memristive connection
weights; ∆ωmz(t) and ∆βmz(t) are the uncertain parameters.
The initial condition is y(s) = φ(s) = (φ1(s), φ2(s), . . .,
φl(s))

T . Similarly, ωmz(ym(t)) and βmz(ym(t)) can be writ-
ten as:

ωmz(ym(t)) =

{
ω̇mz, Ω1;
ω̈mz, Ω2;

βmz(ym(t)) =

{
β̇mz, Ω1;

β̈mz, Ω2;

Uncertain parameters ∆ωmz(t) and ∆βmz(t) are bounded,
namely,

|∆ωmz(t)| ≤ χmz, |∆βmz(t)| ≤ Υmz.

where χmz and Υmz are positive constants.
Remark 1: Combining drive MNN (4) and response MNN

(5), two types of parameter perturbations can be obtained.
The first type is mismatched parameters. In this paper, pa-
rameters satisfy the following inequalities: ςmz(xm(t)) ̸=
ωmz(ym(t)) and ρmz(xm(t)) ̸= βmz(ym(t)). Hence, param-
eters ωmz(ym(t)) and βmz(ym(t)) of the response MNN (5)
are mismatched with ςmz(xm(t)) and ρmz(xm(t)) of the drive
MNN (4), respectively. The second type is uncertain param-
eters. ∆ςmz(t), ∆ρmz(t) in drive MNN (4) and ∆ωmz(t),
∆βmz(t) in response MNN (5) are uncertain parameters.

Let the synchronization error em(t) = xm(t)− ym(t), then
we can get:

ėm(t) = −cmem(t) +
l∑

z=1
[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

−
l∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
l∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t)))

−
l∑

z=1
[βmz(ym(t)) + ∆βmz(t)] gz(yz(t− τz(t)))

−um(t), t ≥ 0, m = 1, 2, . . . , l.
(6)

To study the complete synchronization problem, some def-
initions on synchronization are presented below.

For two dynamical systems{
ẋ(t) = f(x(t)),
ẏ(t) = f(y(t)),

(7)

where x(t) = (x1(t), x2(t), . . . , xl(t))
T , y(t) = (y1(t), y2(t),

. . . , yl(t))
T , and the initial conditions are x(s) = ϕ(s) =

(ϕ1(s), ϕ2(s), . . . , ϕl(s))
T , y(s) = φ(s) = (φ1(s), φ2(s), . . .,

φl(s))
T , some definitions on synchronization are presented as

follows.

Definition 1 [42, 43]: If there exist positive constants Q1,
α and t0, such that

∥x(t)− y(t)∥ ≤ Q1 sup
−τ≤s≤0

∥ϕ(s)− φ(s)∥ t−α, t ≥ t0,

(8)
then two dynamical systems (7) can achieve power-rate syn-
chronization.

Definition 2 [26-31], [35], [37]: If there exist positive
constants Q2 and β, such that

∥x(t)− y(t)∥ ≤ Q2 sup
−τ≤s≤0

∥ϕ(s)− φ(s)∥ e−βt, t ≥ 0,

(9)
then two dynamical systems (7) can achieve exponential
synchronization with a degree β.

When x(t) = (x1(t), x2(t), . . . , xl(t))
T , y(t) = (y1(t),

y2(t), . . . , yl(t))
T are affected by parameter perturbations, all

types of complete synchronization mentioned above are robust,
that is, the corresponding robust complete synchronization can
be obtained.

From the Definitions 1 and 2, power-rate synchronization
[42, 43] and exponential synchronization [26-31], [35], [37]
can show the process of infinite approximation and present the
convergence rate. In fact, two systems can tend to same state
by different convergence rates and convergence methods when
time approaches to infinity. In this paper, we propose multi-
mode function synchronization for two dynamical systems (7)
to generalize these existing definitions.

Definition 3: If there exist a monotone nondecreasing con-
tinuous function r(t) and a positive constant Q, such that

∥x(t)− y(t)∥ ≤ Q sup
−τ≤s≤0

∥ϕ(s)− φ(s)∥
/

r(t), t ≥ 0,

(10)
then two dynamical systems (7) can achieve multimode func-
tion synchronization based on the convergence rate r(t), where
r(s) is a positive constant, s ∈ [−τ, 0], and limt→+∞r(t) =
+∞.

When two dynamical systems (7) are written into MNN
systems (5) and (4), we can have the following definition.

Definition 4: If there exist a monotone nondecreasing con-
tinuous function r(t) and a positive constant Q, such that

∥x(t)− y(t)∥ ≤ Q sup
−τ≤s≤0

∥ϕ(s)− φ(s)∥
/

r(t), t ≥ 0,

(11)
then MNN systems (5) and (4) can achieve robust multi-
mode function synchronization based on the convergence rate
r(t), where r(s) is a positive constant, s ∈ [−τ, 0], and
limt→+∞r(t) = +∞.

By choosing different types of r(t), multiple types of
robust complete synchronization can be obtained. Specific
multiple types of complete synchronization can be represented
as follows.

Synchronization mode 1: When r(t) is an exponential func-
tion, such as r(t) = eαt, α is a positive constant, system (5)
and system (4) can achieve robust exponential synchronization.

Synchronization mode 2: When r(t) is a polynomial func-
tion, such as r(t) = t2 + 1, system (5) and system (4) can
achieve robust polynomial synchronization. It is worth noting
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Fig. 1. The schematic diagram of robust multimode function synchronization
of MNNs.

that power-rate synchronization is a special case of polynomial
synchronization.

Synchronization mode 3: When r(t) is a logarithmic func-
tion, such as r(t) = ln(t + a), a > τ + 1, system (5) and
system (4) can achieve robust logarithmical synchronization.

When r(t) is different from the above-mentioned functions,
we define the type of complete synchronization between
system (5) and system (4) as Synchronization mode 4.

Remark 2: Definition 3 provides a general definition of
multiple types of complete synchronization by mathematical
expression. From Definition 3, power-rate synchronization
[42, 43] and exponential synchronization [26-31], [35], [37]
can be viewed as two special cases of multimode function
synchronization. Therefore, multimode function synchroniza-
tion is general and enlarges the existing results.

III. ROBUST MULTIMODE FUNCTION SYNCHRONIZATION
OF MNNS WITH ADAPTIVE CONTROLLER

The schematic diagram of robust multimode function syn-
chronization of MNNs is shown in Fig. 1. First of all, the drive
and response MNNs will change to the realistic drive and
response MNNs with two types of parameter perturbations.
According to some practical needs, we choose synchronization
mode between the realistic drive MNN and the realistic
response MNN. Then the corresponding function r(t) and
update gain σ are chosen to design the adaptive controller,
where function r(t) is used to generate multiple types of
robust complete synchronization including robust power-rate
synchronization and robust exponential synchronization, and
update gain σ is used to adjust the speed of synchronization.
Finally, the realistic drive and response MNNs can achieve the
corresponding robust synchronization mode under the adaptive
controller.

A. Robust Multimode Function Synchronization

In this section, we will design two adaptive controllers to
achieve robust multimode function synchronization between
system (4) and system (5).

Adaptive Controller (A)
Consider adaptive control (A) as follows:

um(t) = λm(t)em(t) + εm(t)sgn(em(t))

λ̇m(t) = θm[r(t)em(t)]
2

ε̇m(t) = σmr2(t) |em(t)|
(12)

where θm, σm are positive constants; sgn(em(t)) is the sign
function; r(t) is a continuously differentiable and monotone

nondecreasing function. r(s), λm(s) and εm(s) are positive
constants, s ∈ [−τ, 0], and limt→+∞r(t) = +∞, m =
1, 2, . . . , l.

Assumption 1: Functions fm(.) and gm(.) are bounded,
namely, |fm(a)| ≤ Mm and |gm(a)| ≤ Nm for any a ∈ ℜ,
where Mm and Nm are positive constants; fm(.) satisfies
Lipschitz condition, namely, there exists constant Lm > 0,
so that |fm(a1)− fm(a2)| ≤ Lm|a1− a2| for any a1, a2 ∈ ℜ,
m = 1, 2, . . . , l.

Assumption 2: The function r(t) satisfies

ṙ(t)

r(t)
≤ c (13)

where c = min1≤m≤l{cm}.
Theorem 1: MNN systems (5) and (4) can achieve robust

multimode function synchronization with the adaptive con-
troller (A) under assumptions 1 and 2.

Proof. See Appendix A.
Corollary 1: When r(t) is an exponential function, such as

r(t) = ebt, b > 0, MNN systems (5) and (4) can realize robust
exponential synchronization with the adaptive controller (A)
with no need for the assumption 2.

Proof. See Appendix B.
Remark 3: The dynamic state coupling condition in [31] and

adaptive control condition in [37] for exponential synchroniza-
tion of MNNs can be seen as two special cases of adaptive
controller (A) for robust multimode function synchronization
of MNNs. Therefore, adaptive control method proposed herein
is more general and flexible.

Corollary 2: MNN systems (5) and (4) can achieve robust
multimode function synchronization under assumptions 1 and
2 with the following adaptive controller:

um(t) = λm(t)em(t) + εm(t)sgn(hm(em(t)))

λ̇m(t) = θm[r(t)em(t)]
2

ε̇m(t) = σmr2(t) |em(t)|
(14)

where hm(em(t)) = fm(xm(t))− fm(ym(t)); function fm(.)
is strictly monotone increasing; m = 1, 2, . . . , l.

Proof : Because fm(.) is strictly monotone increasing, we
can get sgn(hm(em(t))) = sgn(em(t)), so (14) is equivalent
to (12). The proof is finished.

Corollary 3: MNN systems (5) and (4) can achieve robust
multimode function synchronization under assumptions 1 and
2 with the following adaptive controller:

um(t) = λm(t)em(t)− εm(t)sgn(hm(em(t)))

λ̇m(t) = θm[r(t)em(t)]
2

ε̇m(t) = σmr2(t) |em(t)|
(15)

where hm(em(t)) = fm(xm(t))− fm(ym(t)); function fm(.)
is strictly monotone decreasing; m = 1, 2, . . . , l.

Adaptive Controller (B)
Next, we design the other adaptive controller. We consider

adaptive control (B) as follows:


um(t) = λm(t)hm(em(t)) + εm(t)sgn(em(t))

λ̇m(t) = θmr2(t)em(t)hm(em(t))
ε̇m(t) = σmr2(t) |em(t)|

(16)
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where θm, σm are positive constants; sgn(em(t)) is the sign
function; r(t) is a continuously differentiable and monotone
nondecreasing function. r(s), λm(s) and εm(s) are positive
constants, s ∈ [−τ, 0], and limt→+∞r(t) = +∞, m =
1, 2, . . . , l.

Assumption 3: The transmission delay τm(t), m =
1, 2, . . . , l, satisfies

τ̇m(t) ≤ 1. (17)

We change assumption 1 to assumption 4 which will be
used in Theorem 2.

Assumption 4: Functions fm(.) and gm(.) are bounded,
namely, |fm(a)| ≤ Mm and |gm(a)| ≤ Nm for any a ∈ ℜ,
where Mm and Nm are positive constants; and for any
a1, a2 ∈ ℜ, there exists constant Lm > 0, such that

0 ≤ fm(a1)− fm(a2)

a1 − a2
≤ Lm,

m = 1, 2, . . . , l.
Theorem 2: MNN systems (5) and (4) can realize robust

multimode function synchronization under assumptions 2, 3
and 4 with the adaptive controller (B).

Proof. See Appendix C.
Remark 4: In some research results, such as [26, 27],

[31, 32] and [35], the activation function gm(.) needs to satisfy
Lipschitz condition to achieve synchronization. In this paper,
it is not necessary for gm(.) to satisfy Lipschitz condition
by utilizing adaptive controller (A) or (B) to synchronize
MNNs. Therefore, the conditions herein are less conservative,
compared with the above-mentioned research results.

From assumption 4, we can get the activation functions
fm(.) is monotone nondecreasing. So, when the function fm(.)
is strictly monotone increasing, the following corollary can be
obtained.

Corollary 4: MNN systems (5) and (4) can realize robust
multimode function synchronization under assumptions 2, 3
and 4 with the following adaptive controller:

um(t) = λm(t)hm(em(t)) + εm(t)sgn(hm(em(t)))

λ̇m(t) = θmr2(t)em(t)hm(em(t))
ε̇m(t) = σmr2(t) |em(t)|

(18)
where m = 1, 2, . . . , l.

Remark 5: Adaptive controller (A) consists of λm(t)em(t)
and εm(t)sgn(em(t)). As time t → ∞, em(t) → 0,
sgn(em(t)) = 1 or -1 (if em(t) ̸= 0). Thus update gain σm

makes the decisive factor for controlling the synchronization
speed. In other words, synchronization speed increases with
σ. The similar results can be obtained for adaptive controller
(B).

Remark 6: In [26], it is very hard to get the solutions of
the conditions for Theorem 1 because a gain matrix needs to
be chosen such that Hamiltonian matrix has no eigenvalues
on the imaginary axis. It needs use MATLAB Tool-box to
solve this problem. In [27], [35], [39], [41], linear matrix
inequality (LMI) is applied to find some matrices satisfying
the conditions of Theorems. Some constants need to be chosen
such that some LMI conditions of Theorems are satisfied in
[40]. To some extent, these conditions of Theorems in [26, 27],
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Fig. 2. The circuit design of adaptive controller (A).

[35], [39-41] are complex to find the solutions, and they can
only be solved by users via some computer-aided tools. In
this paper, it is not necessary to find the solutions for the
conditions of Theorems 1 and 2. According to practical needs,
users choose synchronization mode between the realistic drive
MNN (4) and the realistic response MNN (5). Then the
corresponding function r(t) and update gain σ are chosen
to design the adaptive controller. Finally, the realistic drive
and response MNNs can achieve the corresponding robust
synchronization mode under the adaptive controller and some
assumptions.

Remark 7: In some recent published work [42-46], power-
rate synchronization [42, 43] and exponential synchronization
[44-46] were addressed. Compared with these results [42-
46], the proposed robust multimode function synchronization
has great theoretical and practical significance because of its
strong anti-jamming ability, and can generalize the existing
definitions of multiple types of complete synchronization due
to its being able to achieve multiple types of robust complete
synchronization (that is multiple convergence methods). The
robust multimode function synchronization proposed in this
paper has three remarkable features: 1) Robustness - Under
two types of parameter perturbations, MNNs can achieve
complete synchronization; 2) Fast convergence rate - Choose
an appropriate update gain σ according to the practical needs,
the fast convergence rate can be obtained; 3) Multiple types
of complete synchronization - Function r(t) can be freely
chosen, such as exponential function, polynomial function, and
logarithmical function, thus corresponding robust complete
synchronization can be obtained.

B. Circuit Design and Complexity Analysis of Adaptive Con-
troller

The designed circuit of adaptive controller (A) is shown in
Fig. 2.

The absolute value circuit and sign function circuit in Fig.
2 can change em(t) into |em(t)| and sgn(em(t)), respectively.
From Fig. 2, we can write voltage v1 and v2, given by

v1 = −Rs

R1
e2m(t)r2(t)

and
v2 = −Rv

R2
r2(t) |em(t)|
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We can also derive voltage v3 and v4 as

v̇3 = − v1
C1R3

=
Rs

C1R3R1
e2m(t)r2(t),

v̇4 = − v2
C2R4

=
Rv

C2R4R2
r2(t) |em(t)| .

Note that the output voltage um(t) can be given by

um(t) = v3em(t) + v4sgn(em(t)).

Setting Rs
C1R3R1 = θm and Rv

C2R4R2 = σm, then v3, v4 and
um(t) constitute the adaptive controller (A).

Similarly, the circuit of adaptive controller (B) can also be
designed, which is not detailed here.

Now, we discuss the complexity of adaptive controllers.
In the following, we mainly analyze the time complexity of
adaptive controller (A), but similar analysis can also be con-
ducted for adaptive controller (B). For adaptive controller (A),
the derivative of λm(t) needs four multiplication operations.
The derivative of εm(t) needs three multiplication operations
and one absolute value operation. In addition, um(t) needs
two multiplication operations, one addition operation and one
symbolic function operation. Therefore, the adaptive controller
(A) requires 12 operations in total. We assume the step length
is h second, and the runtime of system is n seconds. Then
the time complexity of adaptive controller (A) is T (n) =
O(12n/h) = O(n). In the same way, we can also get the
time complexity of adaptive controller (B), which is given by
T (n) = O(n).

Remark 8: In [33, 34], [41] and [44], synchronization of
MNNs was addressed by linear feedback control. However,
the control gain of the linear feedback controller must be
maximal, which means that there exists waste to some extent
in practical applications. Different from the linear feedback
controller, the proposed adaptive controller can increase the
control gain on the basis of adaptive methods and thus is more
flexible. Computationally, the adaptive controller is efficient
and suitable for synchronization of MNNs due to its low time
complexity. Our analytical derivations in the above and numer-
ical examples to be presented in the following demonstrate the
feasibility of the adaptive controller for the synchronization
of MNNs theoretically. Furthermore, our circuit design in the
above proves the feasibility of the practical implementation of
the adaptive controller.

IV. NUMERICAL EXAMPLES

The above theoretical results and analysis can be verified in
this section.

Example 1: Consider a two-neuron drive MNN as follows:

ẋm(t) = −cmxm(t) +
2∑

z=1
[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

+
2∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t)))

+Im(t), m = 1, 2,
(19)

where cm = 1; τm(t) = (et−1)/(et+1); τ = 1; τ̇m(t) ≤ 0.5;
activation function fz(w) = gz(w) = tanh(w); κm = 1; and
Im(t) = 0; m, z = 1, 2.

ς11(x1(t)) =

{
1.95, Γ1,
1.26, Γ2,

ς12(x1(t)) =

{
−0.1, Γ1,
−0.2, Γ2,

ς21(x2(t)) =

{
−4.9, Γ1,
−5.0, Γ2,

ς22(x2(t)) =

{
2.9, Γ1,
2.32, Γ2,

ρ11(x1(t)) =

{
−1.48, Γ1,
−1.5, Γ2,

ρ12(x1(t)) =

{
−0.1, Γ1,
−2.09, Γ2,

ρ21(x2(t)) =

{
−0.12, Γ1,
−0.5, Γ2,

ρ22(x2(t)) =

{
−2.2, Γ1,
−1.8, Γ2.

Uncertain parameters are[
∆ς11(t) ∆ς12(t)
∆ς21(t) ∆ς22(t)

]
=[

3× 10−2 sin(t) 1× 10−2 cos(t)
5× 10−2 tanh(t) 0

]
,[

∆ρ11(t) ∆ρ12(t)
∆ρ21(t) ∆ρ22(t)

]
=[

1× 10−2 sin(t) 0
1× 10−2 cos(t) 2× 10−2 sin(t)

]
.

Consider the response MNN as follows:

ẏm(t) = −cmym(t) +
2∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
2∑

z=1
[βmz(ym(t)) + ∆βmz(t)]gz(yz(t− τz(t)))

+Im(t) + um(t), m = 1, 2,
(20)

where
ω11(y1(t)) =

{
2.02, Ω1,
1.21, Ω2,

ω12(y1(t)) =

{
−0.13, Ω1,
−0.22, Ω2,

ω21(y2(t)) =

{
−4.82, Ω1,
−5.1, Ω2,

ω22(y2(t)) =

{
3.06, Ω1,
2.1, Ω2,

β11(y1(t)) =

{
−1.54, Ω1,
−1.59, Ω2,

β12(y1(t)) =

{
−0.11, Ω1,
−0.06, Ω2,
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Fig. 3. Phase plot between x1(t) and x2(t) of system (22).

β21(y2(t)) =

{
−0.29, Ω1,
−0.21, Ω2,

β22(y2(t)) =

{
−2.52, Ω1,
−2.44, Ω2.

Uncertain parameters are[
∆ω11(t) ∆ω12(t)
∆ω21(t) ∆ω22(t)

]
=[

1× 10−2 cos(t) 3× 10−2 sin(t)
0 1× 10−2 tanh(t)

]
,[

∆β11(t) ∆β12(t)
∆β21(t) ∆β22(t)

]
=[

0 4× 10−2 cos(t)
6× 10−2 tanh(t) 1.5× 10−2 sin(t)

]
.

The other parameters are the same as (19).
When initial conditions are (x1(s), x2(s))

T = (1,−1)T for
s ∈ [−1, 0], the phase plot between x1(t) and x2(t) of system
(19) is shown in Fig. 3. The MNN system (19) exhibits chaotic
behavior with the above initial conditions. When the initial
conditions of system (20) are (y1(s), y2(s))

T = (−0.6, 1.2)T ,
s ∈ [−1, 0], the state trajectories of x1(t) and y1(t), x2(t) and
y2(t) without feedback controller are shown in Fig. 4.

We consider control input um(t) as adaptive controller (A),
and set r(t) = (t2 + 1) and initial values (λ1(s), λ2(s))

T =
(0, 0)T , (ε1(s), ε2(s))T = (0, 0)T for s ∈ [−1, 0]. To better
explore how σm will affect the synchronization speed, we take
into consideration three cases: 1) θm = 1, σm = 5; 2) θm = 1,
σm = 0.5; 3) θm = 1, σm = 0.05; m = 1, 2. Fig. 5 presents
errors e1(t) and e2(t) with 10 arbitrary initial conditions.
The 10 arbitrary initial conditions satisfy xm(s) = ϕm(s) ∈
[−1.8, 1.8] and ym(s) = φm(s) ∈ [−1.8, 1.8] for s ∈ [−1, 0],
m = 1, 2. Thus, the initial errors em(s) ∈ [−3.6, 3.6],
s ∈ [−1, 0]. From Fig. 5, MNN systems (20) and (19)
can realize robust polynomial synchronization under adaptive
controller (A). Moreover, synchronization speed increases with
σ.

Fig. 6 shows the relationship between convergence time
of error em(t) and parameter σm. It can be shown that
synchronization speed increases with σ. When parameter σ
is less than 10, synchronization speed is almost proportional

Fig. 4. State trajectories of x1(t) and y1(t), x2(t) and y2(t) without
feedback controller.

to the logarithm of σ. When parameter σ is greater than 10,
convergence time is very small and synchronization speed
is not proportional to the logarithm of σ. Convergence time
of error em(t) is close to 0 with parameter σm = 102.
Theoretically, convergence time of error em(t) can infinitely
close to 0 along with parameter σm. However, the larger
the parameter σ, the greater the computation and storage.
Therefore, fast synchronization speed can be obtained under
small amount of computation and storage when parameter σ
is in the interval [100, 102]. In practical applications, the upper
bound for parameter σm should be 102.

Example 2: Consider another two-neuron drive MNN as
follows:

ẋm(t) = −cmxm(t) +
2∑

z=1
[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

+
2∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t)))

+Im(t), m = 1, 2,
(21)

where cm = 1; τm(t) = (et−1)/(et+1); τ = 1; τ̇m(t) ≤ 0.5;
activation function fz(w) = gz(w) =

|w+1|−|w−1|
2 ; κm = 1;

and Im(t) = 0; m, z = 1, 2.
Uncertain parameters are[

∆ς11(t) ∆ς12(t)
∆ς21(t) ∆ς22(t)

]
=[

(20 + 3 sin(t))× 10−2 (12− 3 tanh(t))× 10−2

2× 10−2 cos(t) 1× 10−2 cos(t)

]
,
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Fig. 5. Synchronization errors e1(t) and e2(t) with 10 arbitrary initial
conditions using adaptive controller (A) for three cases: 1) θm = 1, σm = 5;
2) θm = 1, σm = 0.5; 3) θm = 1, σm = 0.05; m = 1, 2. It is obtained
that synchronization speed increases with σ.

[
∆ρ11(t) ∆ρ12(t)
∆ρ21(t) ∆ρ22(t)

]
=[

2× 10−2 tanh(t) (20 + 3 cos(t))× 10−2

3× 10−2 sin(t) (1 + 2 sin(t))× 10−2

]
.

The other parameters are the same as (19).
Set the response MNN as follows:

ẏm(t) = −cmym(t) +
2∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
2∑

z=1
[βmz(ym(t)) + ∆βmz(t)]gz(yz(t− τz(t)))

+Im(t) + um(t), m = 1, 2.
(22)

Uncertain parameters are[
∆ω11(t) ∆ω12(t)
∆ω21(t) ∆ω22(t)

]
=[

(3− tanh(t))× 10−2 2× 10−2 cos(t)
4× 10−2 sin(t) (2 + sin(t))× 10−2

]
,[

∆β11(t) ∆β12(t)
∆β21(t) ∆β22(t)

]
=[

(1 + 3 sin(t))× 10−2 2× 10−2 tanh(t)
(2− sin(t))× 10−2 2× 10−2 cos(t)

]
.

The other parameters are the same as (20).
We consider control input um(t) as adaptive con-

troller (B) and initial values (λ1(s), λ2(s))
T = (0, 0)T ,
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Fig. 6. The relationship between convergence time of error em(t) and
parameter σm.

(ε1(s), ε2(s))
T = (0, 0)T for s ∈ [−1, 0]. Set r(t) = e0.3t,

θm = 1, σm = 2, m = 1, 2. When the initial condi-
tions are (x1(s), x2(s))

T = (0.8, 0.3)T , (y1(s), y2(s))
T =

(−0.2, 0.1)T , s ∈ [−1, 0], the state trajectories of x1(t)
and y1(t), x2(t) and y2(t) without feedback controller and
with adaptive controller (B) are shown in Fig. 7 and Fig. 8,
respectively.

This paper considers three cases: 1) θm = 1, σm = 20; 2)
θm = 1, σm = 2; 3) θm = 1, σm = 0.2; m = 1, 2. Fig. 9
presents the corresponding errors e1(t) and e2(t) with another
10 arbitrary initial conditions. From Fig. 9 and Definition 4,
we can get that MNN systems (22) and (21) can realize robust
exponential synchronization using adaptive controller (B), and
synchronization speed increases with σ.

Fig. 10 shows the relationship between convergence time of
error em(t) and parameter σm. It can be shown that synchro-
nization speed increases with σ. Similar to example 1, when
parameter σ is in the interval [100, 102], fast synchronization
speed can be obtained under small amount of computation
and storage. In practical applications, the upper bound for
parameter σm should be 102.

V. CONCLUSION

In this paper, a general definition of multiple types of
complete synchronization by mathematical expression, that
is, multimode function synchronization is proposed for the
first time. Compared with other types of complete synchro-
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Fig. 7. State trajectories of x1(t) and y1(t), x2(t) and y2(t) without
feedback controller.

nization such as power-rate synchronization and exponential
synchronization, multimode function synchronization has its
own unique features and advantages. (1) Multimode func-
tion synchronization can generalize the existing definitions
of multiple types of complete synchronization. (2) Multimode
function synchronization can generate multiple types of com-
plete synchronization including power-rate synchronization
and exponential synchronization by choosing different types of
r(t). This is unique feature of the proposed approach, which
power-rate synchronization and exponential synchronization
do not possess. (3) It is convenient to observe the process of
infinite approximation and present different convergence rate
when two systems tend to same state as time goes on. There-
fore, the obtained results are general and enlarge the existing
results. Then, two adaptive controllers are designed to achieve
robust multimode function synchronization between the drive
and response MNN systems with parameter perturbations and
time-varying delays.

However, there are two disadvantages in the proposed
method. Firstly, synchronization speed is not proportional to
the logarithm of update gain σ when it is larger than 102.
In other words, when update gain σ is large enough, the
change of convergence rate is limited. Secondly, for the type
of complete synchronization to be achieved, we need to set
the corresponding function r(t) in advance. We will continue
to solve these problems in our further research. In the future
research, multimode function synchronization can be further

Fig. 8. State trajectories of x1(t) and y1(t), x2(t) and y2(t) using adaptive
controller (B).

developed in different systems, such as chaotic networks sys-
tems, inertial MNNs, coupled dynamical systems. Moreover,
it can also be used in dynamical systems with multiple stable
equilibrium states [21-23]. From the application point of view,
multimode function synchronization can be applied in some
fields [15, 16], such as information processing and secure
communication. Therefore, the proposed synchronization has
important theoretical value and practical significance.

APPENDIX

A. Proof of Theorem 1

Proof. Consider a Lyapunov function as:

V1(t) =
1
2

l∑
m=1

[r(t)em(t)]
2
+

l∑
m=1

1
2θm

λ2
m(t)

+
l∑

m=1

1
2σm

(εm(t)−Θm)
2

where Θm is positive constant that will be decided.
The derivative of V1(t) can be written as:
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Fig. 9. Synchronization errors e1(t) and e2(t) with 10 arbitrary initial
conditions using adaptive controller (B) for three cases: 1) θm = 1, σm = 20;
2) θm = 1, σm = 2; 3) θm = 1, σm = 0.2; m = 1, 2. It is obtained that
synchronization speed increases with σ.

V̇1(t) =
l∑

m=1
r(t)ṙ(t)e2m(t) +

l∑
m=1

r2(t)em(t) {−cmem(t)

+
l∑

z=1
[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

−
l∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
l∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t)))

−
l∑

z=1
[βmz(ym(t)) + ∆βmz(t)] gz(yz(t− τz(t)))

−λm(t)em(t)− εm(t)sgn(em(t))}

+
l∑

m=1
λm(t)[r(t)em(t)]

2
+

l∑
m=1

(εm(t)−Θm) r2(t) |em(t)|

=
l∑

m=1
r(t)ṙ(t)e2m(t) +

l∑
m=1

r2(t)em(t) {−cmem(t)

+
l∑

z=1
[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

−
l∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
l∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t)))

−
l∑

z=1
[βmz(ym(t)) + ∆βmz(t)] gz(yz(t− τz(t)))

}
−

l∑
m=1

Θmr2(t) |em(t)|.
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Fig. 10. The relationship between convergence time of error em(t) and
parameter σm.

Uncertain parameters ∆ςmz(t), ∆ρmz(t), ∆ωmz(t) and
∆βmz(t) are bounded, namely, |∆ςmz(t)| ≤ µmz ,
|∆ρmz(t)| ≤ υmz , |∆ωmz(t)| ≤ χmz , |∆βmz(t)| ≤
Υmz , where µmz , υmz , χmz and Υmz are positive con-
stants. Moreover, ς̂mz = max {|ς̇mz| , |ς̈mz|}; ρ̂mz =

max {|ρ̇mz| , |ρ̈mz|}; β̂mz = max
{∣∣∣β̇mz

∣∣∣ , ∣∣∣β̈mz

∣∣∣} and
ω̂mz = max {|ω̇mz| , |ω̈mz|}. According to Assumption 1, we
can get |fz(a)| ≤ Mz and |gz(a)| ≤ Nz for any a ∈ ℜ, where
Mz and Nz are positive constants. Therefore, we can obtain

l∑
m=1

r2(t)em(t)

{
l∑

z=1
[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

−
l∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

}
≤

l∑
m=1

r2(t) |em(t)|
l∑

z=1
{[|ςmz(xm(t))|+ |∆ςmz(t)|]

× |fz(xz(t))|+ [|ωmz(ym(t))|+ |∆ωmz(t)|] |fz(yz(t))|}

≤
l∑

m=1
r2(t) |em(t)|

l∑
z=1

(ς̂mz + µmz + ω̂mz + χmz)Mz,
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and
l∑

m=1
r2(t)em(t)

{
l∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]

×gz(xz(t− τz(t)))−
l∑

z=1
[βmz(ym(t))

+∆βmz(t)] gz(yz(t− τz(t)))}

≤
l∑

m=1
r2(t) |em(t)|

l∑
z=1

{[|ρmz(xm(t))|

+ |∆ρmz(t)|] |gz(xz(t− τz(t)))|
+ [|βmz(ym(t))|+ |∆βmz(t)|] |gz(yz(t− τz(t)))|}

≤
l∑

m=1
r2(t) |em(t)|

l∑
z=1

(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz.

From adaptive controller (A), r(t) is a continuously dif-
ferentiable and monotone nondecreasing function. r(s) is a
positive constant, s ∈ [−τ, 0], and limt→+∞r(t) = +∞.
Moreover, the function r(t) satisfies ṙ(t)

r(t) ≤ c in Assumption
2, where c = min1≤m≤l{cm}. Then,

l∑
m=1

(ṙ(t)− cmr(t)) r(t)e2m(t) ≤ 0

Therefore, we have

V̇1(t) ≤
l∑

m=1
(ṙ(t)− cmr(t)) r(t)e2m(t)

+
l∑

m=1
r2(t) |em(t)|

×
[

l∑
z=1

[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]
−Θm

]
≤ −

l∑
m=1

r2(t) |em(t)| {Θm

−
l∑

z=1
[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]}
.

The positive constant Θm can be properly chosen as

Θm =
l∑

z=1
[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]
+1.

Thus, we get

V̇1(t) ≤ −
l∑

m=1

r2(t) |em(t)| ≤ 0.

From the mathematical expression of V1(t), we have

1

2
r2(t)

l∑
m=1

e2m(t) ≤ V1(t) ≤ V1(0),

and

V1(0) =
1
2

l∑
m=1

r2(0)e2m(0) +
l∑

m=1

1
2θm

λ2
m(0)

+
l∑

m=1

1
2σm

(εm(0)−Θm)
2
.

If sup−τ≤s≤0∥e(s)∥
2 ̸= 0, there exists a positive constant

η, such that
l∑

m=1

1

2θm
λ2
m(0)+

l∑
m=1

1

2σm
(εm(0)−Θm)

2 ≤ η sup
−τ≤s≤0

∥e(s)∥2.

Thus, we can obtain

1

2
r2(t)∥e(t)∥2 ≤

[
1

2
r2(0) + η

]
sup

−τ≤s≤0
∥e(s)∥2,

and
∥e(t)∥ ≤ P1 sup

−τ≤s≤0
∥e(s)∥

/
r(t),

where P1 = [r2(0) + 2η]1/2 > 0. From Definition 4, MNN
systems (5) and (4) can achieve robust multimode function
synchronization with adaptive controller (A). For convenience,
we set c = 1. When r(t) is a polynomial function, such as
r(t) = t2 + 1, ṙ(t)

r(t) = 2t
t2+1 ≤ c. Then system (5) and system

(4) can achieve robust polynomial synchronization with the
adaptive controller (A). When r(t) is a logarithmic function,
such as r(t) = ln(t2 +10), ṙ(t)

r(t) =
2t

(t2+10) ln(t2+10) ≤ c. Then
system (5) and system (4) can achieve robust logarithmical
synchronization with the adaptive controller (A). The proof is
finished.

B. Proof of Corollary 1

Proof. Consider a Lyapunov function:

V2(t) =
1
2

l∑
m=1

e2bte2m(t) +
l∑

m=1

1
2θm

(λm(t)− δm)
2

+
l∑

m=1

1
2σm

(εm(t)−Θm)
2

where δm and Θm are positive constants that will be decided.
Combining the derivative of V2(t) with the proof of Theo-

rem 1, we get:

V̇2(t) ≤ e2bt
l∑

m=1
(b− cm − δm) e2m(t) + e2bt

l∑
m=1

|em(t)|

×
[

l∑
z=1

[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]
−Θm

]
The positive constants δm and Θm can be properly chosen

as
δm = b− cm,

and

Θm =
l∑

z=1
[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]
+1.

Then we can obtain

V̇2(t) ≤ −e2bt
l∑

m=1

|em(t)| ≤ 0.

Therefore, when r(t) is an exponential function, MNN sys-
tems (5) and (4) can realize robust exponential synchronization
under adaptive controller (A) with no need for the assumption
2.
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C. Proof of Theorem 2

Proof: Consider a Lyapunov function:

V3(t) =
1
2

l∑
m=1

[r(t)em(t)]
2

+
l∑

m=1

∫ t

t−τm(t)
[r(s)hm(em(s))]

2
ds

+
l∑

m=1

1
2θm

(λm(t)− δm)
2
+

l∑
m=1

1
2σm

(εm(t)−Θm)
2
,

(23)
where δm and Θm are positive constants that will be decided.

The derivative of V3(t) can be written as:

V̇3(t) =
l∑

m=1
r(t)ṙ(t)e2m(t) +

l∑
m=1

r2(t)em(t)

×
{
−cmem(t) +

l∑
z=1

[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

−
l∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
l∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t)))

−
l∑

z=1
[βmz(ym(t)) + ∆βmz(t)] gz(yz(t− τz(t)))

−λm(t)hm(em(t))− εm(t)sgn(em(t))}

+
l∑

m=1
[r(t)hm(em(t))]

2

−
l∑

m=1
[r(t− τm(t))hm(em(t− τm(t)))]

2
(1− τ̇m(t))

+
l∑

m=1
(λm(t)− δm) r2(t)em(t)hm(em(t))

+
l∑

m=1
(εm(t)−Θm) r2(t) |em(t)|

=
l∑

m=1
r(t)ṙ(t)e2m(t) +

l∑
m=1

r2(t)em(t)

×
{
−cmem(t) +

l∑
z=1

[ςmz(xm(t)) + ∆ςmz(t)] fz(xz(t))

−
l∑

z=1
[ωmz(ym(t)) + ∆ωmz(t)] fz(yz(t))

+
l∑

z=1
[ρmz(xm(t)) + ∆ρmz(t)]gz(xz(t− τz(t)))

−
l∑

z=1
[βmz(ym(t)) + ∆βmz(t)] gz(yz(t− τz(t)))

}
+

l∑
m=1

[r(t)hm(em(t))]
2

−
l∑

m=1
[r(t− τm(t))hm(em(t− τm(t)))]

2
(1− τ̇m(t))

−
l∑

m=1
δmr2(t)em(t)hm(em(t))−

l∑
m=1

Θmr2(t) |em(t)|

From Assumption 4, we get

−em(t)hm(em(t)) ≤ −h2
m(em(t))

Lm
.

From Assumption 3, the transmission delay τm(t), m =
1, 2, . . . , l, satisfies τ̇m(t) ≤ 1. Thus, we can obtain

−
l∑

m=1

[r(t− τm(t))hm(em(t− τm(t)))]
2
(1− τ̇m(t)) ≤ 0.

From adaptive controller (B), r(t) is a continuously differen-
tiable and monotone nondecreasing function. r(s) is a positive
constant, s ∈ [−τ, 0], and limt→+∞r(t) = +∞. Moreover,
the function r(t) satisfies ṙ(t)

r(t) ≤ c in Assumption 2, where
c = min1≤m≤l{cm}. Combining with the proof of Theorem
1, we have

V̇3(t) ≤
l∑

m=1
[ṙ(t)− cmr(t)] r(t)e2m(t) +

l∑
m=1

r2(t) |em(t)|

×
l∑

z=1
[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]
+

l∑
m=1

[r(t)hm(em(t))]
2 −

l∑
m=1

δmr2(t)em(t)hm(em(t))

−
l∑

m=1
Θmr2(t) |em(t)|

≤
l∑

m=1

(
1− δm

Lm

)
[r(t)hm(em(t))]

2
+

l∑
m=1

r2(t) |em(t)|

×
{

l∑
z=1

[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]
−Θm

}
The positive constants δm and Θm can be properly chosen

as

δm = Lm,

and

Θm =
l∑

z=1
[(ς̂mz + µmz + ω̂mz + χmz)Mz

+
(
ρ̂mz + υmz + β̂mz +Υmz

)
Nz

]
+ 1.

Thus, we can obtain

V̇3(t) ≤ −
l∑

m=1

r2(t) |em(t)| ≤ 0.

From (23), we can have

1

2
r2(t)

l∑
m=1

e2m(t) ≤ V3(t) ≤ V3(0),

and

V3(0) =
1
2

l∑
m=1

r2(0)e2m(0) +
l∑

m=1

∫ 0

−τm(0)
r2(s)h2

m(em(s))ds

+
l∑

m=1

1
2θm

(λm(0)− δm)
2
+

l∑
m=1

1
2σm

(εm(0)−Θm)
2
.

If sup−τ≤s≤0∥e(s)∥
2 ̸= 0, there exists a positive constant

π, such that

l∑
m=1

1
2θm

(λm(0)− δm)
2
+

l∑
m=1

1
2σm

(εm(0)−Θm)
2

≤ π sup
−τ≤s≤0

∥e(s)∥2.
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Then

V3(0) ≤ 1
2r

2(0)∥e(0)∥2

+ max
1≤m≤l

{
L2
m

} l∑
m=1

∫ 0

−τm(0)
r2(s)e2m(s)ds

+π sup
−τ≤s≤0

∥e(s)∥2

≤
[
1
2r

2(0) + τ max
−τ≤s≤0;1≤m≤l

{
r2(s)L2

m

}
+ π

]
× sup

−τ≤s≤0
∥e(s)∥2.

Thus, we can have
1
2r

2(t)∥e(t)∥2

≤
[
1
2r

2(0) + τ max
−τ≤s≤0;1≤m≤l

{
r2(s)L2

m

}
+ π

]
× sup

−τ≤s≤0
∥e(s)∥2

and

∥e(t)∥ ≤ P2 sup
−τ≤s≤0

∥e(s)∥
/

r(t),

where P2 = [r2(0) + 2τmax−τ≤s≤0;1≤m≤l{r2(s)L2
m}+ 2π]

1
2

> 0. From Definition 4, MNN systems (5) and (4) can achieve
multimode function synchronization with adaptive controller
(B). More specifically, when r(t) is an exponential function,
such as r(t) = ebt, 0 < b ≤ c, MNN systems (5) and (4)
can realize robust exponential synchronization under adaptive
controller (B). For convenience, we set c = 1. When r(t) is
a polynomial function, such as r(t) = t2 + 1, system (5) and
system (4) can achieve robust polynomial synchronization
with adaptive controller (B). When r(t) is a logarithmic
function, such as r(t) = ln(t2 + 10), system (5) and system
(4) can achieve robust logarithmical synchronization with
adaptive controller (B). The proof is finished.
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