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Neuromorphic technology 
in Europe

bringing memory and computing together, like in the
brain where computing (neurons) and memory
(synapses and topology of the network) are
completely intertwined.

Plastic vs. rigid
Learning, both in the brain and in neural networks
algorithms, corresponds to repetitive modification of
the synapses until reaching a set of connections
enabling the network to perform tasks accurately. In
conventional computers, this is done by explicit
modification of the memory banks storing the
weights. Neuromorphic technologies aim at building
systems where weights are self-modified through
local rules and plastic synaptic devices, as it is done
in the brain. 

Analogue vs. digital
Conventional computers rely on digital encoding (0
and 1). In the brain, the electrical potential at the
membranes of neurons can take continuous values,
and so can the synaptic weights. Reproducing such
behaviour with digital encoding takes large circuits.
Replacing them by analogue components – either
CMOS transistors or emerging nanodevices – that
directly emulate neural behavior could improve
efficiency. However, large scale realisations have yet
to be demonstrated.

Dynamic vs. static
Conventional computers use the steady-state of their
circuits to encode information. On the contrary,
neurons are non-linear oscillators that emit spikes of

Brain-inspired technologies are advancing apace across Europe and
are poised to help accelerate the AI revolution

BYtaking loose inspiration from the brain,
artificial neural network algorithms have
made tremendous progress in artificial

intelligence. However, to unlock significant gains in
terms of novel real-world capabilities, performance
and efficiency, a more ambitious step needs to be
taken: to develop a new technology that emulates
neural computation directly at the hardware level.
The NEUROTECH network presents its vision of
these ‘neuromorphic’ technologies and their
innovative potential in Europe. 

Efficient vs. power-hungry
Training artificial neural networks to learn to perform
pattern recognition tasks on Graphical Processing
Units typically requires hundreds of Watts. Simulating
even very small parts of animal brains on
supercomputers requires tens of Mega Watts. In
comparison, the human brain consumes only 20
Watts to carry out sophisticated perceptual and
cognitive tasks. Neuromorphic technologies aspire
to emulate neural processing circuits bridging this
large energy efficiency gap. 

Parallel vs. sequential
Although each neuron typically spikes a few times
per second in biological neural processing systems,
the massive parallelism of their many neurons and
synapses allow them to perform many orders of
magnitude more operations per second than those
of artificial neural networks simulated on
conventional computers. Approaching high levels of
parallelism (of the order of thousands and above) in
compact and power efficient hardware platforms will
require drastic changes in computer architectures
and electronic devices. 

In-memory computing vs. von
Neumann architecture
In conventional computer architectures, a large part
of the energy consumption and delays are due to the
transfer of information between the physically
separated memory and computing parts. In neural
network algorithms, this issue (‘von Neumann
bottleneck’) is critical because huge numbers of
parameters need to be stored and frequently
addressed. Neuromorphic technologies aim at
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personal assistants. Always-on systems for fall
detection and biomedical signals monitoring people
in households will further enhance the capabilities of
personal assistants. Robotic assistants will physically
interact with the environment and humans and use
the adaptability offered by neuromorphic perception
and computation to adapt their behaviour. In health,
the importance of data privacy is huge, making on-
site processing of information even more critical.

Industrial
Anomaly detection, in its wide sense, is extremely
useful in manufacturing plants, where monitoring of
workers can improve safety. Neuromorphic
technology can also provide solutions for anomaly
detection in time series, automatisation of controls
and tests, design for manufacturing, defect detection
and forecast, predictive maintenance of machines,
etc. A similar approach can be deployed in the
design of safer cars, both for monitoring the car
status and for advanced driver assistance systems,
with a limited power budget.

Research 
Besides the impact on the application side,
neuromorphic chips will support the research domain,
as they are ideal systems to simulate biological neural
networks, contributing to understanding the brain and
the mechanisms of intelligent behaviour. This would
bring massive novel knowledge for new treatments
for neurological diseases. 

Technological enablers
Neuromorphic computing requires a departure from
the traditional computing paradigm. This implies to
use conventional computing substrates in a novel
way, or to develop novel substrates. Here we outline
key technological enablers for neuromorphic
computing, that show promising results.

Digital CMOS technology
The mainstay of the semiconductor manufacturing
industry, digital CMOS is well understood and
delivers very consistent performance in volume
manufacture. It can access the most advanced
semiconductor technologies, which helps offset its
intrinsic energy-efficiency disadvantages compared

voltage. They are coupled to each other and capable
of collective behaviour such as synchronisation,
transient dynamics and edge of chaos.
Neuromorphic technologies aim at emulating such a
complex dynamical system in order to go beyond the
possibilities of static neural networks, in particular
regarding learning. 

Spiking vs. clocked
Conventional computers are run by a clock which
sets the pace of all circuits. There is no such clock in
the brain. In sensory computing, for example, the
brain achieves a large part of its efficiency by
operating in an event-based manner, where signals
are only sampled and transmitted when new
information either arrives or is computed.
Neuromorphic computing aims at designing spiking
architectures natively supporting this scheme.

Stochastic vs. exact
Conventional computers aim at very high precision,
contrary to the brain, which neurons and synapses
exhibit variability and stochasticity. Resilience to
such imprecision seems to be a key asset of neural
networks. Relaxing the constraints on the
exactitude of components and computing steps in
order to decrease energy consumption while
maintaining accurate results is a goal of
neuromorphic technologies. 

Each of these directions represents a breakthrough
from the current computing paradigm. As such,
neuromorphic computing represents an extremely
ambitious multi-disciplinary effort. Each direction will
require significant advances in computing theory,
architecture and device physics.

Applications
Neuromorphic computing has the potential to bring
huge progress in a wide range of applications. Here
we outline some expected important advances.

Smart Agents on the edge
Neuromorphic technologies will provide systems
capable of running state-of-the-art artificial
intelligence while consuming little power and energy,
enabling embedded and always-on processing. This
opens the way to the deployment of artificial
intelligence on the edge, where consumption and
size are critical. Neuromorphic computing enables
continuous learning and adaptation to different
environments and users. It shows unprecedented
capabilities to encode sensory information efficiently
and can lead to smart distributed local processing
providing faster responses (to trigger further actions
for example) as well as better security and privacy. 

Service to people 
Extremely low-power always-on detection systems
for voice, speech, and keyword detection can enable
further speech processing, towards natural language
processing, which in turn will lead to more efficient
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Technologies beyond CMOS
As the CMOS technology approaches its scaling
limits, more attention is being devoted to the
development of emerging devices, which provide high
functionality in a small footprint. In particular, the
members of the NEUROTECH network are at the
forefront of the development of memristive device
technologies, which are a broad class of devices
whose resistance can be modified by electrical stimuli. 

The leading memristive technologies which are
currently at high maturity level are those firstly
developed as non-volatile memory devices for
storage applications and then integrated in large
arrays and in combination with CMOS, namely
‘resistive random access memory’ (RRAM), ‘phase
change memory’ (PCM), ‘ferroelectric memory’
(FeRAM), and ‘magnetoresistive random access
memories’ (MRAM). Recently, RRAM, PCM, FeRAM
and spin-transfer torque MRAM have been receiving
increasing interest for neuromorphic computing, and
many hardware demonstrations have been reported
at device, but also circuits and systems level.
Furthermore, promising developments are underway
towards new and less mature concepts which span
from new materials (e.g. 2D, nanowires), metal-
insulator transition (e.g. VO2-based), organic
materials, spintronics (spin torque oscillators, domain
walls, spin-waves, skyrmions) and photonics.

Synapse implementation
The key features of artificial synapses are the ability
to update their states given new information (learning,
plasticity) and to store analogue information
(memory). This can be implemented either with
intrinsically analogue or multilevel devices (whether in
RRAM, PCM and FeRAM devices, or using magnetic
textures such as domain wall or skyrmions), or with
binary stochastic devices (as demonstrated for
filamentary RRAM, and STT-MRAM). In particular,
NEUROTECH members CNR and Un.Zurich have
shown how to exploit the non-linear dynamics of
analog RRAM synapses to  improve the memory
lifetime of spiking neural networks based on mixed
CMOS-RRAM architecture.3

Neuron implementation
The stochastic, volatile and non-linear properties of
memristive device technologies are exploited to
emulate neuronal behavior. Among promising
technologies, we can mention FeRAM, VO2 –based
Metal-Insulator-Transition devices, PCM, STT-
MRAM, and spin-torque nano-oscillators. (i.e.
specific types of magnetic tunnel junctions, which
can be driven into spontaneous microwave
oscillations by an injected direct current). In
particular, NEUROTECH member CNRS/Thales has
shown how to use the non-linear dynamics of the
later for processing.4

with analogue circuits. When applied to
neuromorphic architectures, asynchronous, clocked
and hybrid approaches to circuit timing can be used,
and algorithms can be mapped into fixed (albeit
highly parameterised and configurable) circuits for
efficiency or into software for flexibility. Examples of
the former include the IBM TrueNorth and Intel Loihi,
and of the latter include NEUROTECH partner the
University of Manchester’s SpiNNaker many-core
neuromorphic computing platform.1

Analogue/mixed-signal technology
Event-based analogue mixed-signal neuromorphic
technology combines the compact and low power
features of analogue circuits with the robustness and
low-latency ones of digital event-based
asynchronous ones. The key feature of the mixed-
signal design approach, compared to pure digital
ones, is the ability to build systems able to carry out
processing with stringent resources in terms of
power and memory by:
• Only dissipating power when the data is 

present; and

• Processing the data on-line, as it sensed or
streamed through the system, using circuits that
have time constants matched to the dynamics of
the sensory signals processed, and without
needing to store data or state variables in memory. 

This technology is an enabler for the applications
requiring sub-mW always-on real-time processing of
sensory signals, for example in edge computing,
personalised medicine and Internet of Things domains.
Examples of neuromorphic processors that follow this
approach are the DYNAP (Dynamic Neuromorphic
Asynchronous Processor) series of devices2 developed
by the UZH NEUROTECH members.
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hundred projects on the subject are funded by the
European Union, as shown on the map.
Neuromorphic computing is by essence a
pluridisciplinary field, requiring many different topics
and skills to merge together, such as neuroscience,
computer science, electrical engineering, physics,
and material science. The emphasis of European
funding on collaborative pluridisciplinary projects is
a boon for neuromorphic computing, and must be
sustained to strengthen this strategic field in Europe.
Moreover, it is critical to form an active community
around this field, allowing actors from very different
backgrounds to come together. The NEUROTECH
network aims at promoting neuromorphic computing
and forging a European community. NEUROTECH
organises events bringing together academics and
industry, awards early-career prizes and produces
white paper to drive the field.
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Challenges for neuromorphic computing 
European teams have been at the forefront of
developing proofs-of-concept for brain-inspired
neuromorphic pattern recognition algorithms (such
as the works mentioned above, as well as by
NEUROTECH members University of Hertfordshire5

and University of Heidelberg).6 It is now time to turn
these into concrete low-power and low-latency
solutions that outperform conventional approaches.
The recently emerged technologies and research
directions face four challenges.

Theoretical foundations
Conventional machine learning draws on linear
algebra and calculus, but the theoretical foundations
for neuromorphic computing are less clearly defined,
as many ‘algorithms’ behind brain function are only
understood qualitatively. Collaborative research
between engineers, computer scientists and
neuroscientists to translate those findings into
hardware and novel substrates can resolve this.
Promising algorithms will support theoretically
principled supervised and unsupervised learning
using only local information. 

Technological maturity
Technologies beyond CMOS transistors in the digital
regime suffer from issues like variability in analogue
CMOS circuits, lack of endurance in memristive
switching devices, difficulty to achieve analogue non-
volatile memories, among others. Overcoming these
issues requires progress in material and device
development, and ideally also novel algorithms that
tolerate or even exploit these properties. 

Standardised tools and benchmarks
Developing efficient and effective neuromorphic
applications requires knowledge of hardware,
network architecture, data representation, and
development frameworks. Research has not yet
converged on how to best address or standardise
any of these. 

Moreover, new standard applications, benchmarks
and datasets are required since neuromorphic
technologies are not necessarily efficient for the
same applications as conventional solutions.

Adoption by industry
The biggest challenge for industry adoption is to find
applications which unmistakably demonstrate the
potential of neuromorphic technologies, yielding an
improvement by at least an order of magnitude over
conventional computing approaches. Novel libraries,
APIs and GUIs for user-friendly development and
debugging are also needed to make neuromorphic
systems accessible beyond pure research. 

Neuromorphic computing in Europe and
the NEUROTECH network
The European community of neuromorphic
computing is extremely active. As of today, over a
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