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Abstract: We present results from a study evaluating the utility of supervised machine learning
to classify single particle ultraviolet laser-induced fluorescence (UV-LIF) signatures to investigate
airborne primary biological aerosol particle (PBAP) concentrations in a busy, multifunctional building
using a Multiparameter Bioaerosol Spectrometer. First we introduce and demonstrate a gradient boosting
ensemble decision tree algorithm’s ability to accurately classify laboratory generated PBAP samples
into broad taxonomic classes with a high level of accuracy. We then develop a framework to appraise
the classification accuracy and performance using the Hellinger distance metric to compare product
parameter probability density function similarity; this framework showed that key training classes
were sufficiently different in terms of particle fluorescence and morphology to facilitate classification.
We also demonstrate the utility of including advanced morphological parameters to minimise inter-class
conflation and improve classification confidence, where relying on the fluorescent spectra alone would
likely result in misattribution. Finally, we apply these methods to ambient data collected within a large
multi-functional building where ambient bacterial- and fungal-like classes were identified to display
trends corresponding to human activity; fungal-like classes displayed a consistent diurnal trend with
a maximum at midday and hourly peaks correlating to movements within the building; bacteria-like
aerosol displayed complex, episodic events during opening hours. All PBAP classes fell to low baseline
concentrations when the building was unoccupied overnight and at weekends.

Keywords: PBAP; biological aerosol; bioaerosol; UV-LIF; supervised machine learning; real-time
bioaerosol detection; indoor air quality; building mycology

1. Introduction

Primary Biological Aerosol Particles (PBAP) are a diverse and complex classification of aerosol
which are ubiquitous in the atmosphere and built up environment, accounting for >25% of global
organic aerosol emissions and >10% of global continental supermicron number concentrations [1,2].
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They span a large range of particle sizes from 10′s of nanometers (viruses) to up to 100 µm (pollen)
and display highly complex species dependent morphologies. The atmospheric science community
has recently taken a renewed interest in certain PBAP classes owing to their potential to nucleate
ice particles and thus take part in global hydrological processes, the emission of which may display
sensitivity to a changing climate [3–6]. In additional to their potential climatological significance PBAP
also impact agricultural, animal and human health via direct and indirect pathogenic processes causing
personal and economic harm [7–9].

Indoor air quality can be significantly impacted by the presence of biological aerosol. So called sick
building syndrome is a condition where occupants experience adverse health effects (e.g., headaches,
shortness of breath, tiredness and throbbing sensations) strongly related to time spent indoors [10,11].
Societal and life style changes dictate that people spend an increasing and substantial portion of their
time indoors, increasing exposure to potential allergenic and pathogenic PBAP [12]. The UK has one
of the highest prevalence of diagnosed asthma affecting around 10% of the adult population [13,14];
currently, over 150 million people in the EU suffer from chronic allergenic diseases and by 2025 it is
thought that half of the population will be affected with impairment of individual’s quality of life and
loss of productivity. As such, there is an increasing need to understand how indoor air quality impacts
human health and quality of life.

Indoor fungal pollution poses a serious threat to public health [15], where many fungi reported
in building mycology surveys are known human allergens. Fungi have been demonstrated to grow
on a wide range of natural and synthetic materials common in the indoor environment, especially if
exposed to moisture. Inorganic materials are readily colonised via dust absorption and present ideal
growth environments for allergenic Aspergillius species; species belonging to Aspergillius, Cladosporium
and Penicillium are also especially prevalent in wood and processed wood products used as building
materials [16,17]. Khan and Karuppayil (2012) [15] present a synthesis of global studies investigating
indoor fungal species in different environments. While they report a wide range in diversity in the
surveyed indoor mycology studies, a few notable species such as Aspergillius, Cladosporium and Penicillium
were commonly identified. Indoor bacteria such as Legionella may proliferate in air conditioning systems
and water pipes which when aerosolised may cause Legionnaire’s Disease, where stagnant showers are
thought to be a significant exposure risk [18]. Handorean et al. [19] demonstrated that soiled textiles are a
significant source of bacterial aerosol in indoor healthcare environments, where routine handling and
storage may provide an aerosolization mechanism. Bhangar et al. [20] related observed indoor PBAP
concentrations to the vigour of human activity, where they suggested that the agitation of clothing
when moving may be a significant source of microbial aerosol emission.

1.1. PBAP Detection Methods

Detecting and quantifying PBAP poses a significant technical challenge with no one method
providing both high temporal resolution and taxonomic specificity to date [21]. Many traditional
methods rely on collecting microorganisms on a substrate for offline analysis, e.g., by visual identification
under a microscope or by targeted next generation rRNA gene sequencing. While these methods can
provide excellent detailed taxonomic information they offer low time resolution due to the necessity
for long sampling periods to acquire sufficient bio-material for analysis; this may smear short lived
emission events and obfuscate identification of underlying propagation and dispersion mechanisms.

In recent times, ultraviolet light-induced fluorescence (UV-LIF) bioaerosol spectrometers have
been developed to detect PBAP in real time. Many of these instruments collect data on a particle by
particle basis and thus offer excellent time resolution, limited only by the requirement of adequate
sampling statistics (5 min integrations are typical). A historic limitation of UV-LIF methods is that
older spectrometers do not offer enough spectral resolution or morphological detail to unambiguously
classify particles (e.g., Wideband Integrated Bioaerosol Spectrometer, WIBS and the UV-APS) due to
the conflation of PBAP classes. More sophisticated UV-LIF spectrometers are now becoming available
which offer much greater spectral resolution and particle shape information which should significantly
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improve PBAP classification capability [21–25]. While real time UV-LIF spectrometers may not offer
the specificity of offline methods, their capacity for high time resolution detection makes them ideally
suited for the investigation of rapid and dynamic changes in the indoor environment and as such
provide critical complementary information on real-time dispersion.

1.2. UV-LIF Classification Methods

Early UV-LIF spectrometers made a simple distinction between presumed biological and non-biological
aerosol on the basis of fluorescent intensity exceeding a given threshold value (e.g., UV-APS [26]). WIBS
three channel spectrometers expanded this to tryptophan-like and NADH-like fluorescence based on the
dominant fluorescent channel [27]. These primitive methods allowed for the identification of illuminating
trends but fall someway short of unambiguous classification.

Given the difficulty of manually analysing very large multiple parameter databases, more recent
classification schemes have employed machine learning techniques to interpret data. Hierarchical
agglomerative clustering (HAC) has been shown to provide useful data products when interpreting
WIBS data, however, the products do not provide unambiguous classification and some level of
subjective interpretation is required. Performance is also highly sensitive to data pre-processing and
the choice of clustering linkage [22,28–30]. Additionally, HAC post-processing time cost scales with
dataset size, resulting in a significant time penalty when processing large datasets.

Supervised methods seek to explicitly classify fluorescent particles into broad classes or species
based on laboratory generated training datasets. The overall performance of any supervised method will
therefore be constrained by the applicability of the data used to train the predictive model. Ruske et al. [22]
investigated the use of several supervised and unsupervised methods to classify ambient PBAP using
laboratory generated data. Generally they found that supervised methods significantly outperformed
unsupervised methods, with gradient boosting ensemble decision trees (GBA) demonstrating near 100%
classification accuracy at species level. The authors also noted that GBA offers a much quicker alternative
to HAC once the model has been trained. As such, GBA represents the current recommended supervised
learning technique for UV-LIF classification and we investigate the use of this method to interrogate and
classify indoor PBAP using a broad selection of appropriate laboratory generated training data.

1.3. Aims and Objectives

The work presented in this study has the following core objectives:

1. To assess the efficiency and effectiveness of gradient boosting ensemble decision trees to accurately
classify UV-LIF data into broad PBAP classes.

2. To develop a framework for the UV-LIF machine learning community to assess how training
data may be conflated independently of the choice of classification model and to also appraise
the applicability of a training dataset to generate a classification model to represent a given
ambient dataset. This is achieved using the Hellinger distance metric to quantify the similarity of
parameter probability distributions between training data and model outputs for each class.

3. To demonstrate real-world use of the above to quantify airborne concentrations of broad PBAP
classes in a busy, multi-functional indoor environment.

2. Methods

2.1. The Multiparameter Bioaerosol Spectrometer

The Multiparameter Bioaerosol Spectrometer (MBS) is an Ultraviolet-light induced fluorescence
spectrometer developed by the University of Hertfordshire, and is the next evolutionary step of
such spectrometers from the WIBS which have been utilized in many real time PBAP detection
experiments [31–36]. A full description of the MBS instrument is provided in Ruske et al. [22] and a brief
description is now given. Similar in principle of operation and design to the WIBS, the MBS features
enhanced spectral resolution boasting autofluorescent detection over 8 bands between 315–640 nm.
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The signal is detected via a multichannel photodetector where a grating spectrometer is used to split the
incident fluorescent signal. A single optically filtered xenon flash lamp provides excitation at a wavelength
of 280 nm. The resulting high resolution excitation/emission bands provide significantly reduced
conflation between key biofluorophores compared to the WIBS independent broad band detectors,
greatly enhancing PBAP discriminative capability [22].

Air is drawn into the MBS via an inlet featuring a removable oversized particle trap at a total flow
rate of approximately 1.2 L min−1; the majority of this flow is split and filtered to provide a sheath flow.
This sheath flow constrains the target aerosol into a well-defined sample flow (approximately 0.2 L min−1)
to minimise contamination of the optics; it also serves to provide a single file of collimated aerosol for the
detection system. Aerosol in the sensing region are first detected and sized using a 635 nm low power
laser (12 mW) over a range of 0.5 to 20 µm in diameter; particles greater than a threshold size trigger
a second high power 637 nm laser (250 mW) which illuminates the particle with sufficient intensity to
characterise the particles morphology via a dual CMOS (complementary metal-oxide-semiconductor)
image sensor array which will be described in detail later in this manuscript. The xenon flashlamp is
triggered 10 µs after a critical detection event, and any resultant emission is focused onto the detection
optics via two hemispherical mirrors and recorded along with all other parameters. Instrument dead
time due to the xenon flashlamp recharging in between strobes limits acquisition to approximately 125
particles s−1. In practice, the instrument rarely strobes at such a high rate when sampling ambient air
given its fairly coarse detection range.

The dual 512 pixel CMOS arrays collect scatted light from the particle and provide two linear
sectional profiles through the 2D profile of the particle’s spatial light scattering pattern, similar in
principle to the small ice detector cloud spectrometer [37]. Rather than interrogate the whole CMOS
array data in post-processing, several useful parameters are calculated from the distributions at
acquisition which are now described below. A schematic diagram depicting the parameters is also
provided in Figure 1.
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Figure 1. Schematic of the complementary metal-oxide-semiconductor (CMOS) array data and
parameters derived from a 3 µm polystyrene latex sphere particle. (a) Raw intensity data from the left
and right CMOS arrays. Array peak, mean and peakwidth values are indicated by dashed, dot-dashed
and dotted lines, respectively. Horizontal black line indicates array midpoint; (b) Modulus of the
element by element subtraction of the left and right arrays. The resultant sum is the AsymLR parameter;
(c) Raw intensity of the top and bottom sections of the left CMOS array, starting from the middle of the
array outwards; (d) Modulus of the element by element subtraction of the top and bottom sections of
the left CMOS array. The resultant sum is the Mirror parameter.

• Peakwidth: An estimate of the mean width of the array peak, defined as the mid-point between
the mean and peak values.
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• Peakmean: The ratio of the peak to mean parameters. This is a simple method of differentiating
various particle morphologies, especially those of an elongated nature such as fibres or rod-shaped
from round or irregular particles.

• Mirror: A measure of the scattering symmetry between the top and bottom half of each array,
where the two halves are subtracted in an element by element fashion from the centre of the array
and the resultant modulus is summed. Spherical particles produce values approaching zero and
non-spherical particles yield larger values.

• AsymLR: Variant of mirror. A measure of the symmetry between the left and right arrays.
• AsymLRinv: As AsymLR but the right hand array is inverted.

The collection of only two linear profiles versus the whole 2D scattering pattern presents a trade-off

between limiting data acquisition to an acceptable rate and data quality. The linear profiles require
only approximately 2 kB of data in contrast to approximately 1 MB for a whole 2D scattering pattern,
the latter of which would place a significant burden on the acquisition system, limiting acquisition rate,
and crucially also increasing the overhead requirements for data post-processing. Significant valuable
structural information can be retrieved from the simple CMOS linear profiles which we demonstrate to
be useful for particle classification. This may prove especially useful when two target particle types
potentially display similar fluorescent characteristics but are likely to be morphologically different.

2.2. Data Preparation

Prior to training and subsequent analysis, it is necessary to pre-process the data to improve
the quality of outputs [22,28]. The first step in the process is to identify fluorescent particles from
non-fluorescent. When the MBS first records data to a new file (approximately every 30,000 data points)
it enters forced trigger (FT) mode for 10 s, where the instrument measures the fluorescent background
of the optical chamber at 10 Hz strobe rate in the absence of any particles (the pump is disengaged
throughout this process). The mean background value is then automatically subtracted from subsequent
acquisition data and we then further subtract a threshold of 9 times the standard deviation (9σ) of the
FT background from each channel in post-processing. We clip all values at zero to indicate that no
fluorescence has been detected in a given channel and values greater than zero indicate fluorescence.
Additionally we require that for a particle to be classified as fluorescent it must exhibit fluorescence
in a minimum of 2 channels to filter out spurious measurements and noise caused by the grating as
suggested by Könemann et al. [24]. We choose to use 9σ thresholding in our analysis as this has the
effect of removing ubiquitous weakly fluorescent non-biological interferents (e.g., dust and soot) from the
population to be analysed while having only a very minor impact on PBAP which tends to be much more
fluorescent [23,38]. In the next step, we normalise each individual particle’s fluorescent spectra by the
sum of the fluorescent intensity over all channels. This has the effect of retaining the characteristic profile
or ‘shape’ of the fluorescent spectra while minimising the effect of detector drift over time or baseline
shifts in between FT events. This is retained as a separate product to the raw fluorescence along with
the sum of the intensities as a measure of overall particle fluorescence.

2.3. Gradient Boosting Ensemble Decision Trees

In this study, we use a gradient boosting ensemble decision tree to classify ambient data into
broad classes using labelled laboratory training data. Briefly, a decision tree classifies data into
groups by evaluating each of the input variables and splitting at certain values to create branches.
When constructing a tree we consider all of the splits at a given branch node for all variables and
evaluate the effectiveness of the splitting value to accurately classify the training data, retaining the most
effective splitting criterion at each level. This process is repeated, creating many branches, until the
model can accurately classify labelled data which have been reserved for model validation or the
maximum depth of the tree has been met.
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Classification performance can be improved by combining multiple decisions trees (ensembles).
The gradient boosting method employed here is a more general form of the AdaBoost ensemble
classifier [39], where initially all data points are assigned equal weight and an initial decision tree is
generated. The data are then reweighted using a loss function to focus attention on the most frequently
misclassified particles and a new decision tree is generated. This boosting process is repeated until no
further increase in performance is attained or a specified number of iterations are reached.

When configuring the GBA model to be trained we first pre-process the MBS data as described in
Section 2.2 using custom Python functions, retaining particle diameter, sum normalised fluorescent
spectra, total fluorescent intensity and the CMOS shape parameters described in Section 2.1 for all
fluorescent particles as inputs to the model. Additionally we also label each data point with an
appropriate broad classification (bacterial, fungal or cotton). The input data were then scaled using
Scikit-learn robust scaler (25th and 75th percentiles) to minimise the impact of outliers which may
skew the model.

The performance of the model is tested over a range of tuning parameters and the optimum
configuration is automatically retained; we test using learning rates of 0.02, 0.05, 0.1 and 0.2; maximum
tree node depths of 3 and 5; and 10, 50 and 100 boosting stages. We split the input data into training
and validation subsets using the Scikit-learn stratified k-folds method to ensure that the split between
the three classes is maintained as the model switches between the training and validation datasets to
evaluate the optimum model configuration. The best performing model is then applied to the sampled
ambient data.

2.4. Laboratory Experimental Arrangement and Ambient Monitoring Site

2.4.1. Aerosol Challenge Simulator

Several PBAP of interest were sampled using the Aerosol Challenge Simulator (ACS) at the Defence
Science and Technology Laboratory (Dstl) at Porton Down, Wiltshire, United Kingdom. A full description
of the site and experimental procedure is provided in Forde et al. [23]. A brief description is now
provided; known concentrations of test challenge particles are generated and introduced into a
sampling manifold system via separate challenge aerosol and background sample mixing chambers as
required. The aerosol was then diluted to the desired concentration by a computer controlled system
(monitored by five optical particle counters situated at strategic sampling points) where the output
was then combined into a 3rd mixing chamber and passed to the test sampling section where test
instrumentation sampled from an isokinetic inlet. The exhaust flow and aerosol stream was then passed
to a double ultra-low particulate air filter section. Dry powders (all fungal material and pollen samples)
were aerosolised using a modified TSI small-scale powder disperser (SSPD, model 3433) [23]. Liquid
bacterial samples were dispersed into the ACS using a medical nebuliser from diluted starting stocks
containing approximately 1 × 108 CFU/mL in suspension. Separate experiments using a cotton t-shirt
sample were generated by agitating the garment upstream of the inlet of the instrument in a similar
manner to that described in Savage et al., [38].

2.4.2. University Place Indoor Ambient Sampling

University Place is a large multi-functional building located at the centre of the University of
Manchester campus. It contains a 1000 capacity lecture theatre; 25 classrooms distributed over 4 floors
with a cumulative seating capacity of 1068; a 365 sqm (300 seated) market restaurant; and a 485 sqm
multifunctional space on the ground floor which contains a post room, information desk, gift shop and
2 additional catering facilities. This area, known as the drum, serves as the main entry and exit point
to building via 3 sets of revolving and automated doors located on the north, south and west aspects
of the building. University place is open to provide services from 08:00 to 17:00 during weekdays;
the restaurant facilities cater between 08:00 and 15:00 and the cafes are open from 11:00 until building
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close at 17:00. On weekends, this building is not open to the public, but it may host pre-booked events.
Cleaning staff can access the building from 07:30 and after 17:00.

The MBS was set up inside a portable sampling enclosure and secured towards the rear of the
information desk which is approximately central within the drum. The aim of this deployment was to
attempt to capture PBAP emissions related to human activity in a high footfall indoor environment.
Sampling took place over 8 days (5 weekdays, 3 weekend days) with no interruptions between the 8th
and 16th of March 2020 during term time activity and prior to COVID-19 closure.

3. Results

3.1. ACS Laboratory Data

In the work presented here, we have selected the unwashed Escherichia coli (E. coli) Gram-negative
vegetative cells, and Bacillus atrophaeus (BG) and Bacillus thuringensis (BT) Gram-positive spores (without
the vegetative cell remains) to be representative of bacteria. E. coli was chosen as it is can be responsible
for serious food poisoning and food contamination incidents; BG was chosen as it is commonly used as
a surrogate for pathogenic B. anthracis which causes disease in livestock and humans; BT was selected
as it is a soil-dwelling bacterium which is commonly used as a pesticide and may be aerosolized
during application and by agricultural processes. Cladosporium herbarium and Alternaria alternaria
were chosen to be representative of fungal material; Cladosporium is a common allergenic indoor
mould and Alternaria is a ubiquitous plant pathogen All samples were limited to Advisory Committee
on Dangerous Pathogens hazard group 1 due to risk management requirements of the ACS system.
Bacterial samples were generated by Dstl from in-house culture stocks and were re-suspended and
diluted in a phosphate-buffered saline solution to enable nebulisation. All other samples were acquired
from Stallergenes Greer. The inclusion of both Gram-negative and Gram-positive bacterial samples is
important as they exhibit different structures which may influence their autofluorescent properties.
The fungal samples used in this study are fungal material extracts intended for allergenic testing which
have undergone chemical processing with acetone and are not naturally occurring whole spores. It is
not clear how these may differ from naturally emitted spores, however, the fluorescent spectra of the
processed samples are broadly consistent with those from other studies which examined live cultured
fungal samples [23,38,40]. SEM images of the aerosolized fungal samples were made and these are
presented in Forde et al., [23], where the samples were observed to be fibrous in nature and often
amalgamated when rod-shaped or filament morphologies are expected. A summary of the test aerosol
used to train the GBA model is provided in Table 1.

Some pollen samples were tested during this characterization experiment, but the system was
not optimally set up during this pilot study and while of interest for some aspects of asthmagen
studies it was noted that these may not be considered fully representative in order to train the
model with. Urtica dioica (nettle) pollen was sufficiently sampled for this purpose but featured apparent
fragmentation (modal size < 1 µm, expected grain size 12–15 µm). SEM imagery of the tested pollens
demonstrates that the particles looked dry and mis-shaped which may result in the MBS mis-sizing
the particles due to their complex morphology [23]. Fragmentation during laboratory aerosolization
and subsequent sampling is not unexpected, e.g., Savage et al. [38] demonstrated that pollen grains
could become ruptured when aerosolised during similar PBAP characterization experiments. This may
impact fluorescent characteristics and morphology so nettle pollen has also been removed from the
training dataset as a result. It is also not envisaged that nettle pollen would be prevalent in March as
its pollination season occurs from June to September in the UK, with tree pollens being most common
around the time of sampling. While the exclusion of pollen when training the model is not ideal, at the
time of ambient sampling the general pollen count is low [41] so we expect this to have minimal impact
on the results.

A statistical overview of the MBS CMOS shape parameters, size and autofluorescence for each of
the samples is provided in Figure 2. Generally it can be seen that each broad taxonomic class in the
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data sets display easily identifiable characteristic features, e.g., fungal spores tend to display modal
fluorescence at lower wavelengths than bacteria; bacteria display significantly lower AsymLR values
compared to fungal spores. Distinct differences are also seen between bacterial and fungal peak width
and mirror parameter values.

Table 1. Summary of training test aerosol, including source, sample processing, storage conditions,
dispersal method, average size and morphology. Particle size was determined using an optical particle
counter during the 2017 ACS characterisation experiments; see Forde et al., [23] for details. Details of
any processing steps are provided in Section 3.1.

Sample Origin Processing Storage Dispersal Size (µm) Morphology

Escherichia coli (G−) Dstl stock Re-suspended in
phosphate-buffered saline >5 ◦C Medical

nebuliser 1.3 ± 0.6 rod-shaped

Bacillus atrophaeus (G+) Dstl stock Re-suspended in
phosphate-buffered saline >5 ◦C Medical

nebuliser 1.4 ± 0.4 rod-shaped

Bacillus thuringensis (G+) Dstl stock Re-suspended in
phosphate-buffered saline >5 ◦C Medical

nebuliser 1.2 ± 0.6 rod-shaped

Alternaria Alternaria
Stallergenes
Greer Strain
ATCC 11680

acetone <0 ◦C compressed
air 1.9 ± 4.2 fibrous

Cladosporium herbarum
Stallergenes
Greer Strain
ATCC 6506

acetone <0 ◦C compressed
air 2.7 ± 3.0 fibrous

Cotton Black T-Shirt none N/A mechanical
agitation N/A -
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Figure 2. ACS training data overview. Shown are the probability density functions of the CMOS parameters
(columns 1 to 4) and box and whisker plots of the autofluorescent spectrum (row 5) for E.coli (top row);
Bacillus atrophaeus (BG, 2nd row); Bacillus thuringensis (BT, 3rd row); Altenaria (4th row); Cladisporium
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Here we can see the potential for the CMOS shape parameters to improve classification capability
over using autofluorescent spectra and size information alone. An interesting observation here is
that the autofluorescent spectra of E. coli are very similar to that of the tested fungal spore material,
which may potentially lead to conflation using just fluorescence and size parameters alone. However,
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the CMOS shape parameters for E. coli are similar to the other bacterial samples and dissimilar to
the fungal material which may assist in reducing the potential erroneous classification of E. coli as
fungal-like. We note that the morphology of the fungal material may not be fully representative of
naturally occurring spores due to treatment by the manufacturer, thus caution must be taken when
interpreting the CMOS parameters as a result.

To compare parameter similarity of the training data in a more statistically robust manner,
we utilize the Hellinger distance metric (Figure 3). This metric is used to quantify the similarity
between two probability distributions, where a value tending towards zero indicates that the tested
parameter probability distributions are similar and a value of 1 indicates dissimilarity. This provides a
useful benchmark for what can and cannot be reasonably split and classified using machine learning
techniques, and in which parameters any weakness may arise. Generally we observe that the training
data parameters are sufficiently different to not conflate broad classes (Figure 3, top panel). Where there
are some similarities, e.g., fungal vs. cotton CMOS shape parameters, there are sufficient differences in
the fluorescent signatures between the classes to disentangle them using a GBA model. High similarity
was observed between the bacterial and fungal training data in channels 1, 7 and 8 as a consequence of
these particles types exhibiting only very weak to zero fluorescence in these bands and is not of concern
for routine classification accuracy. Further to this, these classes display very different CMOS-derived
morphological features.Atmosphere 2020, 11, x FOR PEER REVIEW 10 of 20 
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Figure 3. ACS training data Hellinger distances for each parameter. Top panel: inter-class comparison
of the broad classes. Bottom panel: intra-class comparison of the three bacterial samples. The Hellinger
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zero indicate similarity between distributions and a value of 1 indicated dissimilarity.

Next, we assessed the intra-class parameter Hellinger distances for the bacterial samples (Figure 3,
bottom panel). Here we see that the fluorescent spectra are surprisingly dissimilar between samples;
however, the CMOS parameters display a high level of similarity which may promote conflation
between the samples. As such, we limit our analysis to broad classes rather than attempt species
level classification at this stage. We are able to highlight that sum normalising the fluorescent spectra
significantly improves the separation between key classes (e.g., bacterial and fungal) over using the
raw intensity which should improve discriminative capability in general. This is particularly important
where instrument response dissimilarities are of concern.
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3.2. GBA Classification

First we train the GBA model using broad classes to generate products which are representative of
bacteria, fungal spores and clothing fibres. Table 2 shows a confusion matrix assessing the performance
of the model where it can be seen that the model performs exceptionally well and can classify the test
portion of the input data to the model accurately.

Table 2. Confusion matrix of the GBA classification model using the ACS training data grouped into
broad classes. The proportion of the model predicted labels (columns) are compared to the true label
(rows) for each broad training class and presented as a percentage value.

Predicted Label

Bacteria Fungal Cotton

Bacteria 100% 0% 0%
True label Fungal 0% 100% 0%

Cotton 0% 0% 100%

We now apply the trained model to the ambient data collected at University Place. Figure 4 shows
the classification assignment confidence (p) for each broad class as determined by the Scikit-learn GBA
classifier. The GBA model will make a preliminary assignment for each fluorescent particle to one of the
three classes based on the internally calculated assignment confidence; as there are only three classes
the minimum confidence to make this preliminary assignment is therefore p > 1/3. At low confidence
values misattribution due to inter-class conflation or the erroneous assignment of an unknown or
untrained particle type to a class is likely. To minimise this, it is necessary to apply a minimum
assignment confidence threshold when classifying particles for further analysis. Generally we observe
that bacteria- and fungal-like particle classifications are judged to have been made with high confidence
by the model with mean p values of approximately 0.9 ± 0.15 for each and with a significant proportion
of each class being assigned with a confidence greater than 0.75. Due to their more heterogeneous
characteristics, cotton fibres are less confidently assigned. All classes feature a large proportion in
assignment confidence approaching 1, suggesting that the sampled particles match the distinctly
different characteristics of the laboratory data well. We therefore employ a conservative threshold
p value of 0.9 when integrating data products for each class to ensure that the selected particles are
representative of the training data with minimal conflation and misattribution likely.
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To further evaluate the performance and validity of the ambient GBA classifications, we use
the Hellinger distance metric to compare group properties with those from the laboratory training
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data to assess similarity and potential inter-class conflation. Figure 5 shows the parameter Hellinger
distances for each class compared to the class training data and other ambient classes (ambient p < 0.9);
it can be seen that the bacterial class compares well to the training data and that it also displays
significant differences to the other ambient classes across all parameters; the fungal classification
displays differences to the training data fluorescent spectra, but a high level of morphological similarity.
While no obvious conflation with the other classes was observed there was some morphological
similarity to the cotton class; the cotton-like morphology compares well to the training data but there
are differences in the fluorescent spectra, suggesting that textile fibres may be difficult to classify given
their variable nature.Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 20 
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We now delve deeper into the comparison between the ambient classifications and training data
by investigating the parameter distributions to attempt to understand the differences highlighted by
the initial Hellinger distance analysis. Figure 6 shows the normalised ambient and training values of
the parameters for each class, where the fluorescent spectra are sum normalised (as is input to the
GBA model) and the remaining parameters are range scaled to the maximum possible expected value.
In agreement with the Hellinger distance analysis, it can be seen that the distributions of parameters
are in good agreement for the bacterial class, suggesting those particles assigned to this class match the
characteristics of the bacterial training data very well.

The ambient fungal class shows reasonable agreement in the CMOS parameter space but displays
fluorescence in the upper channels not observed in the training data. However, both display modal
fluorescence in the 3rd channel (414 nm). This suggests that either:

1. The training data are not representative of ambient fungal spore fluorescence due to how they are
produced and aerosolized. As noted earlier, the fungal material used in this study is intended for
allergenic testing use and has undergone chemical processing by the manufacturer. This may
impact their fluorescent and morphological characteristics.
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2. That ambient fungal fluorescence is significantly altered by external factors.
3. That we observed a fluorescent particle type with similar morphological properties to the ACS

fungal material particles which are not fully representative of building mycology resulting
in conflation/misattribution. The training dataset used in this study does not contain all of
the most commonly observed fungal particles in building mycology studies (e.g., Aspergillius
and Penicillium species [15]) which may exhibit different autofluorescent characteristics to the
training samples.
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Finally we note that the cotton class is somewhat similar to the training data given its high
variability, displaying a similar spectral shape and morphological parameters.

3.3. Ambient Indoor Air Time Series Product Analysis

We calculate 5 min integrated data products using a conservative assignment confidence threshold
of p > 0.9 to minimize misclassification when interrogating the fluorescent aerosol population as
discussed earlier. We also employ a second less strict threshold of p > 0.75 with the aim of increasing
the retained population without introducing significant misattribution. Caution must be taken when
interpreting products derived using this lower threshold, especially if the inclusion of additional
particles results in significant differences in product trends when compared to the conservative
threshold. Particles that fall outside of the scope of the training data should be assigned to one of the
classes with a p value significantly below these thresholds and are thus excluded from any generated
integrated data products. It may be possible to use intermediate p values to investigate particle novelty
and underlying trends (i.e., displaying some broad characteristics which are similar to the training
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data) but caution must be taken interpreting products when doing so, and the resulting analysis must
be caveated appropriately.

Figure 7 shows a time series of the integrated number concentrations for each class for the whole
measurement period. Generally low background PBAP concentrations (a few per litre for all classes)
are observed over the weekend when human activity inside University Place is low; weekdays display
a consistent diurnal trend in the fungal-and cotton-like products, featuring a maximum around midday
(approximately 80 L−1 and 10 L−1, respectively) which coincides with high activity inside the building
as people use the catering facilities and enter and exit to attend lectures. Bacteria-like concentrations
are elevated when compared to the weekend but the overall features of the weekday trends are less
uniform. Several episodic bacterial events are observed with some major events occurring outside of
the building public opening times. For example, Figure 8 shows a 12 h period from Friday the 13th of
March which highlights this episodic behaviour; a relatively large and protracted bacteria-like event
(~30 L−1) compared to background levels is observed between 7 and 8 AM, prior to any significant
footfall inside the building. This then decays to near background levels before another, shorter-lived
event (~55 L−1) is observed at around 9:30 AM. A final bacterial event (35 L−1) is observed at around
12:30 PM. Generally, these bacterial events do not correspond to enhancements in the fungal- and
cotton-like classes.
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Fungal-like particles display a macro-trend within the larger diurnal trend described earlier,
where rapidly decaying spikes in number concentration are observed around the hour where footfall is
high as people enter and exit the building to attend lectures and other events. Similar trends are also
observed in the cotton-like class and this phenomenon is seen throughout the other weekdays.

Figure 9 shows the weekday hourly averaged diurnal number concentration for each class.
This further highlights the diurnal trend in fungal-and cotton-like aerosol, both of which display an
approximate midday maxima and little at night in synchronicity with human activity. This is highly
suggestive that fungal-and cotton-like emissions are linked to human activity within the building which
is consistent with previous studies [20]. Bacteria-like aerosols also display elevated concentrations
during public opening hours and reduced background concentrations in the early hours of the morning.
While we cannot say for certain what the underlying mechanisms for these emissions are, we speculate
that human activity may disturb fungal particles through agitation/airflow causing aerosolization or may
result in the resuspension of deposited bio-material and textile particles. Bacteria-like concentrations
are also clearly elevated during periods of human activity; this result is consistent with that of
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Handorean et al., [19] which suggested that bacteria may be liberated from agitated textiles, which is
a feasible emission mechanism at the site here. However, other unidentified mechanisms also may
be at play as significant emission events occur outside of public opening hours. We now turn our
attention to the remaining fluorescent population which have not been classified by the GBA model.
We define the unclassified concentration as the difference between the total 9σ fluorescent concentration
and the sum of the classified product concentrations (p > 0.9). It can be seen that the unclassified
population generally displays a similar diurnal trend to the fungal and cotton classes. This suggests
that the emission of a significant proportion of the unclassified fluorescent aerosol is related to human
activity. The midday maxima of approximately 30 L−1 represents approximately 1/3rd of the fluorescent
population at midday; this is a significant fraction of the population to remain unclassified. Broadening
the scope of the training data to include fungal samples which are more broadly representative of
building mycology and other human activity derived PBAP (e.g., skin flakes in dust) should improve
the fraction of the fluorescent population which can successfully be classified. These will require
further investigation.
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4. Conclusions

In this manuscript, we demonstrate the utility of gradient boosting ensemble decision trees to
classify and quantify PBAP in an indoor environment at high time resolution using a MBS UV-LIF
spectrometer. We provide a framework to evaluate the quality of predictive outputs of supervised
models by comparing input parameters to training data samples using Hellinger distance as a measure
of similarity. This method also serves as a useful test to check if training sample sets are sufficiently
different in characteristics to be reasonably separated using machine learning techniques. Additionally,
we show the importance of comparing classified ambient and training data parameter distributions to
evaluate confidence in the classification scheme and to highlight potential deficiencies in the training
data used for a given ambient dataset. The following key results are highlighted:

1. We demonstrate that the GBA classification model can accurately classify the training data into
broad PBAP classes.

2. The advanced CMOS shape information was demonstrated to be useful for minimising conflation
between particle types with similar fluorescent characteristics but differing morphologies (e.g., E. coli
bacteria and fungi).

3. The Hellinger distance metric framework displays a high level of utility for assessing both
the likelihood of training data conflations (e.g., bacteria samples display similarity) and the
applicability of the training data to generate an appropriate model for a given ambient dataset.

4. Some deficiencies in the fungal training samples were found using the above framework. They
may arise due to either characteristic changes introduced by processing during manufacture or
because the samples did not adequately represent the building mycology. This highlights the
need to appraise the applicability of training data used to generate a classification model to build
confidence in data outputs.

5. The application of the model to ambient indoor data yielded illuminating results about PBAP
within the building investigated; bacteria-like aerosol were well captured by the training data and
they exhibited a strong, yet episodic and complex response to human activity within the building;
fungal-like aerosol were observed to display a strong diurnal response to human activity with
maximum concentrations at midday, correlating to a maximum in footfall. Interestingly large,
rapidly decaying spikes in concentration were observed around the hour, corresponding with a
high flux of people through the building. Concentrations of all classes fell to baseline minimums
when the building was closed.

6. High time resolution UV-LIF spectrometers can potentially reveal trends and mechanisms which
may be obfuscated by offline methods that require long sample collections times.

Future work is planned to repeat this pilot study with a selection of cutting-edge high resolution
UV-LIF spectrometers with supporting offline parallel analyses using microscopy, DNA sequencing and
Q-PCR techniques to validate measurements and provide further insight into the identity and sources
of PBAP constituents. The offline speciation will be used to inform further laboratory characterisation
studies to generate appropriate training datasets to build updated GBA classification models. The work
presented here demonstrates the utility of UV-LIF spectrometers and machine learning to assess PBAP
impact on indoor air quality and exposure. The use of specialised training data focused on indoor
bioaerosol composition in conjunction with high resolution, multiparameter UV-LIF spectrometers should
significantly improve classification capability, providing excellent high temporal resolution datasets to
interrogate PBAP emission mechanisms and evaluate impacts on air quality and exposure and eventually,
emission and dispersion mitigation strategies.
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Abbreviations

The following abbreviations are used in this manuscript:

ACS Aerosol challenge simulator
BG Bacillus atrophaeus
BT Bacillus thuringensis
CMOS Complementary metal-oxide-semiconductor
Dstl Defence science and technologyl
FT Forced trigger
GBA Gradient boosting ensemble decision trees
HAC Hierarchical agglomerative clustering
MBS Multiparameter Bioaerosol Spectrometer
PBAP Primary biological aerosol particle
UV-APS Ultraviolet aerodynamic particle sizer
UV-LIF Ultraviolet light-induced fluorescence
WIBS Wideband integrated bioaerosol spectrometer
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