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Paul Vochezer, Ottmar Möhler and Thomas Leisner22

Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, P.O. Box 3640,

76021 Karlsruhe, Germany

23

24

∗Corresponding author address: Karlsruhe Institute of Technology, Institute of Meteorology and

Climate Research, P.O. Box 3640, 76021 Karlsruhe, Germany

25

26

E-mail: emma.jaervinen@kit.edu27

2



ABSTRACT

Homogeneous freezing of supercooled droplets occurs in convective sys-

tems in low- and in mid-latitudes. This droplet freezing process leads to the

formation of a large amount of small ice particles, so called frozen droplets,

that are transported to the upper parts of anvil outflows, where they can influ-

ence the cloud radiative properties. However, the detailed microphysics and,

thus, the scattering properties of these small ice particles are highly uncertain.

Here, we investigate the link between the microphysical and optical properties

of frozen droplets in cloud chamber experiments, where the frozen droplets

were formed, grown and sublimated under controlled conditions. It was found

that frozen droplets developed a high degree of small-scale complexity after

their initial formation and subsequent growth. During sublimation the small-

scale complexity disappeared releasing a smooth and near-spherical ice parti-

cle. Angular light scattering and depolarization measurements confirmed that

these sublimating frozen droplets scattered light similar to spherical particles,

i.e. they had angular light scattering properties similar to water droplets. The

knowledge gained from this laboratory study was applied to two case studies

of aircraft measurements in a mid-latitude and in a tropical convective sys-

tems. The in-situ aircraft measurements confirmed that the microphysics of

frozen droplets is dependent on the humidity conditions they are exposed to

(growth or sublimation). The existence of optically spherical frozen droplets

can be important for the radiative properties of detraining convective outflows.
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1. Introduction49

Convective systems are an important source of ice particles in the upper troposphere (e.g. Jensen50

et al. 1996; Gayet et al. 2012a; Frey et al. 2011) and the lower most stratosphere (Reus et al.51

2009). Ice particles found in the anvil outflows are usually formed in the lower and warmer part52

of the convective cell, and therefore, their microphysical and optical properties differ from in-situ53

formed ice particles (e.g. McFarquhar and Heymsfield 1996; Lawson et al. 2003; Connolly et al.54

2005; Lawson et al. 2010; Frey et al. 2011). In mid-latitude convective systems, supercooled liquid55

water droplets have been observed to survive down to a temperature around -37◦C (Rosenfeld and56

Woodley 2000), where homogeneous freezing of the supercooled droplets occurs. In vigorous57

convective systems, homogeneous freezing happens in a narrow time interval producing a large58

amount of small ice crystals (Heymsfield and Sabin 1989; Philips et al. 2007; Lawson et al. 2010).59

The ice particle concentrations at the top of convective systems can reach several tens per cubic60

centimeter, with the effective diameter of the ice particles staying below 50 µm (Heymsfield et al.61

2009; Lawson et al. 2010; Gayet et al. 2012a; Stith et al. 2014)62

The high number of small ice particles at the top of convective outflows indicates that small63

(< 50µm) ice crystals might be important for the short wave radiative properties of these cloud64

types. Yet, the exact microphysics and, therefore, the radiative forcing of small ice particles are65

not well understood. Several tropical (e.g. Stith et al. 2002; Lawson et al. 2003; Stith et al. 2004;66

Connolly et al. 2005; Heymsfield et al. 2005; May et al. 2008; Lawson et al. 2010; Frey et al.67

2011) and a few mid-latitude aircraft campaigns (e.g. Lawson et al. 2003; Gayet et al. 2012a; Stith68

et al. 2014) have been conducted to investigate the microphysical properties of ice crystals in anvil69

outflows. Gayet et al. (2012a) reported aggregated frozen droplets in a convective storm over Eu-70

rope. Similarly, Stith et al. (2014) found that aggregated frozen droplets and single frozen droplets71
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with median sizes of 20-25 µm are regular features in many mid-latitude convective systems over72

the Midwestern United States. In tropical convective systems, vapor grown plates and aggregates73

of plates are typically detected (e.g. Connolly et al. 2005; Um and McFarquhar 2009; Frey et al.74

2011). However, in fast updrafts homogeneous freezing can be observed (Heymsfield et al. 2005,75

2009; Lawson et al. 2010).76

Frozen droplets are quasi-spherical or quasi-spheroidal small particles that can be identified77

from measurements with cloud particle imagers (CPI), which were used in studies of Lawson et al.78

(2003), Gayet et al. (2012a) and Stith et al. (2014). The spatial resolution of CPIs typically range79

from about 2 to 5 µm depending on the probe model and aircraft speed, i.e. too coarse to resolve80

the fine structure of small ice particles. What is detected as apparently a spherical ice particle, may81

actually be a complex polycrystal, a droxtal or a severely roughened ice particle (Ulanowski et al.82

2004). However, particularly the fine structure or the particle complexity has an important role in83

determining the single scattering properties of ice particles, in particular the forward to backward84

scattering ratio, or asymmetry factor, g, both of which are known to be decisive in radiative energy85

budget calculations (e.g. Li et al. 2004; Ulanowski et al. 2006; Yang et al. 2008; Baran 2012a).86

This, consequently, influences the radiative forcing of the convective clouds. Yi et al. (2013)87

calculated a significant negative global average difference in short wave radiative properties of88

−1.46 W m2 between smooth and roughened ice crystals. Hence, accurate information on the89

detailed structure of frozen droplets is crucial to understand the radiative forcing of convective90

outflows, where homogeneous droplet freezing is observed.91

Recently, a new instrument type has been developed to quantify the complexity of atmospheric92

ice crystals based on the analysis of their 2D diffraction patterns (Ulanowski et al. 2010; Schnaiter93

et al. 2016). In this context crystal complexity comprises all types of distortions in a single crystal94

(e.g. surface roughness, hollowness, air bubbles) that result is a similar spatial distribution of95
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forward scattered light. This structural complexity of a single ice crystals is referred as small-96

scale complexity (Schnaiter et al. 2016). For example a smooth ice sphere has a diffraction pattern97

similar to a water droplet, where concentric intensity maxima (rings) are observed in the forward98

scattering. Small-scale complexity destroys this scattering pattern and induces randomisation in99

the measured intensity distribution, and the degree of this randomisation can be linked with the100

degree of the particle small-scale complexity (Schnaiter et al. 2016). Moreover, the 2D diffraction101

patterns can be used to discriminate aspherical ice particles from spherical particles (Vochezer102

et al. 2016). Normally, the latter method is deployed to determine ice fractions in mixed-phase103

clouds, but in this study we used it to detect optically spherical ice particles in simulated and in104

real ice clouds of convective origin.105

In this paper two definitions are used to describe the microphysical nature of the frozen droplets:106

”quasi-spherical” and ”optically spherical”. Quasi-spherical is used as a general term for all frozen107

droplets that have retained their apparent spherical shape in the freezing process and are identified108

as spherical particles in the CPI images. Similarly, Nousiainen and McFarquhar (2004) defined109

quasi-spherical ice particle as a particle, whose projected area resembles a circle. The term ”quasi-110

spherical” is frequently used to describe small ice particles (e.g. Gayet et al. 1996; Korolev and111

Isaac 2003; McFarquhar et al. 2007), yet, the actual shape of these particles can be non-spherical112

as they can pose small-scale complexity like surface roughness. For calculating the scattering113

properties the term ”quasi-spherical” can be misleading, as it can be related to calculating the ice114

particle radiative properties using the Lorenz-Mie theory (Yang et al. 2003). To better illustrate the115

optical effect of these ice particles, we introduce the term ”optically spherical” to describe frozen116

droplets that do not show crystal complexity and behave optically like a sphere according to our117

measurement methods.118
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Droplet freezing process was simulated in the cloud simulation chamber AIDA (Aerosol In-119

teractions and Dynamics in the Atmosphere; Möhler et al. (2003)), where frozen droplets were120

grown and sublimated under controlled conditions. During the growth and sublimation cycles, the121

size, shape, complexity and angular light scattering properties of the frozen droplets were inves-122

tigated to understand the link between environmental, microphysical and optical properties. The123

paper is organised as follows. The new instrument type and the analysis methods for determining124

particle complexity and sphericity are briefly discussed in section 2a. The cloud chamber and125

the experiment method is described in section 2b, and the results from the chamber experiments126

are discussed in section 3. The knowledge gained from the laboratory study was applied to two127

case studies of aircraft measurements in mid- and low-latitude convective systems. The results128

from these two case studies are presented and discussed in sections 4 and 5 and the atmospheric129

relevance of quasi-spherical ice particles is the topic of section 6.130

2. Methods131

a. Detecting optically spherical particles132

A set of instruments measuring different optical parameters was used to determine the sphericity133

of laboratory produced ice particles. The airborne Small Ice Detector mark 3 (SID-3; see details134

in Ulanowski et al. (2012), Ulanowski et al. (2014) and Vochezer et al. (2016)) and its laboratory135

version, the Particle Phase Discriminator mark 2, Karlsruhe edition (PPD-2K; see details in Kaye136

et al. (2008) and Vochezer et al. (2016)) record high resolution scattering patterns of particles that137

have passed a 532 nm laser beam that can be used to study the particle morphology in size ranges138

of 3-50 µm (SID-3) and 7-70 µm (PPD-2K). In addition, the crystal small-scale complexity can be139

derived from these measurements (Schnaiter et al. 2016). A detailed description of the technical140
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details and the data analysis methods of these two instruments can be found in Vochezer et al.141

(2016) and Schnaiter et al. (2016). Here we only briefly describe, how the scattering patterns are142

used to quantify particle sphericity and aspherical fraction.143

The SID-3 and PPD-2K record forward scattered light from a single cloud particle in an annulus144

region between 7◦-26◦ using an intensified charged coupled device camera (ICCD). This pattern145

can be averaged over the polar angle to get a median forward scattering azimuthal intensity pro-146

file for a single particle. In the case of a spherical scatterer, a scattering pattern with concentric147

rings can be described with the Lorenz-Mie theory. Taking the average over the polar angles of148

a spherical particle, therefore, leads to a flat azimuthal intensity profile, whereas in the case of149

an aspherical scatterer, the azimuthal intensity profile is non-uniform. Hence, the variance of the150

intensity along the azimuthal angle, vaz, can be used to quantify the degree of particle spheric-151

ity. The fraction of aspherical particles is determined using a calibrated threshold value of vthr
az of152

1×10−5, with particles having a vaz < vthr
az , classified as spherical. The typical vaz value for water153

droplets is between 1×10−6 and 1×10−5 depending on the droplet size and the typical vaz for a154

columnar ice particle in chamber experiments is around 1×10−1. Irregular ice particles have vaz155

values between those of droplets and hexagonal ice particles.156

Additional to SID-3 and PPD-2K, two airborne cloud particle spectrometers, the Novel Ice157

EXpEriment - Cloud and Aerosol Particle Spectrometer (NIXE-CAPS) and The Cloud Aerosol158

Spectrometer-Depolarization Option (CAS-DPOL), were deployed in the chamber experiments.159

NIXE-CAPS (Meyer 2012; Luebke et al. 2015) is a combination of a cloud imaging probe and160

a cloud aerosol spectrometer. The design of the NIXE-CAPS instrument is similar to the cloud,161

aerosol and precipitation spectrometer (CAPS) (Baumgardner et al. 2001), however, one modifi-162

cation is that the NIXE-CAPS has a detector for the cross-polarized component of the backward163

scattered light (see Meyer (2012); Baumgardner et al. (2014)). This instrument supports the mea-164
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surement of single particle polarization signals that can be used to determine if a cloud particle165

is aspherical, as aspherical particles do significantly alter the polarization state of the incident166

light. Each particle’s polarization signal is compared to a size-dependent ”asphericity threshold”167

that was developed based on measurements of spherical liquid water droplets (Meyer 2012). The168

smallest particles that can be detected with the NIXE-CAPS instrument have diameters of about169

0.6 µm, however, in this study the aspherical fractions was determined only for particles larger170

than 8 µm to be comparable to the PPD-2K measurements.171

Similar to the NIXE-CAPS, the aspherical fraction from the CAS-DPOL (Voigt et al. 2016) is172

determined by the ratio of perpendicularly polarized light to the forward scattering light intensity.173

Again, a size dependent threshold was determined from the measurements of spherical liquid174

particles and all particles with a polarization ratio larger than the one sigma range of threshold175

values were categorized as aspherical. The method gives a size dependent aspherical fraction176

similar to the PPD-2K as well as the bulk aspherical fraction. The bulk aspherical fraction was177

derived from the number of aspherical particles to the number of total particles measured between178

8 and 50 µm within a 10 s time interval.179

Besides particle probes, two polar nephelometers were used to measure the angular light scat-180

tering of the frozen droplets. The airborne Polar Nephelometer (PN; Gayet et al. (1997); Crépel181

et al. (1997)) measures the polar scattering function of a particle ensemble in the angular range182

between 3.5◦ and 169◦. In this paper, the asymmetry parameter, g, is assessed based on the an-183

gular scattering measurements documented between 15◦ and 155◦. We followed the methodology184

proposed by Gerber et al. (2000) assuming that the fraction of energy scattered into angles smaller185

than 15◦ is constant and equal to 0.56, regardless of the cloud composition. The absolute error on186

the asymmetry parameter is expected to range approximately between 0.04 (Gerber et al. 2000;187

Garrett et al. 2001; Gayet et al. 2002) and 0.05 (for clouds dominated by large ice crystals).188
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The airborne Particle Imaging and Polar Scattering probe (PHIPS-HALO; Abdelmonem et al.189

(2016)) was used together with the PN to measure the angular light scattering function of single190

particles in an angular range of 18◦ to 170◦. The basic measurement concept of PHIPS-HALO191

is the simultaneous imaging of single ice crystal and the measurement of their angular scattering192

function. The imaging part of the instrument consists of two identical camera-telescope assem-193

blies and a pulsed incoherent illumination laser. The use of incoherent laser light enables the194

production of diffraction- and chromatic aberration-free bright field microscopic images with an195

optical resolution of about 2.5 µm. The polar nephelometer part of PHIPS-HALO measures the196

light scattered from particles as they pass through the horizontally aligned scattering laser beam197

with a wavelength of 532 nm. The light scattered from a particle is collected with 20 parabolic198

mirrors at equidistant angular separations of 8◦ (from 18◦ to 170◦). Their diameter is 10 mm so199

that the angular range that each mirror cover is ±3.5◦. The light gathered by the mirrors is focused200

into optical fibres and transported to a multi-anode photomultiplier array for analysis.201

The ensemble cloud scattering properties were probed with an in-situ scattering and depolar-202

ization instrument SIMONE1 (Schnaiter et al. 2012; Järvinen et al. 2016a). SIMONE measures203

the intensity of the scattered light from the center of the chamber at near-forward (2◦) and at204

near-backward scattering angles (178◦). The backward scattered light is decomposed into its po-205

larization components to determine the linear depolarization ratio (δl). The δl can be considered206

as a direct and accurate measure of the particle sphericity; spherical particles do not change the207

linear polarization state of the incident light in the scattering process, whereas aspherical parti-208

cles induce a non-zero depolarization ratio, with the magnitude depending on the shape, size and209

refractive index of the particle.210

1SIMONE is the acronym for the German project title Streulichtintensitätsmessungen zum optischen Nachweis von Eispartikeln, which can be

translated as Scattering Intensity Measurements for the Optical Detection of Ice Particles
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b. Simulating convective cloud systems in AIDA211

The expansion cooling of an air parcel in a convective system was simulated in the cloud cham-212

ber AIDA (Aerosol Interactions and Dynamics in the Atmosphere; Möhler et al. (2003)) located213

at the Karlsruhe Institute of Technology. The AIDA chamber consists of a large, 84 m3, aluminum214

vessel that is enclosed inside thermal housing. The chamber can be cooled down to 183 K, which215

makes the AIDA chamber suitable for simulating ice microphysics in pure ice clouds (Schnaiter216

et al. 2012, 2016), in persistent mixed-phase clouds (Vochezer et al. 2016) and in convective sys-217

tems (this study). To form liquid and ice clouds, supersaturated conditions inside the chamber218

are reached by expansion cooling; the chamber is evacuated from atmospheric pressure down to219

600-800 hPa depending on the pumping speed and the required amount of cooling. The typical220

cooling rates that can be achieved at the beginning of the expansion range from −1 K min−1 to a221

maximum of −2.5 K min−1, which roughly corresponds updraft speeds from 2 m s−1 to 7 m s−1,222

values typical for mid-latitude convection over USA (Giangrande et al. 2013).223

To study the ice particle microphysics in convective systems, a specific experimental procedure224

was developed containing three phases: pure liquid cloud with supercooled droplets (1), freezing225

of the droplets and their initial growth at supersaturated conditions (2), and, finally, the sublimation226

of the frozen droplets at sub-saturated conditions (3). The experiments were started with a clean227

chamber pre-cooled to 243 K. Near-ice saturated conditions inside the chamber were achieved228

by coating the chamber walls with an ice layer (see a more detailed description of the chamber229

preparation in Wagner et al. (2009)).230

In the first phase of the experiment, a cloud of supercooled droplets was generated using sul-231

phuric acid (SA) solution droplets or dust particles originating from Argentina as seed aerosol. The232

SA solution droplets were generated using a generator specifically designed for AIDA (Möhler233
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et al. 2003). The soil dust aerosol was added to the chamber by using a rotating brush generator234

(RBG 1000, Palas) to disperse the particles and a cyclone impactor to remove particles larger than235

about 3 µm in diameter (see e.g. Möhler et al. (2008)). The concentration inside the chamber was236

constantly monitored with a condensation particle counter (CPC3010, TSI). Different seed aerosol237

concentrations of about 10, 100 and 1000 cm−3 were used to produce liquid particles of different238

diameters. Here, we present data from three experiments: two simulating homogeneous freezing239

in SA solution droplets with different initial concentrations (experiments 15 and 17) and one sim-240

ulating heterogeneous nucleation on soil dust (experiment 24). The numbering of the experiment241

corresponds to the sequence of the expansion in the AIDA campaign Rough ICE 3 (RICE03).242

The formation of the droplets was initiated by an expansion of the chamber gas, which led to a243

cooling of the chamber volume and an increase of the relative humidity (RH). The RH inside the244

chamber was measured with a combination of a fast chilled-mirror frost-point hygrometer (MBW,245

model 373) that measures the total (gas and condensed phase) water vapor concentration in the246

chamber, and with a tunable diode laser (TDL) spectrometer (Fahey et al. 2014) that measures247

the water vapor concentration. After water saturated conditions were reached a cloud of super-248

cooled droplets formed. In the experiments almost all the seed aerosol particles were activated to249

form cloud droplets, so that the initial droplet concentration was determined by the seed aerosol250

concentration.251

The cooling of the chamber volume was continued until a mixed-phase cloud consisting of252

frozen and supercooled droplets was formed. In the mixed-phase cloud, the freshly formed frozen253

droplets grew through the Bergeron-Findeisen process, and, since the expansion cooling was con-254

tinued, also due to deposition growth in an ice supersaturated environment. The duration of the255

mixed-phase cloud was dependent on the pumping speed and the initial aerosol concentration.256

Three different pumping speeds were used: 60, 80 and 90% of the maximum speeds, correspond-257
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ing to cooling rates of -1.5, -2 and −2.5 K min−1, respectively. After full glaciation of the cloud,258

the frozen droplets continued the growth in super-saturated conditions (phase 2 of the experiment).259

During this phase the microphysical and optical properties of the frozen droplets were observed260

with the in-situ instruments: SID-3, PPD-2K, NIXE-CAPS, CAS-DPOL, PHIPS-HALO and PN.261

The ensemble scattering and depolarization ratio was measured with SIMONE.262

The frozen droplets were grown to maximum sizes between 40 and 50 µm. Then, the expansion263

period was stopped and a small compression was introduced to create sub-saturated conditions.264

The sublimation of the frozen droplets denoted the third phase of the experiment. The same set265

of instruments was used to monitor the microphysical and optical properties of the sublimating266

frozen droplets.267

3. Results from cloud chamber experiments268

In-situ measurements have provided evidence that in mid-latitude convective systems super-269

cooled liquid water can exist to temperatures around 237 K, where homogeneous freezing quickly270

converts the droplets into ice particles (Rosenfeld and Woodley 2000). AIDA cloud simulation271

experiments on the homogeneous freezing of supercooled droplets in convective systems is de-272

scribed in section 3a. In these experiments the ice particles were formed through liquid phase273

(droplet freezing) and, therefore, in the following sections these laboratory produced ice particles274

are called ”frozen droplets”, independent of their actual shape. The microphysical properties of275

liquid-origin ice particles may differ greatly from those ice particles formed and grown through276

the vapor phase. Therefore, an experiment with soil dust as seed aerosol was performed for com-277

parison (described in section 3b), where the ice formed through the deposition nucleation mode278

and grew by vapor diffusion. The differences in the ice microphysical and optical properties be-279
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tween frozen droplets with liquid origin and through deposition nucleation formed ice crystals at280

the same temperature regime is the subject of this chapter.281

a. Ice particle formation through the liquid phase282

Fig. 1 shows a droplet freezing experiment conducted with an initial number concentration of283

12 cm−3 SA solution droplets. The expansion was started at experiment time 0 s, as indicated by284

the start of the pressure decrease in Fig. 1, panel a. The cooling rate at the beginning of the285

expansion was −2.5 K min−1, but in the course of the expansion, the heat flux from the chamber286

walls reduced the cooling rate. At experiment time 83 s, water saturation was reached (dashed287

blue line in panel b), and a cloud of supercooled liquid droplets was formed, indicated by the288

rapid increase in the forward scattering intensity (panel c). Moreover, a zero depolarization ratio289

was measured indicating the presence of spherical particles in this period. The cloud particles290

were detected by the PPD-2K instrument after experiment time 100 s, when they have grown to291

diameters above 7 µm (panels d and e). In this first phase of the experiment, the 2D diffraction292

patterns of supercooled droplets recorded by the PPD-2K showed concentric ring pattern (Fig. 2293

i) with vaz below the threshold value of 1×10−5 (Fig. 1 panel e).294

The cooling was continued until the homogeneous freezing threshold around 237 K was reached295

at the experiment time 132 s. This led to a rapid glaciation of the cloud through homogeneous296

freezing of the supercooled droplets. Just before freezing, the liquid droplets had reached a median297

diameter of 14 µm (Fig. 3). The glaciation of the cloud led to an increase of the ice water content298

(IWC), as indicated by the difference between the total water (MBW, black line in panel b of299

Fig. 1) and the interstitial water (TDL, solid blue line in panel b of Fig. 1). At the same time the300

depolarization ratio (panel c) started to depart from zero, and reached a maximum of ∼ 0.3 at 200 s301

after the droplets were fully depleted. The optical size of the frozen droplets did not significantly302
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differ from the droplet size of the initial liquid and, therefore, the glaciation is not visible in the303

PPD-2K size distribution in panel d. Yet, the variance analysis clearly showed an increase in the304

vaz during the mixed-phase conditions, and a sharp transition to vaz above the threshold value of305

1×10−5 was observed after full glaciation.306

The PPD-2K scattering patterns of ice particles during the growth in mixed-phase conditions307

and later through vapor deposition were dominated by speckles (Fig. 2 ii), indicating a significant308

degree of small-scale complexity. We determined the small-scale complexity of the particles from309

the SID-3 scattering patterns using the method described in Schnaiter et al. (2016). This method310

relies on the grey-level co-occurrence matrix (GLCM) method described in Lu et al. (2006). The311

speckle pattern features can be extracted from the GLCM by calculating features, like the energy312

feature. It was found in Lu et al. (2006) and Schnaiter et al. (2016) that the exponential fit coeffi-313

cient to the energy feature, the so-called k-value (ke), best described the physical complexity and,314

therefore, we use the ke as the complexity parameter in the reminding of this study. The ke can315

have values between 4 to 6 so that increasing physical complexity results into larger a ke value.316

In the case of columnar particles Schnaiter et al. (2016) determined a threshold value of 4.6 to317

discriminate between complex (ke ≥ 4.6) and pristine columns (ke < 4.6).318

In our case, we measured a ke of 6.5 for frozen droplets formed from liquid phase (Fig. 4).319

This value was significantly larger than what was measured for vapor grown ice crystal at cirrus320

temperatures (Schnaiter et al. 2016). Schnaiter et al. (2016) showed that the small-scale complexity321

is driven by the available water vapor mixing ratio (ζ acw
v ), i.e. the amount of water molecules that322

are free to condense to the ice phase. In the chamber experiments with vapor grown ice crystals323

at cirrus temperatures the ζ acw
v varied between 0-20 ppmv (Schnaiter et al. 2016), whereas in this324

experiment we derived a ζ acw
v of 80 ppmv. This enhancement is likely promoted by the Bergeron-325

Findeisen process, the warmer temperature and the initial growth at near water saturation. It is326
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possible that the small-scale complexity of liquid-origin ice particles could be severely enhanced327

compared to in-situ grown ice crystals. Large-scale complexity, e.g. riming, is frequently found328

in mixed-phase cloud (e.g. Ono 1969), but due to instrument limitations, small-scale complexity329

could not been studied. Therefore, field measurements in mixed-phase regions with SID-type330

instruments would be needed to validate our laboratory findings.331

The growth of the frozen droplets was stopped after a median diameter of 22 µm was reached332

(Fig. 3). In the third phase of the experiment, the frozen droplets were forced to sublimate under333

ice sub-saturated conditions. The sublimation was seen in the PPD-2K diffraction patterns, as ring-334

like patterns started to emerge, and these patterns became more concentric towards the end of the335

sublimation. The emerging of the rings can be linked with the decrease in the crystal complexity336

(Fig. 4). This is also seen in the vaz (Fig. 1 panel e); the vaz slowly decreased to values below337

the threshold value, and at the end of the sublimation period, the vaz of the sublimating frozen338

droplets was almost equivalent to that of liquid droplets (compare the vaz of the liquid droplet (i)339

and sublimating frozen droplet (v) in Fig. 2). However, these optically spherical particles cannot340

be liquid droplets, as the temperature during sublimation period of the fully glaciated cloud stayed341

well below -30◦C. Furthermore, the depolarization ratio decreased from 0.3 measured for complex342

frozen droplets to 0.1 measured for sublimating frozen droplets, providing further evidence of the343

changing particle shape. At the end of the sublimation, the frozen droplets were observed to344

have diffraction patterns similar to spherical particles (Fig. 2v), i.e. the particles were optically345

spherical, and the particle size distribution established close to that of the supercooled droplets at346

the beginning (Fig. 3).347

The difference between optically spherical and quasi-spherical ice particles is well depicted in348

Fig. 5. It shows the PHIPS-HALO images of frozen droplets during the experiment in a chrono-349

logical order. At the beginning the ice particles seem almost perfectly spherical, although based350
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on the PPD-2K variance analysis and the SID-3 complexity analysis we know that these particles351

were highly distorted. The distortion lies in the microstructures of these particles and, therefore,352

cannot be seen from the PHIPS-HALO images with restricted resolution. Only after a certain353

growth, the non-spherical nature of these particles is emerged. During sublimation the ice par-354

ticles rather quickly loose the clear aspherical features and become again quasi-spherical. Now,355

both the variance analysis and the complexity analysis agree that the quasi-spherical particles also356

are optically spherical. Therefore, although the first and the last PHIPS- HALO image in Fig.357

5 look almost identical, their light scattering properties are very different, which highlights the358

need of sophisticated measurement techniques for the investigations of the microphysical nature359

of small ice particles.360

The experiment procedure was repeated with different concentrations of SA solution droplets as361

seed aerosol. The seed aerosol number controls the size distribution of the supercooled droplets,362

so that the higher the seed aerosol concentration, the more droplets are formed and their size re-363

mains smaller (see blue curves in Fig. 3). With an initial concentration of 989 cm−3 the median364

diameter of the supercooled droplets stayed below 7 µm before freezing. Since the droplets were365

smaller, also the ice particles remained smaller, with median diameter of 18 µm (Fig.3). During366

sublimation, the size distribution of the smooth frozen droplet cores was again similar to the initial367

droplet size distribution. Therefore, it can be concluded that the liquid droplets kept their spherical368

form in the freezing process, but the spherical shape was quickly distorted under the rapid depo-369

sitional growth under near-water saturated conditions. Under sublimation, it is possible to regain370

the spherical core, and the size of this core is comparable to the original droplet size.371
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1) FORMATION OF A FROST LAYER DURING THE GROWTH OF FROZEN DROPLETS372

A variation of structural or morphological deformities in a single ice crystal can cause speckles373

to appear in the PPD-2K diffraction patterns. However, in the case of laboratory produced frozen374

droplets the speckles in the diffraction patterns were most likely caused by the development of375

surface roughness over a spherical core in the initial growth. As the amount of condensable water376

vapor was high during the initial growth, the deposition of the water molecules probably took377

place all over on the surface instead of prismatic edges leading to a frost layer to develop. Since378

the growth took place all over the surface, the frozen droplets were observed to be quasi-spherical379

in the PHIPS-HALO images ((Fig. 5). Only in the later growth phase, the ice particles seem to380

deviate more clearly from a spherical shape. Similar growth behaviour was observed in the study381

of Korolev et al. (2004), where large (>100 µm) droplets were observed to grow quasi-spherical382

in a diffusion chamber. The observations could also explain field observations, where frozen383

droplets had maintained their quasi-spherical form in their formation, growth and transportation384

to anvil regions (e.g. Stith et al. 2014).385

The scale of the surface roughness that can be observed with the SID-3 method is from 100 nm386

to about 1 µm (Lu et al. 2006; Schnaiter et al. 2016). Fig. 7 shows an illustration of how a physical387

frost layer with the roughness scale could look like in the case of a complex frozen droplet. In388

sub-saturated conditions the sharp edges of the frost layer are sublimated first, since they have a389

higher saturation vapor pressure. Eventually, the frost layer can be completely obliterated, so that390

a smooth spherical core remains, as seen in the PHIPS-HALO (Fig. 5) and PPD-2K images (Fig.391

2).392

We investigated the effect of surface roughness on the light scattering properties in the angu-393

lar range of the PPD-2K instrument by using a Gaussian random sphere geometry (see details in394
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Schnaiter et al. (2016)). Similarly, Nousiainen and McFarquhar (2004) used the same model to395

study quasi-spherical ice particles. The model particles and the corresponding diffraction patterns396

at the angular range of PPD-2K instrument are shown in Fig. 2. The modulation of the model397

sphere’s surface results in similar diffraction patterns that was measured for the complex frozen398

droplets. Furthermore, by decreasing the degree of the distortion, the underlying ring-like diffrac-399

tion patterns of a sphere emerge, similar to what was seen in the measurements. However, it should400

be kept in mind that surface modulation in the Gaussian random sphere model does not necessarily401

accurately describe the physical frost layer.402

2) COMPARISON OF ASPHERICAL FRACTIONS403

The vaz measured with PPD-2K can be converted into aspherical fraction by applying the vthr
az .404

Fig. 4 shows the aspherical fraction as a function of experiment elapse time determined from405

the PPD-2K using the variance analysis and, as a comparison, from NIXE-CAPS and from CAS-406

DPOL using single particle polarization information in the size range of 8-50 µm. Both of the407

methods show zero aspherical fraction during the liquid phase and a steep increase in the aspher-408

ical fraction during the glaciation process. After the full glaciation, the aspherical fraction deter-409

mined from PPD-2K and CAS-DPOL varies between 0.95 and 1, whereas the aspherical fractions410

from the NIXE-CAPS are somewhat lower, between 0.9 and 0.95. The lower aspherical fraction411

can be explained with the size-dependence of the polarisation signal. In the particle size range412

<20 µm the polarization signal weakens and, thus, the ice crystals must have a distinct asphericity413

to be classified as aspherical. In the sublimation phase of the experiment, the methods show a sim-414

ilar decrease in the aspherical fractions, indicating an increasing presence of smooth sublimating415

frozen droplets.416
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The presented methods use the angular light scattering properties to define aspherical particles.417

Another method for determining the aspherical fraction is to determine the particle asphericity418

from the CPI images. McFarquhar et al. (2013) used the area ratio (α , i.e. the projected area419

of a particle divided by a circumscribed circle with diameter Dmax) as a measure for the particle420

sphericity and defined particles having α < 0.8 as aspherical. However, the problem of imaging421

methods are that small particles can appear spherical in the images, which leads to a underestima-422

tion of the aspherical fraction. Here, we defined the aspherical fraction from the PHIPS-HALO423

images based on the same method. We calculated the area ratio and applied a somewhat higher424

threshold of 0.9 to distinguish between spherical and aspherical particles. The aspherical fraction425

is illustrated by the orange curve in Fig 4. As expected, the same trend is seen in the aspherical426

fraction, however the maximum aspherical fraction after full glaciation is lower compared to the427

aspherical fractions derived from PPD-2K, NIXE-CAPS and CAS-DPOL, and varies between 0.5428

to 0.7.429

Aspherical fraction is commonly used to distinguish between ice particles and water droplets430

in mixed-phase clouds with the assumption that ice particles have a shape that differs from a431

sphere. In the case of vapor grown cirrus clouds, this is usually the case, however, in convective432

systems the presence of smooth frozen droplets can potentially lead to a misinterpretation of the433

ice fraction, as the quasi-spherical ice particles can be misclassified as droplets. At the end of434

the sublimation period in the laboratory experiment, the automated algorithm of PPD-2K and the435

polarization based measurements would have misclassified 80 % of the ice particles as droplets,436

however, these methods performed well in the growth phase, when only complex frozen droplets437

were present. The analysis of the PHIPS-HALO images led to the largest uncertainty in the ice438

fraction, as the derived aspherical fractions were always below those derived from PPD-2K, NIXE-439

CAPS or CAS-DPOL. The most sensitive method for distinguishing ice particles was the PPD-2K440
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diffraction patterns, as these patterns still contain information from the ice phase, even if the441

ice particles seem to be almost perfect spheres. Fig. 2 (v) is a diffraction pattern of a slightly442

deformed ice sphere that shows somewhat elongated ring pattern and, therefore, can be identified443

as an ice particle. A visual inspection of the scattering patterns was performed (red line in Fig.444

4). As a result of this procedure a 100% aspherical fraction was measured during the growth of445

the ice particles and even at the end of the sublimation period, only 5% of the ice particles were446

misclassified as droplets.447

3) THE LINK BETWEEN THE MICROPHYSICAL AND OPTICAL PROPERTIES OF FROZEN448

DROPLETS449

The single scattering properties of ice particles is dependent on their shape, size and surface450

properties. Aspherical and complex ice particles can increase the amount of light scattering into451

the backward hemisphere as compared to liquid droplets (e.g. Gayet et al. 1997; Ulanowski et al.452

2006; Febvre et al. 2009; Cole et al. 2014), and therefore, change the radiative properties of clouds.453

We investigated the angular light scattering properties of the simulated convective clouds with two454

polar nephelometers (PN and PHIPS-HALO). The measured angular scattering functions were455

parameterized with the asymmetry parameter, g (black solid line in Fig. 4), that gives the degree456

of asymmetry of the scattering function with respect to the scattering angle of 90◦. The measured457

g values were strongly linked to the small-scale complexity of the frozen droplets. A maximum458

value of 0.85 was measured in the supercooled droplet cloud and a minimum value of 0.74 after459

the complete glaciation of the cloud, when the highest small-scale complexity was measured. Our460

observations are consistent with previous studies, where low asymmetry parameters have been461

detected in the case of roughened cirrus ice particles (Cole et al. 2014; Schnaiter et al. 2016). In462

the sublimation period, g was observed to increase as the small-scale complexity of the frozen463
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droplets decreased. Almost the same value for g was reached at the end of the experiment, as was464

measured for the initial liquid droplet cloud, hence confirming the previous observations that the465

sublimating frozen droplets can behave optically equivalent to spheres.466

Figure 8 highlights the dramatic effect that small-scale complexity has on the averaged angular467

scattering properties of frozen droplets. The averaged angular scattering function of roughened468

frozen droplets measured in laboratory simulations (red squares in Fig. 8) is smooth, featureless469

at scattering angles less than 100◦, and has an enhanced scattering intensity in the backward hemi-470

sphere. Interestingly, the averaged scattering response of the complex frozen droplets does not471

significantly differ from that of complex columns measured in simulated cirrus clouds (orange472

squares, Schnaiter et al. (2016)). In these two laboratory simulations it is difficult to identify the473

underlying shape of the ice particles from the averaged scattering phase function, but instead the474

crystal complexity seems to dominate the average scattering properties.475

If the frost layer is sublimated from the surface of the frozen droplets, they scatter light similar to476

water droplets (dark blue squares in Fig. 8) and show droplet-like features, i.e. minimum between477

100 and 120◦ and an rainbow-like feature (in this case ice bow) around 140◦. Similarly, Gayet et al.478

(2012a) observed an ice-bow like feature around the same angle for near-spherical ice particles at479

the top of a convective storm. Baran et al. (2012b) was able to explain this feature by assuming480

independent quasi-spherical ice particles. Surprisingly, the ice bow-like feature is also observed481

in the case of the complex frozen droplets, however, having a peak around 130◦. This shift in482

the ice bow can be modeled by increasing the distortion of the quasi-spherical model particles483

(Baran et al. 2012b). Baran et al. (2012b) also argued that the underlying spherical shape of the484

ice particles can survive the addition of surface roughness or distortion. However, an ice bow485

was also observed in the study of Schnaiter et al. (2016) (orange squares in Fig. 8), which could486

indicate a more universal feature in ice clouds that is not only related to spherical ice particles.487
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b. Ice particle formation through vapor phase488

In this section the optical and microphysical properties of ice particles formed by the deposition489

nucleation mode are discussed. The experiment procedure was identical to what is presented in490

section 3a, with the exception that Argentinean soil dust was used as heterogeneous ice nuclei.491

The first ice particles were formed at experiment time 32 s, when a temperature of 242 K and Sice492

of 1.03 was reached (Fig. 9 panel b) indicating the high nucleation activity of this specific dust493

sample. The formation of the cloud is seen in the increase in the forward scattering signal, and the494

depolarization ratio above zero confirms the presence of ice particles (panel c). Water saturation495

was not reached during this experiment, and therefore, all the ice particles were nucleated and496

grown through the vapor phase. The nucleation spectrum of the soil dust was rather wide, which497

led to a broad ice size distribution measured by PPD-2K in panel d; small (below 10 µm) and498

larger (up to 50 µm) ice particles co-existed throughout the experiment. At experiment time 455 s499

the expansion was stopped, and the ice particles were allowed to sublimate.500

A significantly different trend in the ice microphysical and optical properties was observed as501

compared to the ice cloud formed by droplet freezing (Figs. 9 and 10). The PPD-2K variance502

analysis gave no evidence of spherical ice particles (Fig. 9 panel e), and consequently, a constant503

aspherical fraction close to 1 was measured (Fig. 10). The aspherical fraction measured by NIXE-504

CAPS and CAS-DPOL were clearly lower, around 0.7-0.8. This difference is much larger than505

the difference between PPD-2K and the polarization based measurements of the previous experi-506

ment (Fig.3). The aspherical fraction determined from the PHIPS-HALO images was now higher507

and comparable to the polarization based measurements after the ice particles had reached their508

maximum size. Possible explanations for the differences in the aspherical fractions are different509
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ice microphysical properties and a broader particle size distribution in case of heterogeneously510

nucleated ice particles.511

Moreover, the ke-value stayed constant, having a mean value of 6.1. This value was slightly512

lower than what was measured for the growing frozen droplets in section 3a. The difference in the513

small-scale complexity can be explained with the ice growing conditions (Schnaiter et al. 2016),514

since the vapor grown ice particles grew at lower ice saturation than the ice formed through the515

liquid phase. The first ice particles, grown at the lowest supersaturation, were observed to have516

pristine columnar shape (Fig. 6), but as the Sice was constantly increasing, the majority of the ice517

crystals grew complex. Furthermore, the variation in g was significantly lower than in the previous518

experiment; a relatively high g of 0.8 was measured at the beginning, when pristine columns were519

present, but that later quickly decreased to values between 0.76 and 0.75. Thereafter, only little520

variation was observed, before the end of the sublimation period, when the g increased to 0.78.521

However, g over 0.8 was never observed in this experiment, indicating that the angular scattering522

function clearly resembled of what is expected for aspherical ice particles. Also the depolarization523

ratio was observed to remain constant around 0.3 throughout the experiment. The constant depo-524

larization ratio together with the analysis of the scattering patterns and the g value showed that the525

ice particles that were heterogeneously nucleated and grown through the vapor phase remained526

non-spherical, and had optical properties that were rather constant (largest variation was observed527

in g) throughout the growth and sublimation.528

4. Case study of a mid-latitude convective system during MACPEX529

Measurements in a mid-latitude convective system were performed over Texas on 21 April 2011530

during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) campaign using the531

NASA WB-57 aircraft. On that day two convective systems had developed over western Texas and532
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northern Mexico, and the anvil outflow from these two systems extended ∼100 km east towards533

central Texas. Fig. 11 shows the flight path of the WB57 plotted over a satellite image. The534

measurements in anvil outflows were conducted between 23:00-23:59 UTC (flight path marked in535

orange). The WB-57 flew first under the northern anvil at an altitude of 9 km sampling the lower536

part of the outflow. At 23:22 UTC the aircraft ascended through the anvil outflow exiting at an537

altitude of 13.5 km. The temperature at the lower parts of the anvil was 239 K and a temperature538

of 212 K was reached at the upper part of the anvil.539

The anvil profile during the ascent shows an increase in the sub-40 µm ice particle concentrations540

from 3.5 cm−3 to 10 cm−3 (Fig. 12 panel a). Particularly small ice crystals in the sub-20 µm size541

range are found at the top of the convective system (Fig. 12 panel b). Although the ice particle542

concentrations are significantly larger than normally measured in cirrus clouds (Lawson et al.543

2006; Krämer et al. 2009), they compare well to what was previously measured in the anvil of544

a mid-latitude storm (Gayet et al. 2012a; Stith et al. 2014). An inspection of the CPI images545

(Fig. 13) revealed the presence of small ice particles with a distinct signature of frozen droplets.546

Approximately 84% of all the CPI observed particles were classified as single frozen droplets547

and 2.2% as aggregates of frozen droplets. The high fraction of frozen droplets indicate that the548

majority of the ice particles were formed through liquid phase in the mixed-phase region of the549

convective cell from where they were transported to the anvil region in the updraft forming the550

dominant particle type. The high fraction of frozen droplets is in agreement with previous studies551

of mid-latitude convective systems (Gayet et al. 2012a; Stith et al. 2014).552

The water vapor measurements during the anvil sampling from NASA Diode Laser Hygrome-553

ter (DLH; Diskin et al. (2002)) show that most of the time the frozen droplets were found in ice554

sub-saturated conditions (upper panel in Fig. 12 panel a). Especially strong sub-saturated con-555

ditions were measured around 23:30 UTC, when Sice reached 0.6. The sub-saturated conditions556
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together with the high concentration of small ice particles give evidence that these ice particles557

had formed almost simultaneously in a vigorous updraft, and thus quickly depleted the available558

water vapor. This depletion of the H2O vapor obviously prevented further ice particle growth, and559

in consequence they remained small. The same phenomenon was also observed in the AIDA cloud560

chamber simulation (section 3a): after the cloud was glaciated, the Sice started to quickly decrease561

although the chamber cooling was continued.562

The results from the chamber experiments indicate that the majority of the frozen droplets mea-563

sured by the CPI during the MACPEX flight should have been sublimating, and we would expect564

to see spherical ice particles to appear. An inspection of the SID-3 diffraction patterns indeed565

shows signatures of spherical particles. Two types of ring patterns were observed. First, SID-3566

images with clear ring patterns were seen (Fig. 14A), similar to the observation in the laboratory567

in case of sublimating frozen droplets (section 3a). Second, patterns with underlying concentric568

rings with somewhat bended lines crossing the patterns were observed (Fig. 15). With help of569

2D Fourier transform simulations we were able to identify that these patterns were the result of570

aggregation. Fig. 15 shows simulations for a double aggregate, triple aggregate and an aggregate571

of 10 spheres. The size of the spheres were kept constant and the light diffraction was simulated at572

the angular range of the SID-3 instrument. Despite the increase in the complexity due to aggrega-573

tion, the underlying concentric ring pattern does not seem to disappear, but an additional structure574

is added inside the rings. The double aggregates show a unique patterns that can be easily iden-575

tified from the SID-3 measurements, but as the number of spheres in the aggregates increases,576

the patterns become more difficult to identify and they are not distinguishable from complex ice577

crystals. We were successful in identifying double aggregates and a few triple aggregates form the578

MACPEX dataset (lower panel in Fig. 15).579
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The presence of sublimating frozen droplets was also confirmed with the automated variance580

analysis that showed low vaz values for ice particles around 20 µm (Fig. 12 panel c). The size of581

the smooth frozen droplets seen by SID-3 is comparable to the size of the frozen droplets seen in582

CPI images, and the measured frozen droplet sizes also agree with previous observations (Baran583

et al. 2012b; Stith et al. 2014). The smallest, sub-20 µm, anvil outflow ice particles were observed584

to be aspherical (high vaz in Fig. 12 panel c), with indications of columnar shape (Fig. 12 panel585

d). The origin of these small aspherical particles is not clear. Although columnar, these small586

particles show a high degree of complexity. It is possible that these particles have formed in-situ587

through vapor phase in the later phase of the convection, and therefore do not appear spherical in588

sub-saturated conditions, as seen in simulated cloud in section 3b.589

5. Case study of a tropical convective system during ACRIDICON-CHUVA590

Measurements in a tropical convective systems were carried out during the Aerosol, Cloud,591

Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems campaign592

(ACRIDICON-CHUVA, see details for the ACRIDICON part of the campaign in Wendisch et al.593

(2016)), where airborne observations were done with the German High Altitude and Long-Range594

Research Aircraft (HALO). On 16 September 2014 convective systems were targeted over the595

Amazonian rainforest. Developing convective systems were observed northwest of Manaus, and596

the HALO aircraft reached the area of outflows about 1.5 hours after their formation. The HALO597

aircraft traversed two separate outflows from north to south at an altitude of 12.7 km. The total598

particle number concentration is shown in Fig. 16 panel a and the particle size distribution during599

the anvil sampling in Fig. 16 panel b. The maximum particle number concentration was 2.3 cm−3,600

but on average particle concentrations were found to be below 1 cm−3. The size distribution shows601

that majority of the sub-50 µm particles are found below 20 µm.602
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Visual inspection of the PHIPS-HALO images reveals a significant amount of small ice particles603

(Fig. 17). Overall 23% of the imaged ice particles were classified as frozen droplets and 19% as604

other small (<50 µm) irregular ice particles. With smaller fractions were observed plates (9%),605

bullet rosettes (14%), columns (3%) and aggregated ice particles (15%). The RH conditions were606

measured with the Sophisticated Hygrometer for Atmospheric ResearCh (SHARC) in situ tunable607

diode laser hygrometer. Slightly supersaturated or near-ice saturated conditions were observed608

throughout the sampling (Fig. 16 panel a), so it can be expected that the ice particles were not609

sublimating. Therefore, it is no surprise that the SID-3 diffraction patterns (Fig. 14B) or the610

variance analysis (Fig. 16 panel c) do not show indications of sublimating frozen droplets, but the611

ice particles were found to be rough and irregular. The smallest ice particles were found to have612

indications from a hexagonal shape, similar to the convective outflow during MACPEX.613

The angular scattering function was measured simultaneously with PHIPS-HALO. We averaged614

the scattering phase functions of individual ice particles to form an averaged scattering phase615

function for the cloud. This average scattering function is almost identical to the scattering phase616

function measured in the laboratory for rough frozen droplets (Fig. 8), i.e. smooth and features up617

to scattering angle of 100◦ and an enhanced scattering to the backward hemisphere. An ice bow-618

like feature is seen around 130◦, similar to rough frozen droplets or roughened columns. Some619

difference are seen in the scattering behaviour between 50-100◦ and at scattering angles >146◦,620

but this can be explained by the presence of other particle habits.621

6. Atmospheric implications622

The difference in the angular scattering function of roughened and smooth frozen droplets (Fig.623

8) illustrates the uncertainty in the scattering properties of small quasi-spherical ice particles. The624

impact of frozen drops on climate is governed by their frequency and the environmental conditions625
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they are found in. This study together with previous studies in mid-latitude convective systems626

(Lawson et al. 2003; Gayet et al. 2012a; Stith et al. 2014) have indicated that frozen droplets are627

abundant in mid-latitude convective outflows and, therefore, they are important for their radiative628

properties. In tropical outflows other particle types seem to be more frequent (Lawson et al.629

2003; Connolly et al. 2005; Frey et al. 2011), although we were able to detect frozen droplets in630

convective outflow of a Cb cloud over Brazil.631

Independent of the location, we can expect that frozen droplets have a high degree of complexity632

if found in supersaturated environmental conditions and, therefore, have a flat scattering phase633

function and a low asymmetry parameter. In this study such a scattering phase function was634

measured in a tropical outflow (Fig. 8) and in a study of Gayet et al. (2012a) the authors reported635

a relatively low asymmetry parameter of 0.776 for ice particles at the top of a convective storm. In636

both cases mostly ice supersaturated conditions were observed.637

However, ice particles are frequently found in sub-saturated regions (e.g. Krämer et al. 2009).638

In laboratory experiments we showed that in sublimation the frozen droplets can become smooth639

and optically spherical. Gayet et al. (2012a) reported an increase in the asymmetry parameter in640

the later phase of the measurements in the convective outflow that was linked with sublimation641

of the ice particles. During MACPEX optically spherical ice particles were observed from SID-3642

measurements, and the presence of these particles could have led to a similar increase in cloud643

averaged asymmetry parameter than what was reported in Gayet et al. (2012a), if simultaneous644

polar nephelometer measurements would have been available. Until now, only in few cases polar645

nephelometer measurements in outflows have been reported, therefore, it is impossible to predict646

the role of quasi-spherical frozen droplets to the radiative properties of convective clouds. A clear647

need of simultaneous scattering and detailed microphysical measurements is evident, especially in648

mid-latitude convective outflows, where sublimating frozen droplets can be expected.649
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Besides in anvil outflows, frozen droplets can also be found in contrails. Contrails are formed650

when liquid water droplets form by condensation of water vapor mainly on soot and volatile par-651

ticles in the exhaust plume (Schumann 2005; Kärcher and Yu 2009). In the colder and humid652

upper troposphere the droplets freeze and form a visible contrail, which spreads out and becomes653

persistent at ice supersaturated conditions. Although contrail cirrus is not the scope of this paper,654

our laboratory results can also help to understand observations made in young contrails in studies655

of Febvre et al. (2009) and Gayet et al. (2012b). Febvre et al. (2009) found that young (about 2.5656

min of age) contrails have a high asymmetry parameter (0.827) compared to aged (about 20 min657

of age) contrails (0.787). Similar behaviour was found from experiments during the CONCERT658

campaign (Voigt et al. 2010) in the aging contrail from a A380 aircraft by Gayet et al. (2012b).659

A decrease in the asymmetry parameter from 0.88 to 0.8 was observed already within the first 5660

minutes of contrail evolution. These observations were associated and interpreted with an increas-661

ing fraction of aspherical particles, as no other information on particle complexity was available662

at that time: ”Unfortunately, the transition from quasi-spherical shapes to irregular ice particles in663

the atmosphere is poorly understood” (Gayet et al. 2012b). The laboratory results shown in this664

paper might help to explain the transformation from spherical ice to aspherical (or roughened) ice.665

Since supersaturated conditions are necessary for formation of an aged contrail, our results would666

indicate that the ice particles found in aged contrails are roughened or complex compared to the667

newly formed contrail ice particles that have not yet developed crystal complexity. Especially, the668

change in the scattering intensity in the backward hemisphere observed by Febvre et al. (2009)669

and Gayet et al. (2012b), is comparable to what was simulated in laboratory. Therefore, similar to670

convective outflows, also the radiative properties of contrails might be governed by the degree of671

complexity of small ice crystals.672
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7. Conclusions673

Small quasi-spherical ice particles are proposed to have an important role in determining the ra-674

diative properties of mid-latitude convective outflows. However, their microphysical and scattering675

properties are only vaguely known. In this paper the microphysical and optical properties of these676

ice particles were studied in cloud chamber simulations. We employed a new method to study677

the ice particle complexity together with their asphericity based on analysis of 2D diffraction pat-678

terns measured with the SID-3 and PPD-2K instruments. With simultaneous polar nephelometer679

measurements, we were able to find a link between the microphysical and radiative properties of680

the simulated ice particles. The following four major conclusions can be drawn from the chamber681

experiments:682

1. It is possible to discriminate between optically spherical and quasi-spherical ice particles683

based on their 2D diffraction patterns.684

2. The microphysics of these particles can vary strongly: a high degree of complexity is devel-685

oped during the formation and initial growth of the frozen droplets in mixed-phase cloud. This686

complexity can be removed in sublimation and the resulting ice particles resemble smooth687

spheres.688

3. The complex or roughened frozen droplets have a low asymmetry parameter and show a flat689

scattering phase function that does not significantly differ from that measured for other ice690

clouds composed of roughened ice particles.691

4. The sublimating frozen droplets have a high asymmetry parameter and they can act optically692

similar to water droplets.693
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In fact, a maximum difference in the angular light scattering properties is observed, mainly due694

to the change in the frozen droplet surface properties. Therefore, the scattering properties of these695

particles are highly uncertain, and need to be addressed in future field measurements.696

We applied the methods developed in the laboratory in two aircraft campaigns in a mid-latitude697

and in a tropical convective outflow. In the mid-latitude system single frozen droplets were found698

to be the dominant ice particle type. Sub-saturated conditions were recorded, and this led to699

sublimation of the frozen droplets. Consistent with the laboratory simulations, the measured SID-700

3 diffraction patterns showed indications of sublimating and smooth ice spheres, which could701

indicate that the cloud radiative properties might be affected by optically spherical ice. However,702

polar nephelometer measurements were not available to validate this. We were also able to locate703

frozen droplets in a tropical convective system. The ice particles were found in supersaturated704

conditions or at near ice saturation, and therefore, no indications of smooth ice spheres were705

found. The average angular scattering function measured during the anvil sampling was similar to706

what was measured in laboratory for complex frozen droplets. In conclusion, the results from the707

two case studies in natural convective systems were consistent with the laboratory measurements708

of simulated convective systems.709
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FIG. 1. A droplet freezing experiment (experiment 17) initiated with 12 cm3 sulphuric acid aerosol and a

pumping speed of 90% that led to an initial cooling rate of −2.5 K min−1. Panel a) shows the pressure of the

chamber (black line) as well as the chamber and wall temperatures (red and blue lines, respectively). Panel

b) shows the total water measured with MBW (black line) and the interstitial water with respect to ice (blue

solid line) and water (blue dashed line) measured with TDL. The forward scattering intensity (black line) and

the depolarization ratio was measured for cloud particles in the middle of the chamber and is shown in panel

c). Panel d) shows the PPD-2K size distribution and panel e) the size-segregated median variance of the 2D

scattering patterns. The expansion of the chamber volume was started at experiment time 0 s.
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Vaz = 1.0E-06 ! 3.2E-06 !2.0E-05 !3.0E-05 !3.1E-05 !

σ = 0.0!

i! ii! iii! iv! v!

0.02!0.05!0.1!0.3!

FIG. 2. Simulation of the deformation of sphere’s surface with a gaussian random sphere model. The surface

of a sphere was altered with a relative deformation between 0 and 0.3 (middle row). The resulting 2D scat-

tering patterns are shown in the third row. Particles i-v (first row) were measured with the PPD-2K during the

experiment 17 (Fig. 1). The vaz values describe the degree of asphericity in the real ice particles according the

measurement technique. Changing the surface of the model spheres was able to explain the observed diffraction

patterns.

1002

1003

1004

1005

1006

1007

45



FIG. 3. Averaged size distributions of supercooled droplets before freezing, of rough frozen droplets, when

their size is at maximum and of smooth sublimating frozen droplets. Experiment 17 (a) was started with an

aerosol concentration of 12 cm3 and experiment 15 (b) with 989 cm3. The size of the sublimated and optically

spherical frozen droplets is governed by the size of the supercooled droplets before freezing.
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FIG. 4. Aspherical fractions during the experiment 17 (Fig. 1) from PPD-2K (blue line) using an automated

routine or with applying a manual cross-check (red line), from NIXE-CAPS (green line) and from CAS-DPOL

(magenta line). Also shown the asymmetry parameter g (black solid line) determined from PN measurements

and the complexity parameter ke (black dashed line) determined from SID-3 measurements.
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100 μm"

FIG. 5. A collection of PHIPS-HALO ice particle images from growth phase (highlighted with red box) and

from sublimation phase (highlighted with blue box) of the experiment 17. The images are shown in chronological

order.
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FIG. 6. Calculated column fractions based on PPD-2K measurements for experiment 17 (upper panel) and

for experiment 24 (lower panel). During experiment 17 the ice particles are classified as irregular and no signs

of hexagonal shapes are found. During experiment 24, the first ice crystals formed in deposition nucleation at

low Sice and grew to columnar shape. At the later stage of the experiment more irregular ice crystal habits were

observed.
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Supercooled 
Liquid Droplet!

Complex Frozen 
Droplet! Smooth Frozen 

Droplet!

FIG. 7. Proposed microphysical model for the frozen droplets. Supercooled liquid droplets freeze and develop

a frost layer on the surface of the particles in the initial growth. In the sublimation the fine structure of the frost

layer is sublimated first and after a certain time a smooth optically spherical core can be detected.

1024

1025

1026

50



FIG. 8. Averaged angular scattering phase functions for water droplets (light blue squares), frozen droplets

during their growth (red squares), frozen droplets at the end of the sublimation period (dark blue squares), for

roughened columns at -50◦C (Schnaiter et al. 2016) and for anvil outflow ice particles measured during AC11

(magenta squares). The latter scattering phase function is averaged from all ice particles measured during anvil

sampling between 16:30 and 16:42 UTC on 16 September 2014. All the measurements were conducted with the

PHIPS-HALO instrument.
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FIG. 9. Simulation of a convective system, where the ice particles nucleate through vapor phase (experiment

24). The experiment was started with 16 cm3 Argentinean soil dust particles and a pumping speed of 60% that

led to an initial cooling rate of −1.5 K min−1. Panel a) shows the pressure of the chamber (black line) as well as

the chamber and wall temperatures (red and blue lines, respectively). Panel b) shows the total water measured

with MBW (black line) and the interstitial water with respect to ice (blue solid line) and water (blue dashed line)

measured with TDL. The forward scattering intensity (black line) and the depolarization ratio was measured

for cloud particles in the middle of the chamber and is shown in panel c). Panel d) shows the PPD-2K size

distribution and panel e) the size-segregated median variance of the 2D scattering patterns.
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FIG. 10. Aspherical fractions during the experiment 24 (Fig. 7) from PPD-2K (blue line), from NIXE-CAPS

(green line) and from CAS-DPOL (magenta line). Also shown the asymmetry parameter g (black solid line)

determined from PN measurements and the complexity parameter ke (black dashed line) determined from SID-3

measurements.
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FIG. 11. The flightpath of the NASA WB-57 aircraft over a satellite image. The anvil sampling was conducted

between 23:00 UTC and 23:59 UTC marked with an orange colour. The two convective systems are seen in the

lower left corner of the satellite image.
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FIG. 12. SID-3 and water vapor measurements during anvil sampling on 21 April 2011. The panel (a) shows

the total concentration for particles between 5 and 45 µm and the Sice. The panel (b) shows the particle size

distribution and the panel (c) the size segregated variance analysis results. In the panel (d) is shown the size

segregated column fraction.
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FIG. 13. A collection of ice particles imaged with 3V-CPI in the convective outflow during MACPEX. Mainly

single frozen droplets were detected with few aggregates of frozen droplets.
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A	   B	  

FIG. 14. Examples of single particle diffraction patterns measured in convective outflow during MACPEX

flight on 21.4.2011 (A) and during ACRIDICON-CHUVA flight AC11 on 16.9.2014 (B). While during

MACPEX the frozen droplets were found to be sublimating, majority of the ice particles measured during

ACRIDICON-CHUVA were found in supersaturated conditions.
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FIG. 15. Simulation of diffraction patterns from frozen droplet aggregates using 2D Fourier transform on

idealised ice spheres. Simulations were made for aggregates of two, three and ten spheres (upper row), where

the size of the individual spheres were kept constant. The second row shows the simulation results and the third

row diffraction patters of real aggregated frozen droplets found in a convective outflow over Texas during the

MACPEX campaign.
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FIG. 16. SID-3 and water vapor measurements during anvil sampling on 16 September 2014. The panel (a)

shows the total concentration for particles between 7 and 50 µm and the Sice. The panel (b) shows the particle

size distribution and the panel (c) the size segregated variance analysis results. In the panel (d) is shown the size

segregated column fraction.
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100 μm"

FIG. 17. A collection of ice particles imaged with PHIPS-HALO in a tropical outflow anvil. In this particular

case a significant fraction of small ice particles were detected. Other observed habits were plates, aggregates of

plates and bullet rosettes.
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