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ABSTRACT 

 

In this article, a deep artificial neural network (ANN) model has been proposed to predict the boiling 

heat transfer in helical coils under high gravity conditions and compare with actual experimental data. A 

test rig is set up to provide the high gravity up to 11 g with the heat flux can be up to 15100 W/m2 and 

the mass velocity range from 40 to 2000 kg m-2 s-1. In the current work, total 531 data samples have been 

used in the present ANN model. The proposed model was developed in Python Keras environment with 

Feed-forward Back-propagation (FFBP) Multi-layer Perceptron (MLP) using eight features (mass flow 

rate, thermal power, inlet temperature, inlet pressure, direction, acceleration, tube inner surface area, 

helical coil diameter) as the inputs and two features (wall temperature, heat transfer coefficient) as the 

outputs. The deep ANN model composed of three hidden layers with a total number of 1098 neurons 

and 300,266 trainable parameters has been found as optimal according to statistical error analysis. 

Performance evaluation is conducted based on six verification statistic metrics (R2, MSE, MAE, MAPE, 

RMSE and cosine proximity) between the experimental data and predicted values. The obtained 

results demonstrate that 8-512-512-64-2 neural network model has the best performance in predicting 

the helical coil characteristics with (R2=0.853, MSE=0.018, MAE=0.074, MAPE=1.110, 

RMSE=0.136 , cosine proximity=1.000) in testing stage. It is indicated that with the utilisation of deep 

learning, the proposed model is able to successfully predict the heat transfer performance in helical coils, 

especially achieved excellent performance in predicting the outputs having very large range of value 

differences. 
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1. INTRODUCTION  

Helical coils have attracted wide attention due to their high heat transfer efficiency, compact design, 

ease of manufacture and freedom from thermal deformation [1,2]. Over the past two decades, helical 

coils have been widely used in energy and cooling systems such as air conditioning [3,4], heat 

exchanger [5-7], steam generators [8,9], renewable energy[10,11] and energy storage [12,13], 

chemical and petroleum industries [14,15]. In helically coiled tubes, the centrifugal force induced by 

the oil geometry will exert upon the working fluid, which will lead to the second flows (Dean vortices) 

[16,17]. It is recognized that flow boiling heat transfer represents one of the most efficient type of 

heat transfer mode. The mechanism of flow boiling heat transfer inside a helical coil may be different 

compared with that in a straight tube due to secondary flows generated inside a helical coil [18]. 

 

In recent years, due to its practical relevance, many research efforts have been devoted to the flow 

and boiling heat transfer in helically coiled tubes. This paper does not and cannot review all the 

interesting and important progress related to boiling heat transfer in helical coils, but tries to 

summarize the recently published results in the concerned field. Santini et al. [19] experimentally 
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investigated the forced convection boiling of water in an electrically heated, 24 m long full-scale 

helically coiled steam generator tube with the operating pressures in the range of 2-6 MPa, mass 

fluxes from 200 to 800 kg m-2 s-1 and heat fluxes from 40 to 230 kW m-2. Their results showed that 

the heat transfer coefficient was found to be depend on the mass flux and heat flux, indicating that 

both nucleate boiling and convection were contributing to the heat transfer. It also noted that the effect 

of curvature on the heat transfer during flow boiling could be negligible and therefore the heat transfer 

coefficient in helical coils could be predicted with existing correlations for straight tubes. Later on, 

Tan et al. [20] conducted an experimental study to investigate critical heat flux characteristics in a 

uniformly heated horizontal helically coiled tube at near the critical pressure ranges from 2.85 to 4.03 

MPa with R134a as the working fluid. There were two types of critical heat flux phenomenon which 

were dry-out and departure from nucleate boiling were found from their experimental study. The dry-

out occurred at the lower pressure while the departure from nucleate boiling happened at the higher 

pressure. Kong et al. [21] performed an experiment work to investigate the subcooled boiling heat 

transfer characteristics of R134a in vertical helically coiled tubes with the operating pressures varying 

from 450 to 850 kPa, mass fluxes from 147.5 to 443.7 kg m-2 s-1 and heat fluxes from 0.1 to 14.5 kW 

m-2. Their experimental results showed that the generated bubbles always slide along the heated 

surface in the vertical helically coiled tube. It was also found that the radial component force is 

negative, which contributes significantly to the heat transfer enhancement and nonuniformity of the 

wall temperature in subcooled flow boiling. Hardik and Prabhu [22] performed an experimental 

investigation to study the effect of curvature on local boiling heat transfer coefficient and two-phase 

pressure drop in helically coiled tubes with water as the working fluid. They concluded that in the 

subcooled region and in a low quality region, boiling heat transfer coefficient in helical coils will be 

much higher (12%-100%) than in straight tube, whereas in a high quality region, the boiling heat 

transfer coefficient in will be the same as in straight tubes. In addition, they developed a correlation 

for two-phase pressure drop in helical coils. Afterwards, the same authors [23] experimentally 

investigated the characteristics of the boiling heat transfer, pressure drop and critical heat flux for 

refrigerant R123 with six helical coils having three different tub diameters and two different coil 

diameters. They concluded that in fully developed flow boiling region, the circumferential averaged 

heat transfer coefficient in helical coils is same as in straight tubes. Xiao et al. [24] carried out various 

experiments in helically coiled tubes to explore the boiling heat transfer characteristics at high 

pressure with water as the working medium with the pressure ranges from 2 to 8 Mpa. Their 

experimental results indicated that the subcooled boiling and saturated nucleate boiling heat transfer 

coefficient would increase with the increase of heat flux, whereas heat flux showed no influence on 

saturated convective boiling heat transfer coefficient. The effects of mass flux and system pressure 

on heat transfer coefficients were also discussed. Niu et al. [25] developed an analytic model based 

on liquid film dryout theory to predict the onset of dryout quality in annular flow regime in helically 

coiled tubes and validated against previously published experimental data. It was found that the onset 

of dryout quality decreased as mass flux increased in the re-deposition-dominated region, and the 

total net entrainment rate increased gradually with the increase of heat flux. Chen et al. [16] 

experimentally studied the heat transfer characteristics of subcooled flow boiling in helical coils with 

different inner diameter and coil diameters. The concluded that the heat transfer coefficients in 

subcooled boiling regions can be improved by increasing heat flux, mass flux and system pressure. 

Sun et al. [26] proposed a two-fluid model taking the vapour phase and the liquid phase into account 

in order to capture the non-uniform wall temperature distribution of boiling heat transfer in a helically 

coiled tube. Their simulation results showed that the liquid accumulated at the outside and bottom of 

the cross section during nucleate boiling heat transfer, leading to a lower wall temperature. 

Hernández-Magallanes and Rivera [27] reported the experimental data of boiling heat transfer 

coefficients for the ammonia-lithium nitrate mixture in a laminar falling film. They found that the 

ammonia vapour could be produced at generation temperatures between 80 °C and 105 °C obtaining 

boiling heat transfer coefficients between 85 and 340 W/m2 K. Most recently, Shaver et al. [28] 
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performed a numerical study of the boiling flow inside a helical coil with a two-fluid model using the 

spectral element code Nek-2P. Their simulation results indicated that a strong phasic separation 

driven by the effects of buoyancy and inertia.  

 

From the literature review above, it can be concluded that most of the work on the boiling heat transfer 

in helical coil mainly focused on experimental investigation and only quite few studies on numerical 

simulation. In addition, all the above research work were investigated under terrestrial gravity. 

However, it should be recognized that helical coils can be used as one of the heat transfer 

enhancement techniques in aerospace which will experience a high gravity stage. High gravity 

conditions would make the boiling flow and heat transfer more complicated and make the experiment 

more difficult [29,30]. Thus, to investigate the effects of the elevated high gravity on the boiling flow 

and heat transfer is very important and challenging. Most recently, Bai et al. [31] carried out a 

numerical study on heat transfer of supercritical CO2 in heated helically coiled tubes under abnormal-

gravity such as high-gravity, low-gravity and zero-gravity in order to explore the coupled mechanisms 

of buoyancy and centrifugal force. Their study did not consider the phase change. It was found that 

the heat transfer coefficient could be enhanced at higher gravity force in the liquid-like region, while 

it could be almost the same in the gas-like region. They also stated that the heat transfer could be 

enhanced by buoyancy force when the gravity is higher than terrestrial gravity, whereas the heat 

transfer could be weakened under lower gravity. It needs to be stressed here that, under high gravity, 

extra forces such as centrifugal force and Coriolis force will make the phenomena more complicated 

as well as for boiling flow and heat transfer the two-phase flow will make the computational fluid 

dynamic (CFD) simulation more difficult. 

 

Deep learning neural networks with multiple layers between the input and output layer can model 

complex non-linear relationships. Most recently, a deep neural network named physics-informed 

neural networks is able to model nonlinear partial differential equation characteristics and synergy 

between machine learning and classical computational physics [32-34]. Machine learning (ML) - 

artificial neural networks (ANNs) are not new in concept, still they have received considerable 

attention and they have been applied successfully in a wide range of fields for modelling and 

prediction in boiling flow and heat transfer [35-40] but very little work on helical coils. Gill and Singh 

[41] developed both dimensionless correlation and ANN models to predict the mass flow rate of 

R134a/LPG refrigerant through straight and helical coil adiabatic capillary tubes in a vapor 

compression refrigeration system. It was found that the ANN model gave better statistical prediction 

than dimensionless correlation model. Parrales et al. [42] developed two new empirical equations 

based on ANN to determine the new void fraction in two-phase flow inside helical vertical coils with 

water as work fluid. The analyses of the contribution of input variables in the ANN model showed 

that the curvature ratio could not impact the simulative accuracy of void fraction under the current 

conditions. Izadi et al. [43] employed ANN and adaptive neuro-fuzzy inference system (ANFIS) 

models to evaluate micromixing in micro-helically coiled tubes. It was found that ANN approach has 

higher precision than ANFIS in segregation index modelling in micro-helically coiled tubes. Baghban 

et al. [44] proposed a machine learning approach with three different models such as multilayer 

perceptron artificial neural network (MLP-ANN), adaptive neuro-fuzzy inference system (ANFIS), 

and least squares support vector machine (LSSVM) to predict Nusselt number by considering Prandtl 

number, volumetric concentration, and helical number of helically coiled heat exchanger as input 

variables, as well as using water carbon nanofluid as the working fluid. Their results showed that 

LSSVM approach has the best performance. Most recently, Sharifi et al. [45] performed a three 

dimensional numerical simulation to investigate the effect of coiled wire inserts with various 

arrangements on friction coefficient and heat transfer rates for the helical wire inserted tube in heat 

exchangers. They stated that, with the assist ANN, the heat transfer rates and the friction coefficients 

could be accurately estimated within the ranges of input variables. 
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In the view of the aforementioned literature survey, many significant results in the boiling flow and 

heat transfer characteristics of helical coils have already been obtained. However, lack of tests dealing 

with the flow and heat transfer in helical coils under high gravity. To the best of the authors’ 

knowledge, ANN methods have not yet been applied to that thermal system. In the current work, a 

data set is obtained experimentally and prepared for processing with the use of ANNs. A feed-forward 

back-propagation multi-layer perceptron deep ANN is proposed to predict the heat transfer coefficient 

in order to better understand the boiling flow and heat transfer mechanism as well as for future design 

and analysis. 

2. EXPERIMENTAL APPARATUS AND PROCEDURE 

2.1. Experimental apparatus 

In the current work, the actual details of the helical coils heat transfer test rig was consistent with the 

previous study of Xie et al. [29] and designed to be operated under high gravity conditions up to 11g,  

and will only be described briefly here for the sake of completeness. The test rig mainly consists of a 

centrifuge in a circular pit, liquid circulation system, test section, control and data acquisition system. 

Fig. 1 showed the schematic diagram of the experimental apparatus. A thermostatic water tank was 

used to keep the working fluid (R601 n-pentane) temperature constant. Fluid flows was driven by a 

gear pump through a variable-frequency drive under high gravity and a Coriolis force flow meter was 

chosen to measure the mass flow rate with an accuracy of ±5%. After the working fluid flowed 

through the mass flow meter, a preheater was used to heat up the fluid to the required temperature at 

the test section inlet. The test section coils that connected across two cooper electrodes were used as 

the electrical resistance. They were connected to a DC power supply in order to deliver the heating 

power to the flowing fluid. The working fluid came out from the helical coils will be entered a 

condenser where it was cooled to a low temperature before recycling back to the thermostatic tank. 

All the signals measured by the temperature and pressure transducers were achieved by utilizing 

digital interface and recorded by a remote computer. In the current study, it was noted that the 

centrifuge driven by an electric motor can provide up to 15 g rotational acceleration at the end of the 

rotating arm. The rotational speed of the centrifuge could be well controlled by a control terminal 

with an accuracy of ±5% the indicated speed.   
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Fig. 1. Schematic diagram of experimental apparatus. 
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2.2. Test section and procedure 

During the rotating condition, the test section was fixed in order to obtain the stead flow boiling 

condition. The stainless steel helical coils were electrified by a power supply to heat the working 

fluid. In the present study, R601 (n-pentane) was selected as the working fluid with a low saturation 

temperature of approximately 36 °C at atmosphere pressure. A layer of the glass wool acted as an 

insulator to minimize the heat losses of the coils. Fig. 2 showed the schematic diagram of the helical 

coils. The helical coil material and geometrical parameters were carefully designed so that its electric 

resistance could fit the power supply and the maximum heating power could be reached. The fluid 

temperatures at both the inlet and outlet of the coils were measured by a direct immersion Pt100 

thermo-resistor. Fig. 2 also showed that the wall temperature position of the Pt100 thermo-resistor 

attached to the outer surface of the coil. Both the inlet and outlet fluid pressures were measured using 

two Trafag pressure transducers. For the purpose of accuracy, all the sensors were calibrated prior to 

each test. Table 1 listed the geometrical parameters of the helical coils and Table 2 listed the 

specifications of all the instruments. Two directional (axial and radial) configurations (see Fig. 3) and 

three different acceleration (3, 6 and 9 g) were applied. The experimental conditions were 

summarized in Table 3. 

 
Fig. 2. Test section (helical coils and transducer allocation). 

 

Table 1 Geometrical parameters of the helical coils. 

Coil 

No. 

Tube inner 

diameter, 

di (mm) 

Tube outer 

diameter, 

do (mm) 

Coil 

diameter, 

Dcoil (mm) 

Pitch, 

P (mm) 

Tube 

length, 

L(m) 

Tube inner 

surface area,  

S (mm2) 

Circling 

laps,  

N 

1 8.9 9.5 115 30 2.46 68741 7.0 

2 8.9 9.5 135 30 2.33 65238 5.5 

3 8.9 9.5 150 20 2.35 65844 5.0 

4 8.9 9.5 150 30 2.36 65906 5.0 

5 8.9 9.5 150 35 2.36 65920 5.0 

6 8.9 9.5 170 30 2.40 67184 4.5 

Tw1

Tw3

Tw5

Tw7

Tw3

Tw8

Tw4

Tw2DC power 

supply

Inlet

From preheater

Outlet

To pyrex helical 

coils

Tout

Pout

Tin
Pin

Pitch T: Temperature sensor

P:  Pressure sensor



 
 

6 

 

Centrifugal axis

Rotational direction

Centrifugal arm

Inlet

outlet

Acceleration from coil 

courvature

Rotational acceleration direction

 
 

(a) 
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courvature
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(b) 

 

Fig. 3. Configurations for acceleration direction (a) axial and (b) radial. 

 

Table 2 Instrument specifications. 

Item Range Maximum accuracy 

Pt100 thermo-resistor -50 °C to 150 °C 0.5 K 

Mass flow meter 5-50 kg/h 0.25 kg/h (0.5% full scale) 

Pressure transducer 0-160 kPa 0.8 kPa (0.5% full scale) 

Power supply 30 V, 100 A 0.3 V, 0.5 A 
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Table 3 Experiment conditions. 

Parameter Symbol/unit Range 

Heat flux q/W m-2         0-15100 

Inlet pressure  Pin/kPa      120-200 

Mass velocity G/kg m-2 s-1       40-200 

Outlet quality xout/%       0-50 

Start-up time ts/min       1 

Acceleration duration time td/min       3 

 

 

3. HEAT LOSS, DATA REDUCTION AND UNCERTAINTY ANALYSIS 

3.1. Heat loss calculation  

In the current work, the test section was mounted on the rotational arm and the DC power supply was 

located in the control terminal outside the pit, there was voltage drop between the control terminal 

and the test section. This voltage drop loss can be accurately calculated through measuring the voltage 

between the coils since the electric resistance of the electric wires cannot be neglected due to the wire 

length. In addition, the conduction from the heating wall to the environment contributed to the heat 

losses. In a conduction-convection system the heat losses are proportional to the temperature 

difference between the test rig and the ambient. The heat loss, as a function of average wall 

temperature and ambient temperature, can be calculated using Eq. (1), and will be applied in the 

subsequent boiling experiments to calculate the heat losses. 

 

 Qloss=0.480 (Tw,avg – Tamb) (1) 

where Qloss is the heat losses, Tw,avg is the average wall temperature and Tamb is the ambient 

temperature. 

 

3.2. Data reduction and uncertainty analysis  

The heat flux from the coil wall delivered to the fluid was calculated as follows: 

 

 q=Qeff/A=(VI – Qloss)/A (2) 

where q is the heat flux delivered to the fluid, Qeff is the effective heating power delivered to the fluid, 

A is coil inner surface area, V and I are the DC voltage and current on the coils. 

 

The boiling heat transfer coefficient under high gravity can be calculated as: 

 

 hout=q/[0.5(Tw1,g + Tw2,g) – Tsat,g] (3) 

where Tsat is the saturated temperature calculated from the outlet pressure, Tw is the coil wall 

temperature at inlet and outlet. The subscript g indicates the high gravity. 

The thermodynamic vapor quality can be calculated as follows: 

 

 xg=[qA – cpṁ(Tsat,g – Tin,g) – Tsat]/ṁi (4) 

where cp is the specific heat of the local bulk of the fluid, ṁ is the mass flow rate and i is the 

vaporization latent heat. 

 

The pressure drop can be calculated as follows: 
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 Δpg=pin,g – pout,g (5) 

where pin and pout are the inlet and outlet pressure of the helical coils. 

 

All the properties of the pentane are acquired from NIST REFPROP directly without any secondary 

interpolation [46]. The geometric parameters of the coils were machined with an accuracy of ±0.5 

mm. The accuracies of the thermocouples, pressure sensors, flowmeter and power supply can be 

found in Table 2. Following the error transfer function [47], the typical uncertainties of the key 

parameters were summarized in Table 4. 

 

Table 4 Parameter uncertainties. 

Parameter Typical uncertainty (%) 

Heat flux 11.2 

Heat transfer coefficient 13.2 

Vapor quality 15.7 

Pressure drop 2.8 

 

 

4. Artificial neural network modelling  

 

In recent years, machine learning has been widely applied to solve various of problems such as 

classification, regression, clustering, reinforcement learning, computer vision and natural language 

processing. Deep neural networks with three or more hidden layers is observed to have higher 

generalisation capability compared to shallow neural networks. We observed the use of deep neural 

network as a nonlinear regression model to estimate the complex characteristic of boiling heat transfer 

in helical coils under high gravity. Considering that the output prediction on boiling heat transfer 

coefficient and outlet temperature falls into large scale range differences under current operating 

condition, supervised deep learning ANN with more neurons and hidden layers are necessary for learning 

the compound behaviours of boiling heat transfer in helical coils from experimental datasets.  

 

4.1. Dataset and data pre-processing 

 

This section discusses on the technical details of the data pre-processing in our ANN approach to increase 

the model performance accuracy. We conduct a detailed statistical analysis and exploration to understand 

the dataset, remove duplicates, treat errors and outliers, scale the features and split the dataset. To 

estimate the boiling heat transfer in helical coils under high gravity, 531 labelled datasets collected from 

experiments in .csv format are used for model training process. Each record in the dataset is represented 

as a vector of 10 attributes, including mass flow rate, thermal power, inlet temperature, inlet pressure, 

direction, acceleration, tube inner surface area, helical coil diameter, wall temperature, and heat transfer 

coefficient.  

 

Correlation matrix heatmap is generated with the purpose of attribute visualization and feature 

engineering, as feature selection is an important step in building a regression model. Correlation analysis 

evaluates the strength of relationship between two quantitative attributes. A high correlation means that 

the attributes have a strong relationship with each other, while a low correlation means that 

the attributes are hardly related. As shown in Fig. 4. the correlation analysis results in eight unique input 

features: mass flow rate, thermal power, inlet temperature, inlet pressure, direction, acceleration, tube 

inner surface area, and helical coil diameter, which are more in correlation with the outputs features: wall 

temperature, heat transfer coefficient. The eight input features are further pre-processed before feed into 

the proposed ANN model. 
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Fig. 4. Attributes correlation matrix heatmap.  

 

With the selected features, a statistical analysis is conducted to monitor feature-wise values for minimum, 

maximum, and standard deviation. Outliers are detected and bad working points are removed by setting 

a max and min range of credible values and limit to that. All features in the dataset are in either numeric 

value as continuous measurement data or nominal values to represent categorical measurement condition. 

Mass flow rate, thermal power, inlet temperature, inlet pressure are considered as numeric input features; 

direction, acceleration, tube inner surface area, helical coil diameter are considered as categorical input 

features.  Consequently, different type of normalisation or feature scaling would be necessary for 

numeric and categorical input features prior to training process. 
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Table 5 Explanation of input and output features. 

Inputs and outputs Attribute form in model Range 

Inputs  mass flow rate (kg/s) 14.00-40.86 

thermal power (W) 173.89-995.12 

inlet temperature (°C) 27.95-32.46 

inlet pressure (kPa) 23.73-87.41 

direction   0 (axial), 1 (radial) 

Acceleration  0 (3g), 1 (6g), 2 (9g) 

tube inner surface area (mm2) 65350.57-68891.88 

helical coil diameter  0 (115 mm), 1 (130 mm), 2 (135 mm),  

3 (150 mm), 4 (170 mm), 5 (190 mm) 

Outputs wall temperature (°C) 43.53-69.35 

heat transfer coefficient (W/m2 K) 701.09-5849.37 

Table 5 summarises the denoted symbols, descriptions and ranges of all attributes utilised for the model. 

It is clearly indicates that the scales of the numeric features on the dataset are heavily imbalanced. For 

example, a typical inlet temperature corresponds to a float value range from 27.95 °C to 32.46 °C, while 

a typical of thermal power to a range from 173.89 W up to 995.12 W.  

 
Fig. 5. Original feature visualisation with histogram.  
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Additionally, some features such as thermal power in Fig. 5 with significant skewness can have an impact 

on prediction models. Therefore, in the current work, all numeric features are transformed by the 

approach of the Box-Cox. In order to clearly present how feature scaling is applied to numeric inputs, 

Fig. 6 depicts the original input feature and the corresponding Box-Cox feature scaling. On the other 

hand, as demonstrated in Fig. 7, nominal input feature vectors are converted into categorical features and 

Z-score scaling is applied. Furthermore, since there are very large discrepancies of values between wall 

temperature (value range: 43.53-69.35 °C) and heat transfer coefficient (value range: 701.09-5849.37 

Wm-2K-1), logarithmic scaling is applied to output features and inverse transform is performed during 

model performance evaluation (see Fig. 8).  

 
(a) Original numeric feature  

 
(b) Numeric feature after box-cox scaling 

 

Fig. 6. Numeric input feature scaling. 
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(a) Acceleration 

  

(b) Direction 

  

(c) Helical coil diameter 

  

(d) Tube inner surface area 

Fig. 7. Categorical input feature scaling. 
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(a) Wall temperature 

   
(b) Heat transfer coefficient 

Fig. 8. Output feature scaling. 

 

4.2. Proposed model  

Among the various kinds of ANNs that exists, the standard feed-forward network has become one of the 

most popular solution in engineering applications.  In an ANN model, the number of neurons in the input 

and output layers are identical to the numbers of input and output features, respectively. The number of 

hidden layers and neurons within each hidden layer can be varied based on the complexity of the problem 

and of the data set. Fig. 9 illustrates the proposed deep ANN model architecture for helical coil boiling 

heat transfer prediction. Similar to most existing deep learning research, the model is implemented using 

Python (3.7.6) Keras library (2.3.1) with Tensorflow as backend [48] on a Windows desktop with one 

Nvidia GeForce RTX 2080Ti adapter cards and 3.7 GHz Intel Cores i9-10900X, 10 cores, CPU with 64 

GB RAM. The proposed deep ANN model comprises an input layer with eight inputs; three hidden 

layers with 512 nodes for the first hidden layer, 512 nodes for the second hidden layer and 64 nodes for 

the third hidden layer respectively; and an output layer with two outputs.  

 

Rectified Linear Unit (ReLU) non-linear transfer function is selected for the hidden layer, and a linear 

transfer function is assigned to the final output layer. Model sensitivity is evaluated following the 

machine learning workflow illustrated in Fig. 10 for different networks with different nodes in hidden 

layers. During training, dropout regularisation (rate = 0.2) was deployed in each hidden layer to avoid 

overfitting by randomly dropping 20% of the units and their connections during training. An intuitive 

explanation of dropout efficacy is that each unit learns to extract useful features on its own with different 

sets of randomly chosen inputs. As a result, each hidden unit is more robust to random fluctuations and 

learns a generally useful transformation. To accelerate the training process and avoid local minimums, 
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we used Adam algorithm with its default parameter setting (learning rate=0.001, beta 1=0.9, beta 

2=0.999) as the training optimizer [49].  
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Fig. 9. Schematic diagram of the developed deep ANN model with three hidden layers. 

 

 

In the present study, the model performance is obtained from each combination of the hyperparameters 

tuning with cross-validation (CV) methods. To avoid bias in data selection, popular k-fold CV method 

is employed during the process of hyperparameters tuning. As stated by [50], the bias of an accurate 

estimation will be smaller when the number of fold is either five or ten. In this regards, the number of 

folds k is set to five (k=5) as suggested by [51] associated with the trade-off between the computation 

time and the bias. Therefore, five rounds of train, cross-validation and test set evaluation are conducted 

together with random data shuffling.  In summary, as shown in Fig. 9,  with 5-fold CV, the entire datasets 

are spitted into 20% as test set, the remaining 80% for train and validation purpose (in which 80% for 

train set, 20% for cross-validation set).  
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Fig. 10. Workflow for training a machine learning model. 
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5. Results and discussion 
 

In the present study, the 8-512-512-64-2 deep artificial neural network model with 300,266 trainable 

parameters in total was found to have the best performance. Table 6 summaries six verification statistics: 

Coefficient of Determination (R2), Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), Cosine Proximity, and Root Mean Squared Error (RMSE), 

which are regularly employed to analyse the predictive results on each fold and averaged results are 

used to present model performance.  

 

Table 6 5-fold performance evaluation on test set. 

k value of  

5-fold 

R2 MSE MAE MAPE Cosine 

Proximity 

RMSE 

k=1 0.832 0.018 0.078 1.174 1.000 0.142 

k=2 0.908 0.012 0.060 0.919 1.000 0.117 

k=3 0.873 0.013 0.072 1.075 1.000 0.116 

k=4 0.787 0.030 0.096 1.386 1.000 0.178 

k=5 0.865 0.016 0.065 0.996 1.000 0.126 

average 0.853 0.018 0.074 1.110 1.000 0.136 

 

The above metrics can be defined by the following Eqs. (6) - (12).  R2 metric obtained by the following 

Eqs. (6) and (7) indicates how well the prediction of the regression model approximate the real data 

points. R2 value of 1 indicates that the regression predictions perfectly fit the data. 

 

 

                                                           𝑦𝑚𝑒𝑎𝑛 =
1

n
∑ 𝑦𝑡𝑟𝑢𝑒

𝑛
𝑘=1                                                                     (6) 

 

𝑅2 = 1 −
∑  (𝑦𝑡𝑟𝑢𝑒− 𝑦𝑝𝑟𝑒𝑑)

2𝑛

𝑘=1

∑  (𝑦𝑡𝑟𝑢𝑒− 𝑦𝑚𝑒𝑎𝑛)2𝑛

𝑘=1

∈ [0,1]                                                  (7) 

 

                                                𝑀𝑆𝐸 =  
∑ (𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑)

2𝑛
𝑘=1

𝑛
  ∈ [0, +∞]                                                    (8) 

 

                                                 𝑀𝐴𝐸 =
∑ |𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑|𝑛

𝑘=1

𝑛
 ∈ [0, +∞]                                                      (9) 

 

                                     𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑦𝑡𝑟𝑢𝑒− 𝑦𝑝𝑟𝑒𝑑

𝑦𝑡𝑟𝑢𝑒
|𝑛

𝑘=1      ∈ [0, +∞]                                              (10) 

 

                        𝐶𝑜𝑠𝑖𝑛𝑒 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 =  
∑ 𝑦𝑡𝑟𝑢𝑒𝑘

×𝑦𝑝𝑟𝑒𝑑𝑘

𝑛

𝑘=1

√∑ 𝑦𝑡𝑟𝑢𝑒𝑘
2𝑛

𝑘=1 ×√∑ 𝑦𝑝𝑟𝑒𝑑𝑘
2𝑛

𝑘=1

  ∈ [−1, 1]                                          (11) 

 

                                        𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑)
2𝑛

𝑘=1

𝑛
  ∈ [0, +∞]                                                    (12) 

 

where 𝑦𝑡𝑟𝑢𝑒  is the ground truth output (experimental observed output data),  𝑦𝑝𝑟𝑒𝑑  is the predicted 

output,   𝑦𝑚𝑒𝑎𝑛 is the mean of the ground truth data, n is the total number of data.    
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MSE is the most commonly used regression loss function. It is the sum of squared distances between 

ground truth value and predicted value. It is always non-negative, and values closer to zero are better. 

MAE is the average of all absolute errors, which is another useful measure that is extensively employed 

in model evaluation.  MAPE is the most common measure used to forecast error, and sometimes reported 

as a percentage, which is the above equation multiplied by 100 to make it a percentage error. Cosine 

proximity or cosine similarity is the measure of similarity between two vectors. A high cosine proximity 

indicates a higher accuracy. Perfectly opposite vectors have a cosine proximity of -1; perfect orthogonal 

vectors have a cosine proximity of 0, and identical vectors (such as perfect fit of predicted values to the 

ground truth values) have a cosine proximity of 1. RMSE is the square root of the ratio of the square of 

the deviation between the predicted value and ground truth value to the number of data n. The RMSE 

has a value equal to or greater than 0, where 0 depicts a statistically perfect fit to the ground truth data. 

 

Figs. 11 and 12 plot the network training process against 1800 iterations (epochs) of the optimum 

network (8-512-512-64-2), in which the best result was achieved.  The performance of various network 

configurations are compared using MSE, R2, MAE, MAPE, cosine proximity, and RMSE for 

regression performance evaluation.  
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Fig. 11. Performance Evaluation on deep ANN model: MSE,  R2, MAE. 
 

   

   

   

   

   
 

Fig. 12. Performance Evaluation on deep ANN model: MAPE,  Cosine Proximity, RMSE. 
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Figs. 13 and 14 show the scatter plot of the predicted values (wall temperature and heat transfer 

coefficient) by the developed deep ANN model against experimental values (ground truth) for the 

optimized model. It can be seen clearly that good accuracy between the neural network predictions 

and experimental data are achieved. These results can confirm the high ability of the developed deep 

ANN to predict the experimental data.  

 

 
Fig. 13. Scatter plot of the predicted outlet wall temperature values by the deep ANN model versus 

experimental data on test set  

 

 
Fig. 14. Scatter plot of the predicted heat transfer coefficient values by the deep ANN model versus 

experimental data on test set  
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Fig. 15. KDE of wall temperature: ground truth vs. predicted. 

 

   
Fig. 16. KDE of heat transfer coefficient: ground truth vs. predicted. 

Figs. 15 and 16 illustrate the Kerner Density Estimation (KDE) to estimate and compare the 

probability density distribution on test set between predicted values and ground truth values of wall 

temperature and heat transfer coefficient, respectively. According to performance of the network, for 

both wall temperature and heat transfer coefficient, the KDE probability density curve of predicted 

values agrees well with the one for ground truth. It is recognised that the proposed model achieves an 

excellent performance on test set. With the utilisation of a 4-layer deep ANN with 300,266 trainable 

parameters, it should be noted that the proposed model can predict the outputs in an accurate manner, 

more specifically, wall temperature value range: (43 – 69 °C)  but heat transfer coefficient value 

range: (701 – 5849 Wm-2K-1). 
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6. CONCLUSIONS 

 

In this study, a deep ANN model was derived and tested for predicting the thermal performance in 

helical coils three different high gravity conditions. The database used for developing the deep ANN 

model consisting of 531 experimental datasets. An optimized deep ANN model configuration with 

three hidden layers and there are 512 and 512 neurons for the first two hidden layers; 64 neurons for 

the third hidden layer, exhibited good predictive ability with  𝑅2of 0.853, MSE of 0.018, MAE of 

0.074, MAPE of 1.110, RMSE of 0.136 and cosine proximity of 1.000 for large range value multi-

output estimation. The deep ANN model presented can easily be used without the need of assuming 

a mathematical model of the process. The procedure proposed here can help researchers to plan new 

measurements by showing where these are needed. 
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NOMENCLATURE 

 

A coil inner surface area [mm2] 

cp specific heat [J kg-1K-1] 

h heat transfer coefficient [Wm-2K-1] 

i vaporisation latent heat  [Jkg-1] 

I  DC current [A] 

ṁ mass flow rate     [kg/s] 

n number of data points [-] 

p pressure [kPa] 

∆p pressure drop [kPa] 

q heat flux delivered to the fluid [Wm-2] 

Qloss heat loss [W] 

Qeff effective heating power delivered to the fluid [W] 

R2 coefficient of determination [-] 

tc start-up time [min] 

td acceleration duration time [min] 

T temperature [°C] 

V DC voltage [V] 

x vapour quality [-] 

ymean mean of the ground truth data [-] 

ypred predicted output [-] 

ytrue ground truth output [-] 

 

Subscripts 

  

w1 inner wall surface at outlet of helical coil  

w2 outer wall surface at outlet of helical coil  

amb ambient  

avg average  

g high acceleration  

in inlet  

out outlet  

sat saturated  

w wall   
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