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Abstract

Face recognition has become a widely adopted biometric in forensics, 

security and law enforcement thanks to the high accuracy achieved by systems 

based on convolutional neural networks (CNNs). However, to achieve good 

performance, CNNs need to be trained with very large datasets which are not 

always available. In this paper we investigate the feasibility of using synthetic 

data to augment face datasets. In particular, we propose a novel generative 

adversarial network (GAN) that can disentangle identity-related attributes 

from non-identity-related attributes. This is done by training an embedding 

network that maps discrete identity labels to an identity latent space that 

follows a simple prior distribution, and training a GAN conditioned on samples 

from that distribution. A main novelty of our approach is the ability to generate 

both synthetic images of subjects in the training set and synthetic images of new 

subjects not in the training set, both of which we use to augment face datasets. 

By using recent advances in GAN training, we show that the synthetic images 

generated by our model are photo-realistic, and that training with datasets 

augmented with those images can lead to increased recognition accuracy. 

Experimental results show that our method is more effective when augmenting 

small datasets.  In particular,  an absolute accuracy improvement of  8.42%  was 
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achieved when augmenting a dataset of less than 60k facial images.

Keywords: image generation, generative adversarial learning, face and gesture 

recognition, machine learning

1. Introduction

Recent progress in machine learning has made possible the development

of face recognition systems that can match face images as good as or better

than humans. For this reason, these systems have become a valuable tool in

forensics and security. However, state-of-the-art face recognition systems based5

on convolutional neural networks (CNNs) need to be trained with very large

datasets of face images. In this work we aim to reduce the data requirement of

face recognition systems by synthesising artificial face images.

Image synthesis is a widely studied topic in computer vision. In particular,

face image synthesis has gained a lot of attention because of its diverse practical10

applications. These include facial image editing (Larsen et al. 2016; Yan et al.

2016; Perarnau et al. 2016; Brock et al. 2017; Zhang et al. 2017; Antipov et al.

2017; Choi et al. 2018; Shu et al. 2017; Lample et al. 2017), face de-identification

(Meden et al. 2017, 2018; Brkic et al. 2017; Wu et al. 2019), data augmentation

(Masi et al. 2016; Banerjee et al. 2017; Osadchy et al. 2017; Masi et al. 2019; Zhao15

et al. 2018; Kortylewski et al. 2018; Mokhayeri et al. 2018), face frontalisation

(Zhu et al. 2013, 2014; Hassner et al. 2015; Zhu et al. 2015; Yim et al. 2015;

Tran et al. 2018; Huang et al. 2017) and artistic applications (e.g. video games

and advertisements).

In this work, we focus on the applicability of face image synthesis for data20

augmentation. It is widely known that training data is one of the most important

factors that affect the accuracy of deep learning models. The datasets used for

training need to be large and contain sufficient variation to allow the resulting

models to learn features that generalise well to unseen samples. In the case of

2



face recognition, the datasets must contain many different subjects, as well as25

many different images per subject. The first requirement enables a model to

learn inter-class discriminative features that can generalise to subjects not in the

training set. The second requirement enables a model to learn features that are

robust to intra-class variations. Even though there are several public large-scale

datasets (Sun et al. 2014; Yi et al. 2014; Parkhi et al. 2015; Guo et al. 2016; Nech30

& Kemelmacher-Shlizerman 2017; Bansal et al. 2017; Cao et al. 2018) that can

be used to train CNN-based face recognition models, these datasets are nowhere

near the size or quality of commercial datasets. For example, the largest publicly

available dataset contains about 10M images of 100K different subjects (Guo

et al. 2016), whereas Google’s FaceNet (Schroff et al. 2015) was trained with a35

private dataset containing between 100M and 200M face images of about 8M

different subjects. Another issue is the presence of long-tail distributions in

some publicly available datasets, i.e. datasets in which there are many subjects

with very few images. Such unbalanced datasets can make the training process

difficult and result in models that achieve lower accuracy than those trained40

with smaller but balanced datasets (Zhao et al. 2018; Zhou et al. 2015). In

addition, some publicly available datasets (e.g. Guo et al. 2016) contain many

mislabelled samples that can decrease face recognition accuracy if not discarded

from the training set. Since collecting large-scale, good quality face datasets is

a very expensive and labour-intensive task, we propose a method for generating45

photo-realistic face images that can be used to effectively increase the depth

(number of images per subject) and width (number of subjects) of existing face

datasets.

An approach that has recently gained popularity for augmenting face datasets

is the use of 3D morphable models (Blanz & Vetter 2003). In this approach,50

new faces of existing subjects can be synthetized by fitting a 3D morphable

model to existing images and modifying a variety of parameters to generate

new poses and expressions (Masi et al. 2016, 2019; Zhao et al. 2018; Mokhayeri

et al. 2018). It is also possible to generate images with other variations using

this approach. For example, Mokhayeri et al. (2018) incorporated a reflectance55
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model to generate images under different lighting conditions; and Kortylewski

et al. (2018) randomly sampled 3D face shapes and colours to generate faces of

new subjects. The main drawback of methods based on 3D morphable models

is that the generated images often look unnatural and lack the level of detail

found in real images. Another recent approach based on blending small triangu-60

lar regions from different training images was proposed in Banerjee et al. (2017).

Although this method seemed to produce photo-realistic faces, the authors lim-

ited their work to frontal face images. In contrast, our approach makes use of

generative adversarial networks (GANs) (Goodfellow et al. 2014; Schmidhuber

65 2020), which have recently been shown to produce photo-realistic in-the-wild

images often indistinguishable from real images (Karras et al. 2018). Another

advantage of using GANs is that they are end-to-end trainable models that do

not require any domain-specific processing, as opposed to methods based on 3D

modelling or face triangulation.

Many methods based on GANs have been proposed for manipulating at-70

tributes of existing face images, including age (Yan et al. 2016; Zhang et al.

2017; Antipov et al. 2017), facial expressions (Yan et al. 2016; Choi et al. 2018;

Zhou & Shi 2017; Ding et al. 2018), and other attributes such as hairstyle,

glasses, makeup, facial hair, skin colour or gender (Larsen et al. 2016; Perarnau

et al. 2016; Brock et al. 2017; Choi et al. 2018; Shu et al. 2017; Lample et al.75

2017; Shen & Liu 2017; Lu et al. 2018; He et al. 2017). While these methods can

be used to increase the depth of a dataset, it remains unclear how to increase

the width of a dataset, i.e. how to generate faces of new subjects. Our proposed

GAN is able to generate faces from a latent representation z that has two gaus-

sian distributed components zid and znid encoding identity-related attributes80

and non-identity-related attributes respectively. In this way, face images of new

subjects can be generated by fixing the identity component zid and varying the

non-identity component znid. The method most closely related to ours is the

semantically decomposed GAN (SD-GAN) proposed in Donahue et al. (2018).

SD-GANs are trained with pairs of real images from the same subject and pairs85

of images generated with the same identity-related attributes but different non-
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identity-related attributes. A discriminator learns to reject pairs of images when

either they do not look photo-realistic or when they do not appear to belong to

the same subject. One of the main differences of our method with respect to

SD-GANs is that it allows the generation of face images of subjects that exist in90

the training set. In other words, our method can increase both the width and

the depth of a given face dataset. Furthermore, our proposed GAN is arguably

simpler to implement than SD-GAN and easier to incorporate into other GAN

architectures.

To demonstrate the efficacy of our method, we trained several CNN-based95

face recognition models with different combinations of real and synthetic data.

In most cases, the models trained with a combination of real and synthetic data

outperformed the models trained with real data alone.

Our main contributions can be summarised as:

• A novel face image synthesis method based on GANs that allows the disen-100

tangling of identity-related attributes from non-identity-related attributes.

• A data augmentation approach that uses the proposed GAN to increase

the depth and width of existing face datasets.

• A experimental demonstration that the proposed data augmentation ap-

proach can be used to increase the accuracy of a face recognition algorithm105

trained with real images alone.

The rest of this paper is organised as follows. Section 2 provides the back-

ground needed to understand our proposed GAN. Section 3 explains each part

of our proposed GAN and the loss functions used for training. Section 4 dis-

cusses our experimental results, both in terms of the quality of the synthetic110

images generated by our proposed GAN and the accuracy achieved by datasets

augmented with the synthetic images. Finally, our conclusions are presented in

Section 5.
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2. Background

Generative adversarial networks (GANs) generate data by sampling from a115

probability distribution pmodel that is trained to match a true data generating

distribution pdata. This is done by mapping a vector of random latent vari-

ables z ∼ pz to a sample G(z) through a generator network G, where pz is a

prior distribution that can be easily sampled (e.g. Gaussian or uniform). The

generator is trained to fool a discriminator network D that tries to determine120

whether a sample is real or generated (i.e. synthetic). Thus, the generator and

discriminator are trained with opposing optimisation objectives. While the dis-

criminator is trained to maximise the probability of correctly classifying both

real and generated samples, the generator is trained to minimise the probability

that the generated samples are classified as such. Formally, the standard GAN125

optimisation objective can be expressed as follows:

min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))] (1)

As training progresses, the discriminator gets better at distinguishing real from

generated samples and the generator gets better at producing realistic samples

that can fool the discriminator. The training is considered completed when the

generator and the discriminator reach an equilibrium, i.e. when the generator130

and the discriminator stop improving. In practice, since GANs rarely reach an

equilibrium, it is common to simply stop the training process whenever there is

no noticeable improvement in the visual quality of the generated samples.

The training of GANs is often unstable and can lead to the mode collapse

problem (this happens when the generator maps different values of z to the135

same output sample (Goodfellow 2016)). Although some works have proposed

heuristics that reduce this effect Radford et al. (2015); Salimans et al. (2016),

a full understanding of the training dynamics of GANs remains an open re-

search question. Based on the idea that optimising the training objective in

(1) can be interpreted as minimising the Jensen-Shannon divergence between140

the true data generating distribution pdata and the model distribution pmodel
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(Goodfellow et al. 2014), Arjovsky et al. (2017) proposed a novel training ob-

jective for GANs that minimises the Wasserstein distance instead of the Jensen-

Shannon divergence. This GAN variation, which was named the Wasserstein

GAN (WGAN), was shown to be more stable and to reduce the mode collapse145

problem (Arjovsky et al. 2017). An improved formulation of this approach (Gul-

rajani et al. 2017) is considered one of the current state-of-the-art techniques

for training GANs.

Many works on GANs have adopted a family of architectures known as deep

convolutional GANs (DCGANs) (Radford et al. 2015). DCGANs follow a set of150

guidelines that were proposed for stable training and good image quality. More

recently, Karras et al. (2018) proposed a new methodology for training GANs

that consist of progressively growing both the spatial resolution of real and

generated images and the number of layers of the discriminator and generator

networks (PGGAN). In this manner, the training is very stable at the start155

since low-resolution images are easier to generate than high-resolution images

due to their lower dimensionality and hence diversity. As training progresses,

and the resolution of the images is increased, the generator gradually learns to

generate images with finer detail. In contrast, standard GANs that are tasked

with learning high-resolution images from the outset are typically more unstable.160

Using the PGGAN approach together with several proposed heuristics, Karras

et al. (2018) were able to generate impressive photo-realistic 1024 × 1024 images

with a 5.4× speedup factor with respect to the standard GAN training approach.

Conditional versions of GANs allow the generation of samples with specific

attributes. The first conditional GAN was introduced in Mirza & Osindero165

(2014) and consisted of feeding a label y encoding some attribute(s) of the data

to both the generator and the discriminator. An alternative type of conditional

GAN called auxiliary classifier GAN (AC-GAN) was proposed in (Odena et al.

2017). Instead of feeding the label y to the discriminator, AC-GANs use an

auxiliary classifier in the discriminator that is tasked with predicting the label170

y that has been fed to the generator. The use of an auxiliary classifier to

predict y was shown in Odena (2016) and Salimans et al. (2016) to improve
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image quality even when y was not fed to the generator.

An approach related to conditional GANs is the InfoGAN model proposed

in Chen et al. (2016). The goal of an InfoGAN is to disentangle data attributes175

in an unsupervised way. This is done by maximising the mutual information

between a subset c of the latent variables z and the generated image G(z).

InfoGANs can be implemented with an auxiliary network in the discriminator

that is trained to predict c. As shown in Chen et al. (2016), this method ensures

that the latent variables c encode meaningful data attributes that are not lost180

during the generation process. Our proposed GAN incorporates elements of

both conditional GANs and InfoGANs to disentangle identity-related attributes

from non-identity-related attributes.

3. Proposed Method

In this section, we first explain our choice of GAN architecture and type of185

conditional GAN, and then our proposed modifications to disentangle identity-

related attributes from non-identity-related attributes. Finally, we explain how

we use the proposed GAN for augmenting existing face datasets.

3.1. Conditional PGGAN

We follow the same architecture and training method proposed in the PG-190

GAN work (Karras et al. 2018) (we use the open-source code released by the

authors and keep the default training settings unless otherwise stated) and add

our modifications to it. The training starts by generating 4 × 4 images. The

number of layers in the generator and discriminator is then gradually increased

from 1 to 11 (each time the resolution is doubled, two convolutional layers195

are added) until 128 × 128 images are generated. We do not generate higher

resolution images because the network that we use for face recognition in our

experiments takes 100 × 100 images as input. Higher resolution images could

be generated by simply increasing the number of layers in the PGGAN gener-

ator and in the face recognition network accordingly. Following Karras et al.200
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(2018), instead of using the standard GAN objective proposed in (1), we use

the WGAN training objective proposed in Gulrajani et al. (2017):

min
G

max
D∈D

Ex∼pdata
[D(x)]− Ez∼pz [D(G(z))] (2)

where D is the set of 1-Lipschitz functions (for a full derivation of (2) see Ar-

jovsky et al. (2017)). When posed as a minimisation problem and adding a gra-

dient penalty that enforces the Lipschitz constraint (the gradient of 1-Lipschitz

functions are bounded to 1), the WGAN loss (Gulrajani et al. 2017) becomes:

Limg = Ez∼pz [D(G(z))]− Ex∼pdata
[D(x)]

+ λ Ex̃∼px̃
[‖(∇x̃D(x̃)‖2 − 1)2] (3)

where px̃ is a distribution of samples interpolated from generated samples G(z)

and real samples x, and λ is a weight controlling the contribution of the gradient

penalty to the loss. Following Gulrajani et al. (2017), we set the value of λ to205

10.

To make this model conditional, we use the AC-GAN method, i.e. the

generator is conditioned on identity labels y and an auxiliary network Dc in

the discriminator D is trained to predict y. Since the identity labels y are

categorical, Dc is trained as a classifier with cross-entropy loss:210

Lc = −Ez∼pz,y∼py [logDc(G(z | y))]− Ex∼pdata
[logDc(x)] (4)

Note that the cross-entropy loss is applied to the real images x and the synthetic

images G(z | y). This loss encourages the generator to generate images with

the correct identity labels y so that they can be predicted by the discriminator

instead of being ignored during the generation process.

3.2. Identity Latent Space215

The model described in Section 3.1 can generate images of subjects with

identities y existing in the training set. However, it is not possible to generate

images of subjects with new identities. For this reason, we propose the use of

an embedding network E to map the discrete identity labels y to a vector of
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Figure 1: During training, the generator G takes as an input a vector of latent variables E(y) 

encoding the identity-related attributes of subject y and a vector of latent variables znid 

encoding non-identity-related attributes. The discriminator Dzid is used to match E(y) to 

the prior distribution pzid . The discriminator D is used to encourage G to generate photo-

realistic images and has two auxiliary outputs predicting the identity of the subject y and the

non-identity-related attributes znid.

latent variables E(y). Since the goal is to learn a continuous latent space of220

identities that we can sample from, E(y) is trained to follow an easy to sample

prior distribution pzid
. In our case, we assume that the identity latent space is

normally distributed and choose to use a Gaussian prior pzid
= N (0, 1). This

can be done by using another discriminator Dzid
that is trained to match the

posterior distribution defined by E(y) to the Gaussian prior distribution pzid
225

using adversarial training, as proposed in Makhzani et al. (2016). Note that,

alternatively, this can be done by adding a Kullback–Leibler divergence (KLD)

term to the loss to match the posterior to the prior, as done in the variational

autoencoder framework (Kingma & Welling 2013). In our experiments, we did

not notice differences between these two methods and decided to use the dis-230

criminator approach due to its additional flexibility (Makhzani et al. 2016). To

incorporate the identity latent space into the conditional PGGAN model from

Section 3.1, the generator network G is conditioned on the latent representation

of the labels, i.e. G(z | E(y)). A diagram of our proposed GAN is shown in

Fig. 1. The aforementioned modifications to the standard AC-GAN architecture235

are shown on the left side of Fig. 1.

We choose to train the embedding network E to learn a stochastic mapping

with Gaussian noise rather than a deterministic mapping. This is because in the

deterministic case, E can only use the stochasticity of the identity labels in the
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training set (which is fixed and typically very limited) to map the posterior dis-240

tribution defined by E(y) to the Gaussian prior distribution pzid
. Therefore, a

deterministic mapping might not yield a smooth posterior distribution. In con-

trast, the additional randomness introduced by Gaussian noise in the stochastic

mapping can alleviate this issue. With a stochastic mapping, the output of the

embedding network E is a vector of means and variances that is used to pro-245

duce samples that must be indistinguishable from samples from the Gaussian

prior distribution pzid
. In order to allow backpropagation through the sampling

operation, the reparametrization trick proposed in Kingma & Welling (2013) is

used.

To train the embedding network E and the discriminator network Dzid
, we

again use the WGAN loss:

Le = Ey∼py
[Dzid

(E(y))]− Ezid∼pzid
[Dzid

(zid)]

+ λe Eỹ∼pỹ
[‖(∇ỹDzid

(ỹ)‖2 − 1)2] (5)

where, in this case, pỹ is a distribution of samples interpolated from the latent250

representation of the labels E(y) and Gaussian samples zid. In a similar manner

to (3), λe is set to 10.

3.3. Mutual Information Loss

In our experiments, we observed that the increased dimensionality of zid

with respect to the discrete labels y might cause some or all of the non-identity-255

related attributes to be encoded by zid instead of znid. For this reason, we force

znid to encode meaningful non-identity-related attributes by using a mutual

information loss, as proposed in Chen et al. (2016). As mentioned in Section 2,

this can be achieved through an auxiliary network Dmi in the discriminator D

that is trained to predict c ⊂ znid. Since we do not have any prior knowledge260

about the latent variables c, we treat them as continuous variables and train

Dmi as a regressor using minimum squared error (MSE):

Lmi = Eznid∼pznid
,y∼py [‖c−Dmi(G(znid | E(y)))‖22] (6)
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Balancing the mutual information loss from (6) and the cross-entropy loss

from (4) is key to disentangling identity-related attributes from non-identity-

related attributes.265

3.4. Proposed GAN

Fig. 1 shows a diagram of our proposed GAN during training. It should

be noted that, in practice, the auxiliary networks Dc and Dmi share all layers

with the discriminator D. Hence, the last layer of D is split into three compo-

nents that are trained with different loss functions (adversarial loss Limg for the270

real/generated classifier, cross-entropy loss Lc for the identity classifier and MSE

loss Lmi for the non-identity-related attributes regressor). The architectures of

the generator G and the discriminator D are the same as those in PGGAN

(Karras et al. 2018). The embedding network E contains an embedding layer

that maps the discrete identity labels y to real-valued vectors, followed by two275

fully-connected layers. The discriminator network Dzid
contains three fully-

connected layers. Both the dimensionality of the latent variables zid encoding

the identity-related attributes and the dimensionality of the latent variables znid

encoding the non-identity-related attributes are fixed to 64. In our experiments,

we did not notice any major difference between making c a subset of znid and280

simply making c equal to znid. For simplicity, we adopted the latter option.

The proposed GAN is trained with the following overall loss:

L = Limg + αLc + βLe + γLmi (7)

where α, β and γ are weights controlling the contributions of Lc, Le and Lmi to

the loss relative to the contribution of Limg. Note that (7) is the loss used when

training the discriminators D and Dzid
. The generator G and the embedding285

network E are trained with the same loss as (7) except that the adversarial

losses Limg and Le have a negative sign. After extensive experimentation, we

set α = 1, β = 1 and γ = 50. These weights are highly dependent on our specific

architecture and should be tuned as necessary for different architectures. In our

experiments using the PGGAN generator and discriminator we mainly needed290
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(a)

(b)

Figure 2: (a) Generation of images of subjects y in the training set with identity-related

attributes E(y) and random non-identity-related attributes znid. (b) Generation of images

of new subjects with random identity-related-attributes zid and random non-identity-related

attributes znid.

to carefully tune the γ parameter associated with the mutual information loss

Lmi. For example, if we increased the dimensionality of the latent variables zid

encoding the identity-related attributes, we risk encoding some non-identity-

related attributes in that space. Therefore, we would need to counteract this

effect by adjusting γ to increase the contribution of the mutual information loss295

Lmi.

3.5. Data Augmentation Approach

Once the model is trained, we can generate multiple images of the same sub-

ject by feeding the generator with a fixed vector of identity-related attributes

and different vectors of non-identity-related attributes. Our model allows gener-300

ation of images of subjects in the training set by feeding the generator with the

latent representation of their labels E(y) obtained by mapping y through E, as

shown in Fig. 2a. Since E(y) is trained to follow a Gaussian distribution pzid
,

we can also feed the generator with a random sample zid to generate images of

new subjects, as shown in Fig. 2b.305
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Through this approach, we can increase the depth of the face dataset avail-

able to train a face recognition model by generating images of subjects existing

in the training set and its width by generating images of new subjects. In Sec-

tion 4.2 we present our experiments comparing a face recognition model trained

with the original face dataset with a face dataset augmented using this approach.310

4. Experiments

In this section, we start by providing a qualitative analysis of the synthetic

images generated by our proposed GAN. Next, we explore the feasibility of

augmenting face datasets with synthetic images, both in terms of width and

depth. The augmented datasets are used to train CNN-based face recognition315

models (henceforth referred to as discriminative models) to determine whether

they achieve a higher accuracy than models trained with real images alone.

We use the Face-Resnet architecture as our discriminative model, a popular

CNN architecture based on residual blocks that has been used in other face

recognition works (Ranjan et al. 2017; Hasnat et al. 2017; Wu et al. 2017). This320

architecture is composed of 27 convolutional layers, 4 pooling layers and 1 final

fully-connected layer. Convolutional layers use 3×3 kernels and are followed by

PReLU activation functions. See Ranjan et al. (2017) or Hasnat et al. (2017)

for more details. The network is trained with softmax loss and optimised using

stochastic gradient descent with momentum. The initial learning rate is set to325

0.01 and decreased during training whenever the accuracy on the validation set

stops improving. The input to the network are 100 × 100 RGB images. When

training with datasets augmented with synthetic images we make sure that on

each training batch the number of real and synthetic images is roughly the same.

We use three different subsets of the curated version of the VGGFace dataset330

(Parkhi et al. 2015) to train the discriminative models. The number of subjects

and images of each subset is specified in Table 1. We chose this dataset because

it contains a good number of images per subject (on average, close to 300 in

each subset), which helps the training of our proposed GAN.
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4.1. Qualitative Analysis of Generated Images335

We first train our proposed GAN using the VGGFacelarge dataset. Fig. 3

shows synthetic images of subjects in the training set generated by our trained

model using the method shown in Fig. 2a. The identity-related attributes E(y)

have been fixed for each row and the non-identity-related attributes znid have

been fixed for each column. The highlighted images in the first column are real340

images from the training set. Note how many of the synthetic images are as

photo-realistic as the real images shown in the first column of Fig. 3. Fig. 4

shows synthetic images of new subjects generated by our trained model using the

method shown in Fig. 2b. As in Fig. 3, the identity-related attributes zid have

been fixed for each row and the non-identity-related attributes znid have been345

fixed for each column. Note how in both Figs. 3 and 4, the images in each row

appear to belong to the same subject since the identity-related attributes have

been fixed. In contrast, the images in each column display common attributes

that do not affect the identity of the subjects (e.g. head pose, facial expression

and background) since the non-identity-related attributes have been fixed. From350

this we can conclude that our proposed GAN is able to effectively disentangle

identity-related attributes from non-identity-related attributes.

To test whether our method can generate images of subjects not present in

the training set, we need to make sure that the synthetic images of new subjects

indeed display identities that do not exist in the training set. Figs. 5a to 5c355

show a comparison between synthetic images of three new subjects (shown in

the top row of each of Figs. 5a to 5c) and synthetic images of their most similar

Dataset Number of subjects Number of images

VGGFacelarge 2558 734,665

VGGFacemedium 800 227,466

VGGFacesmall 200 58,952

Table 1: VGGFace Subsets Used for Training our Models
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Figure 3: Synthetic images of subjects in the training set generated by our proposed GAN

using the method shown in Fig. 2a. The identity related attributes have been fixed for each

row and the non-identity related attributes have been fixed for each column. Note that the

highlighted images in the first column are real images from the training set.

subject in the training set (shown in the bottom row of each of Figs. 5a to 5c).

These figures were created by measuring the average image difference between

synthetic images of each new subject in Figs. 5a to 5c and synthetic images of360

each subject in the training set. Since we were only interested in comparing the

identity of the subjects, we averaged over image differences between synthetic

images generated with the same non-identity-related attributes znid, as observed

in the columns of each pair of rows in Figs. 5a to 5c. We can see how even though

the synthetic images of new subjects look similar to the synthetic images of their365

most similar subject in the training set, it is possible to visually differentiate

them as two different identities. Hence, we can conclude that our proposed GAN

is able to successfully generate images of subjects not present in the training

set.

We can also show how our model has not overfit the training images by370

applying linear interpolation between two random vectors of identity-related

attributes zid and two random vectors of non-identity-related attributes znid.

Fig. 6 shows how the transition between synthetic images generated from inter-
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Figure 4: Synthetic images of new subjects generated by our proposed GAN using the method

shown in Fig. 2b. The identity related attributes have been fixed for each row and the non-

identity related attributes have been fixed for each column.

polated vectors is smooth and visually consistent with what would be expected

from mixing attributes of two face images. This suggests that our model is able375

to generate images with enough diversity and it is not just learning to replicate

the training images.

It is worth noting that the quality of our images is lower than those presented

in the PGGAN work (Karras et al. 2018). We attribute this to the lower quality

and resolution of the VGG dataset with respect to the CelebA-HQ dataset used380

in Karras et al. 2018. Moreover, more recent GAN methods like Brock et al.

(2018); Karras et al. (2019) (published after we completed our work) might

be able to generate higher quality images than the PGGAN-based approach

considered in this work.

4.2. Augmenting Datasets with Synthetic Images385

In order to evaluate the quality of datasets augmented with synthetic im-

ages, we train several discriminative models with different combinations of real

and synthetic images and evaluate them against models trained with real images

alone. Each augmented dataset is created by adding synthetic images to one of
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(a)

(b)

(c)

Figure 5: Comparison between synthetic images of new subjects and synthetic images of their

most similar subject in the training set. The top row of each of (a), (b), (c) contains synthetic

images of a new subject and the bottom row of each of (a), (b), (c) contains synthetic images

of their most similar subject in the training set. Note that the non-identity-related attributes

only vary across the rows of (a), (b), (c) to restrict the comparison to the identity of the

subjects.

the VGGFace subsets shown in Table 1. The synthetic images are generated us-390

ing our proposed GAN trained with the same dataset that we want to augment.

For example, if we want to augment VGGFacesmall, we add synthetic images

generated by our proposed GAN trained with VGGFacesmall. In this way, we

can realistically assess whether we can improve the performance of a discrimina-

tive model by augmenting its training set using our proposed method. All our395

discriminative models are evaluated using the IJB-A dataset (Klare et al. 2015).

In particular, we use the verification protocol described in Klare et al. (2015)
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Figure 6: Synthetic images generated by interpolating between two random vectors of identity

related attributes za
id, zb

id and two random vectors of non-identity related attributes za
nid,

zb
nid.

and report the true acceptance rate when the false acceptance rate is fixed to

0.01. We chose the IJB-A dataset for evaluation because it contains challenging

images that do not overlap with any of the subjects in the VGGFace dataset.400

In Table 2 we show the accuracy of models trained with depth-augmented

datasets, i.e. datasets augmented by increasing the number of images per sub-

ject with synthetic images. For each subject in the training set we generate

multiple synthetic images by fixing the vector of identity-related attributes

E(y) and randomly sampling different vectors of non-identity-related attributes405

znid. We augment each VGGFace subset with 250, 500 and 1,500 images, which

roughly correspond to a real-synthetic ratio of 1:1, 1:2 and 1:3 respectively.

We can see how, in general, the accuracy of the models trained with depth-

augmented datasets increases with respect to the models trained without syn-

thetic images. In particular, we obtained maximum accuracy improvements of410

+1.44%, +2.22% and +4.51% when adding 500 synthetic images per subject

to the VGGFacelarge, VGGFacemedium and VGGFacesmall datasets respectively.

These results are consistent with the intuition that adding synthetic images
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Number of synthetic images per subject

Training set 0 250 500 1000

VGGFacelarge 67.58% 66.65% 69.02% 67.74%

VGGFacemedium 50.32% 52.25% 52.54% 51.97%

VGGFacesmall 30.64% 33.30% 35.15% 32.95%

Table 2: Accuracy of discriminative models trained with depth-augmented datasets. The

reported accuracy corresponds to the TAR@FAR=0.01 obtained when evaluating the models

on the IJB-A dataset.

Number of synthetic subjects

Training set 0 500 1000 1500

VGGFacelarge 67.58% 65.76% 66.32% 68.77%

VGGFacemedium 50.32% 52.15% 54.55% 54.32%

VGGFacesmall 30.64% 38.06% 39.06% 38.81%

Table 3: Accuracy of discriminative models trained with width-augmented datasets. The

reported accuracy corresponds to the TAR@FAR=0.01 obtained when evaluating the models

on the IJB-A dataset.

to smaller datasets should result in greater improvement than adding them to

larger datasets which contain more real images. The results shown in Table 2415

also suggest that there is an optimal balance between the number of real and

synthetic images per subject in a given dataset. Indeed, adding 1,000 synthetic

images per subject to the VGGFacelarge, VGGFacemedium and VGGFacesmall

datasets resulted in lower accuracy than adding 500 synthetic images per sub-

ject since the proportion of real images per subject becomes smaller.420

In Table 3 we show the accuracy of models trained with width-augmented

datasets, i.e. datasets augmented by increasing the number of subjects with syn-

thetic images of new subjects. For each new subject, we generate 500 synthetic

images (since this was the best number of synthetic images per subject obtained

20



in Table 2) by fixing a randomly sampled vector of identity-related attributes zid425

and randomly sampling different vectors of non-identity-related attributes znid.

Again, we observe improvement in most cases. In particular, we obtained a max-

imum accuracy improvement of +1.19% when adding 1,500 synthetic subjects

to the VGGFacelarge dataset; and +4.23% and +8.42% when adding 1,000 syn-

thetic subjects to the VGGFacemedium and VGGFacesmall datasets respectively.430

In this case, we also observe that adding synthetic images to the VGGFacelarge

dataset does not significantly change the recognition accuracy. This can be

explained by the fact that this dataset already contains a large number of real

subjects. In contrast, we observe a large improvement when increasing the num-

ber of synthetic subjects in the VGGFacemedium and VGGFacesmall datasets, as435

the number of real subjects in neither of these datasets is very large. We also ob-

serve that there seems to be an optimal balance between the number of real and

synthetic subjects in a given dataset. Indeed, as shown in Table 3, adding 1,500

synthetic subjects to the VGGFacemedium and VGGFacesmall does not result in

higher accuracy than adding 1,000 synthetic subjects since the proportion of real440

subjects becomes smaller. Note that in the case of the VGGFacelarge dataset,

more synthetic subjects can be added since there is still a good balance between

real and synthetic subjects. However, as mentioned earlier, this dataset already

contains a large number of real subjects. Hence, it is expected that no significant

improvement in recognition accuracy will be obtained by adding more synthetic445

subjects.

Looking at the results shown in Tables 2 and 3, we can conclude that

augmenting datasets with synthetic images is mainly beneficial for small and

medium datasets. Moreover, the accuracy improvement obtained when training

with width-augmented and depth-augmented datasets is relative to the number450

of subjects and number of images per subject of each augmented dataset. For

example, the VGGFacesmall dataset contains 200 subjects and an average of

295 images per subject. Thus, it is reasonable that the accuracy is improved

by a larger margin when adding synthetic images of new subjects (+8.42%)

than when adding synthetic images of existing subjects (+4.51%). Note that455

21



we also tried to combine both approaches by simultaneously augmenting the

depth and width of the VGGFace subsets. The results were similar to those

obtained by training with the width-augmented datasets. We hypothesise that

the improvement in these particular datasets is dominated by the addition of

synthetic images of new subjects, given that the number of real images per460

subject is already quite large.

5. Conclusions

In this paper, we have studied the feasibility of augmenting face datasets with

photo-realistic synthetic images. In particular, we have presented a new type of

conditional GAN that can generate photo-realistic face images from two latent465

vectors encoding identity-related attributes and non-identity-related attributes

respectively. By fixing the latent vector of identity-related attributes and vary-

ing the latent vector of non-identity-related attributes, our proposed GAN can

generate images of subjects with fixed identities but different attributes, such as

facial expression and head pose. The introduction of an embedding network to470

map discrete identity labels to a continuous latent space of identities allows us to

both generate images of subjects in the training set and generate images of new

subjects not in the training set. Our experiments have shown the effectiveness

of the disentangled representation and the high visual quality of the generated

images. To demonstrate the benefit of augmenting datasets with our method,475

we have trained several CNN-based face recognition models with different com-

binations of real and synthetic images. In most cases, the discriminative models

trained with a combination of real and synthetic images have outperformed the

discriminative models trained with real images alone. According to our exper-

imental results, our method is particularly effective when augmenting datasets480

with a moderate number of subjects and/or images per subject.

Since our proposed generative model is based on GANs, it is easy to adapt

to other applications by simply training the model with images of other kind

(e.g. animals, cars, etc.) Moreover, by only adding a few simple modifications
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to the standard AC-GAN architecture, our method can be easily extended. For485

example, in our particular case, the proposed GAN could be extended to con-

trol the non-identity-related attributes explicitly by conditioning the GAN on

specific attributes. This would allow face datasets to be augmented in a tailored

manner, e.g. by adding synthetic images of subjects with sunglasses, facial hair,

different ages, etc. We hope that this and other ideas derived from our work490

will contribute to the development of new data augmentation techniques that

can facilitate the development of high-accuracy face recognition systems, and

accelerate their adoption by the forensics and security communities.
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