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ABSTRACT  

 

Based on a large panel of Italian SMEs, this paper focuses on the relationship between firms‟ default probability 

and the amount of bank debt they obtain, evaluating whether and to what extent this link is affected by the degree 

of competition characterizing the local credit market where firms operate. Using a dynamic panel estimator, we 

find that higher bank competition implies a stronger influence of firms‟ riskiness on bank financing to SMEs. We 

provide two plausible interpretations of this finding: one resorting to more accurate screening by more competitive 

banks; the other alleging lower market power of incumbent banks, which may restrict their willingness to finance 

riskier firms. 
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1. INTRODUCTION  
 

In the last decade an intense dispute in the economic literature has been centered on the question 

“is competition among banks good or bad?”. As Cetorelli (2001) claims, the need for such a debate 

would be unjustified if banks‟ role were simply to intermediate between supply and demand of cre-

dit. In that case, in fact, there would not be reasons to treat banks differently from other firms or to 

doubt that market power in credit markets is likely to lead to welfare losses, as asserted by the 

common wisdom. However banks perform other crucial functions in an economy, such as the 

screening of investment projects and, through this, the allocation of capital resources to the best so-

cial uses. Understanding how credit market structure may affect these additional banks‟ functions 

represents the meaning and focus of the banking competition debate.  

So far, studies on this topic have reached controversial results – on both theoretical and empiri-

cal grounds – thus calling for further research. This paper aspires to contribute to the empirical lite-

rature on banking competition by indirectly investigating the impact of credit market structure on 

banks‟ screening activity. More precisely, we focus on the relationship between default probability 

and bank debt at firm level and question if and to what extent this link is influenced by the degree 

of banking competition characterizing the local credit market in which firms operate. Our hypothe-

sis may be stated as follows: if competition in credit markets affects banks‟ probability to screen – 

as shown, both theoretically and empirically, by several contributions in the literature on bank mar-

ket structure, briefly reviewed in the next section – then it is reasonable to suppose that firms‟ riski-

ness (which is the core of bank screening) should have, ceteris paribus, a different effect both on 

the cost and quantity of credit to entrepreneurships, depending on the degree of bank competition. 

Since we lack information on loans interest rates at firm level, our hypothesis is investigated consi-

dering the relationship going from firms‟ default probability to their bank debt. We do not posit any 

a priori expectation on the sign of this relationship (thus leaving it to be an empirical finding) – 

since the theoretical implications of firms‟ characteristics, such as default risk, on lending volumes 

are not univocal (i.e. Stiglitz and Weiss, 1981 versus de Meza and Webb, 1987; for a wide discus-

sion on this debate see Cressy, 2002). 
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To carry out the empirical analysis, we focus on Italian small and medium sized manufacturing 

firms (henceforth SMEs), which have little access to capital markets (either public equity or bond 

market) and are bound to ask credit from banks with branches in the same local market where they 

operate. Indeed, as Cesarini (2003) highlights, once internal funds are depleted, the banking channel 

is often the only way for Italian SMEs – usually facing high costs in employing arm's length finance 

(bond and Stock Exchange markets finance) – to gain access to external funds. 

Consistently with other contributions on the Italian banking system, we define 103 local markets 

corresponding to the existing administrative provinces. This disaggregation enables us to take ad-

vantage of an important feature of the Italian case. Indeed, Italian provinces are characterized by 

diversity in banking structures and this provides sufficient cross-sectional variability within a single 

institutional framework. Given this regulatory uniformity, there is no need to control for different 

regimes (Bonaccorsi di Patti and Dell‟Ariccia, 2004). 

To measure banking competition in local credit markets, we employ the Herfindahl-Hirschman 

Index (HHI) on deposits which “represents a good proxy for competition in loan markets if the em-

pirical investigation involves firms that largely borrow from local markets, that is if credit markets 

are local for the firms under consideration” (Petersen and Rajan, 1995 p. 418). As claimed above, 

this is the case for our sample units. 

The indicators of firms‟ default probability used in this paper have been computed by Moody‟s 

KMV on our sample data, via RiskCalc model. As argued by Moody‟s KMV, this model enables 

high precision and accuracy in evaluating private firm credit risk by using financial statements and, 

for listed firms, equity market-based information. The RiskCalc model is adopted by leading Italian 

banks as a benchmark for their internal credit risk estimates. In the empirical investigation we em-

ploy the cumulative EDF (Expected Default Frequency) measures – which are actual firms‟ default 

probabilities – within one, three and five years. 

The econometric analysis, implemented on a large set of micro-data running up to 2003 from 

1995, is carried out by employing the dynamic panel estimator of Arellano and Bover (1995) and 
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Blundell and Bond (1998), which allows to take into account the role of firm-specific effects (unob-

served heterogeneity), as well as the „endogeneity‟ of a number of bank debt determinants. 

Our results seem to indicate that higher competition in local credit markets implies a stronger in-

fluence of firms‟ riskiness on the amount of bank debt granted to small and medium entrepreneur-

ships (as well as on their bank debt growth). So that, since the relationship between firms‟ riskiness 

and bank debt is found negative, ceteris paribus, bank financing tends to be lower for riskier SMEs 

running in more competitive credit markets. In our view, a plausible interpretation of this evidence 

is that – as argued also by other contributions (i.e. Benfratello et al, 2006) – competitive pressures 

might force banks to perform more accurate screening, thus raising their efficiency in funds alloca-

tion. However, bank financing to riskier firms could be lower in more competitive credit markets 

for a reason unrelated to bank screening: higher bank competition may reduce the market power of 

incumbent banks, hence lowering their willingness to finance riskier firms – an explanation in line 

with Petersen and Rajan‟s (1995) findings. As we argue below (see section 5), both these interpreta-

tions may be considered likewise plausible, as well as not conflicting with each other, since the 

conceptual mechanisms they subtend may jointly represent the source of our evidence. 

The remainder of the paper is organized as follows. The next section presents a brief review of 

the literature on the economic effects of banking competition. Section 3 illustrates the econometric 

specification and the methodology adopted. Section 4 describes the data. Section 5 reports the re-

sults obtained and the robustness checks performed. Finally, Section 6 summarizes and concludes.  

 

 

 
2. A BRIEF LITERATURE REVIEW  
 

In a decade or so of debate on banking competition a considerable body of research has been 

proposed. Given the scope of our work, in what follows we focus briefly only on the most relevant 

contributions that have analyzed – both theoretically and empirically – the effects of banking com-
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petition on banks‟ screening activity or, more generally, the role of banking market structure on 

funds allocation in the economy.1 

In a model of bank screening, Shaffer (1998) shows that the average creditworthiness of a 

bank‟s pool of borrowers declines as banking competition increases. In a similar model, Cao and 

Shi (2001) prove that a more intense banking competition can reduce banks‟ screening incentives, 

so that the number of banks actively performing screening and competing in credit supply falls. As 

a result, in a market with many banks, loan rates would be higher and credit volumes lower than in 

a market with a few banks. In line with this study, Dell'Ariccia (2000) concludes that more banking 

competition reduces the likelihood that banks will screen entrepreneurs, as opposed to indiscrimi-

nate lending.  

Using a dynamic model of capital accumulation, Cetorelli (1997) points out that a monopolistic 

credit market brings about a trade-off between efficient allocation of funds and quantity of credit 

made available. A monopolist bank can efficiently screen potential borrowers, thus increasing the 

quality of credit supply. On the other hand, the rent-extraction behavior of the monopolist bank 

produces a negative effect on equilibrium credit quantities. Cetorelli and Peretto (2000) identify the 

same trade-off in a Cournot oligopoly model.  

Chiesa (1998) claims that when banks engage in information production about firms, a concen-

trated banking industry leads credit allocation to be closer to the first-best optimum. Similarly, Ge-

hrig (1998) shows that – when banks use screening procedures that generate (imperfect) informa-

tion on borrowers – an increased competition reduces screening efforts, so that the quality of the 

overall loan portfolio declines. Also Marquez (2002), Gehrig and Stenbacka (2001), and Hauswald 

and Marquez (2006) argue that competition reduces banks‟ screening ability by worsening the pool 

                                                 
1
 As a consequence, we do not discuss the many studies analyzing the role of banking competition on credit availability 

to firms or on some other economic aspect, such as capital accumulation, growth etc. For an extensive review of these 

contributions see Cetorelli (2001). For more general reviews on the issue of banking competition see Berger et al. (1999), 

Carletti et al. (2002), Northcott (2004), Degryse and Ongena (2008). 
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of loan applicants. Manove et al. (2001) show that, in a competitive environment, the use of colla-

teral in debt contracts may lead banks‟ screening effort below its socially efficient level. 

De Mello (2004) analyzes a model in which the impact of bank market power on credit supply 

depends on how much information about borrowers is available. He provides evidence that, by in-

creasing the rent extraction associated with acquiring private information on firms, market power 

induces more investment in private information acquisition, so as to recruit good borrowers. Boot 

and Thakor (2000) develop a banking model to study the nature of lending relationships and how 

these depend on competition, finding that increased bank competition improves welfare for inter-

mediate and high quality borrowers, whereas low-quality borrowers may be either better or worse 

off.  

Beside these studies, other works reach different conclusions. Jayaratne and Strahan (1996, 

1998) find, among other things, that banks improved their screening and monitoring of borrowers 

after the U.S. branching deregulation. Since this latter has enhanced banking competition,2 their 

results suggest indirect beneficial effects of banking competition on banks‟ screening activity. By 

using both bank level balance sheet data and macroeconomic data for the EU-15 countries, Chen 

(2007) finds that, after the implementation of the Second European Banking Directive, increased 

banking competition has improved loans‟ quality. Focusing on the French case, Bertrand et al. 

(2007) document that, following the deregulation process started in 1985 – which promoted, among 

other things, a more vigorous banking competition – banks improved their monitoring and/or 

screening functions. Chen (2005) claims that, when facing competitive pressures, it is more likely 

that banks choose screening activity instead of collateral requirements. Moreover, Benfratello et al. 

(2006) argue that higher competition can lead banks to introduce better practices in screening, se-

lecting, evaluating and monitoring firms.  

                                                 
2
 On the beneficial dynamic effects of banking competition following deregulation in the U.S. see also Strahan (2003). 

For the Italian case, see Angelini and Cetorelli (2003). 
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The studies so far surveyed indicate unsettlement in the literature as to the effects of credit mar-

ket structure on banks‟ screening activity and, through this way, on their role in allocating capital 

resources in the economy. This calls for further research, and the present paper aims to bring a new 

contribution on the topic. The empirical question we consider, along with the methodology em-

ployed, are described in the next section. 

 

 

 
3. EMPIRICAL QUESTION AND METHODOLOGY   
 

By employing Italian SMEs data we analyze the relationship between default probability and 

bank debt at firm level – evaluating whether and to what extent this link is affected by the degree of 

banking competition in the local credit market in which firms operate. The intuition behind this 

analysis is that if competition in credit markets affects banks‟ probability to screen, as shown by the 

literature on bank market structure, then (ceteris paribus) the effect of firms‟ default probability on 

the amount of credit granted to entrepreneurships should be different, depending on the degree of 

bank competition.3 To carry out this test, we follow the empirical strategy described in the next two 

sub-sections.  

 

 
3.1 The econometric specification 
 

The estimating equation presents the following specification: 
 

 

 

itt
t

titit TXHHIRISKHHIRISKBANKDEBT   
'

* ,                                              (1) 

 

 

 

where indices i and t refer to individuals and time periods, respectively, and the dependent variable 

(BANKDEBT) is the ratio of bank debt to total assets. On the right hand side, RISK(1/3/5) is the 

                                                 
3 
As indicated in section 1, we lack information on loans interest rates at firm level, and it is for this reason that we focus 

only on the relationship going from SMEs‟ riskiness to their bank debt. Moreover, we do not have any a priori expecta-

tion on the sign of this relationship – being the theoretical implications of firms‟ characteristics on lending volumes not 

univocal (Stiglitz and Weiss, 1981; de Meza and Webb, 1987; Cressy, 2002). 
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one, three or five years firm‟s default probability, calculated by Moody‟s KMV on our sample data 

via RiskCalc model (see Section 4 for more details); HHI is the Herfindahl-Hirschman Index on 

deposits;4 RISK*HHI (hereafter INTE) is the interaction term between the two variables aforemen-

tioned.5 The vector X includes the following set of firm-specific control variables: (the log of) firm 

age (AGE) and its square (AGE2); (the log of) total assets (TA) and its square (TA2); a measure of 

physical capital intensity, proxied by the ratio of tangible assets to total assets (TGASS); CASH-

FLOW; the ratio of liquid to total assets (LIQUI); the ratio of trade debt to total assets (TRD), as 

trade debt may be a substitute for bank debt (on this point see, for instance, De Blasio 2005); a 

group membership dummy (GROU), equal to 1 for firms belonging to a group and 0 otherwise; 

Pavitt dummies (PAV), to take into account heterogeneity at sectoral level. The vector X includes 

also two variables at provincial level: the (log of) total deposits (DEP), to control for the size of the 

banking market, and the ratio of bad loans to total loans (BAD) as a proxy for credit market riski-

                                                 
4
 Since in Italy, like in most other European countries, data at local banking office level are not publicly available, we 

follow Carbò Valverde et al. (2003) and draw each variable x needed in the computation of HHI as: 

 itiptitipt BR/BR*Xx  , where: i=1,…,N; p=1,…,103; t=1995,…2003; 
iptx  is a variable of interest for each branch office 

of bank i in province p in year t; itX is the same variable of interest as it is provided by the balance sheet of bank i in year 

t; iptBR  is the number of branch offices of bank i in province p in year t; itBR is the total number of branch offices of 

bank i in year t. Then, for each year considered in the analysis, we obtain our indicator of local banking competition as 

follows:  2ipp msHHI  , where  pipip D/Dms   is the market share on deposits for each branch office of bank i in 

province p, and  i ipp DD . 

5
 The HHI stems from the traditional structure-conduct-performance (SCP) paradigm, which states that firms‟ profits are 

likely to be higher in more concentrated markets, where firms have greater market power and the collusion among them 

might be easier. This prediction has been criticized by various authors (e.g. Demsetz, 1973; Peltzman, 1977), and – with 

respect to the banking sector – some studies have found weak evidence in favor of a positive relationship between market 

concentration and profitability (e.g. Rhoades, 1995; Hannan, 1997). On the other hand, there are several contributions 

providing empirical support to the main argument of the SCP paradigm (e.g. Berger and Hannan, 1989; Hannan and 

Berger, 1991; Pilloff and Rhoades, 2002). See Gilbert (1984), Weiss (1989), and Gilbert and Zaretsky (2003) for surveys 

of empirical SCP studies. 
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ness. Finally, Tt is a set of time fixed effects, while itiit u  is a composite error, where the in-

dividual effect ( i ) summarizes time-invariant unobserved firms‟ characteristics, and the second 

term ( itu ) captures idiosyncratic shocks to BANKDEBT.6 Table 1 describes all the variables em-

ployed in the estimations, while Table 2 reports their summary statistics.7 

Focusing on the variables of interest, we specify a multiplicative interaction model, where the 

partial effect of RISK on BANKDEBT is conditional on the level of HHI. Formally, the marginal 

effect of RISK is computed as:  

 

HHI*ˆˆ
RISK

BANKDEBT
 




,                           (2) 

 

where ̂ *HHI is the estimated coefficient of the interaction term multiplied by the local banking 

competition indicator, while ̂ is the estimated coefficient of RISK, indicating the marginal effect 

of RISK on BANKDEBT when HHI is zero. Finally, the significance of (2) is tested by calculating 

the relative standard error: 

 

)ˆ,ˆcov(*HHI2)ˆvar(*)HHI()ˆvar(ˆ 2   .                    (3) 

 

Since both (2) and (3) depend on the level of HHI, the marginal effect of RISK may change sign 

and gain or lose significance according to the value of the competition variable. To summarize this 

rich piece of information, the marginal effect of RISK will be graphed, along with its 95% confi-

dence intervals, across the range of HHI. 

 

 

 

 

 

                                                 
6
 It is worth mentioning that a poolability test (the Breusch and Pagan Lagrange multiplier test for random effects) rejects 

the null hypothesis that Var( i )=0. Moreover, the Hausman test rejects the null of no correlation between fixed effects 

and explanatory variables, and this will be taken into account in what follows. 

7
 A correlation matrix is provided as an appendix. 
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3.2 The estimation method 
 

As introduced above, the dependent variable is the ratio of bank loans to total assets. This varia-

ble is zero for a non-negligible proportion of the population, and is essentially continuous over posi-

tive values. In other words, there is a mass point at zero because many individuals find a corner so-

lution optimal. In these cases, the most commonly used method is the Tobit model. The latter, how-

ever, posits a number of limitations as the same vectors of variables and coefficients determine both 

the probability that an observation is censored and the level of the dependent variable. In many cir-

cumstances where there are fixed costs of moving away from the mass point, this is not the case. 

Indeed, recent contributions on financing patterns around the world and financial relations between 

banks and firms assume a two-step process with regard to how firms decide their external financing 

sources (see, for instance, Beck et al, 2002; Hori and Osano, 2003). First, the managers choose a 

particular source of financing. Next, they decide the proportion of investment to finance through 

that source. In line with this two-step assumption, it is advocated the use of sample selection (or 

double hurdle) models, where the determinants of selection and amount may differ, or a given set of 

determinants may have different levels of relative importance. 

In the present study, we test for the presence of non-random selection bias by adopting the pro-

cedure suggested by Wooldridge (1995, p. 124), which “can be viewed as an extension of Heck-

man‟s (1979) procedure to an unobserved effects framework”. 8 As this test is not significant at the 

conventional levels, we cannot reject the null hypothesis of absence of correlation between the se-

                                                 
8
 This procedure controls for unobserved heterogeneity by adopting a fixed effects (FE) model. Thus, the unobserved 

components are allowed to be correlated with the explanatory variables. Moreover, the idiosyncratic errors may have 

serial dependence of unspecified form. In our test, the selection and main equations include the same control variables 

with the exception of (the log of) population, the growth of real GDP (at provincial level), and the tax incentives dummy 

(equal to 1 if firms received tax incentives and 0 otherwise). These latter variables are assumed to affect only the selec-

tion process, and their exclusion from the main equation allows us to better identify the model. Besides, when we test this 

assumption by including them in both equations, their estimated coefficients are never statistically significant in the main 

equation. 
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lection and the amount processes. Hence, the latter can be estimated separately. When equation (1) 

is estimated by adopting a FE panel model the RISK coefficient is always positive (and statistically 

significant when using RISK3 and RISK5). Such a result, yet, is based on the assumption that all 

regressors are exogenous. However, the RISK variable (along with other explanatory variables) is 

likely to be endogenous. Indeed, a reverse causality may be at work: on one hand, borrowers‟ risk 

of failure is expected to influence banks‟ lending decisions; on the other hand, borrowers‟ risk can 

be influenced by available credit.9 Moreover, some explanatory variables may be regarded as prede-

termined.10 Furthermore, thus far we have assumed that there is no dynamic adjustment for the de-

pendent variable. A general approach to relax these assumptions, and still control for unobserved 

heterogeneity, consists of two steps. Firstly, the data are transformed in order to eliminate the unob-

served individual effects, and then valid instrumental variables are employed, so as to deal with the 

endogeneity problem posed by some regressors and the dynamic adjustment term. In the present 

paper, we adopt the so-called system GMM (SYS-GMM) estimator of Arellano and Bover (1995) 

and Blundell and Bond (1998). These authors propose a GMM procedure exploiting both the entire 

set of internal instruments for the model in first differences, under the assumption of white noise 

errors (as the GMM-difference estimator of Arellano and Bond, 1991), and extra orthogonality con-

ditions for the model in levels. Such extra conditions “remain informative even for persistent se-

                                                 
9
 The suspicion that RISK may be endogenous is also related to the fact that, as illustrated by Moody‟s KMV (2006, p. 

12), a leverage variable is included in the EDF estimation. This variable is defined as (Net Worth minus Intangible As-

sets) to (Assets minus Intangible Assets), implying that: “large leverage corresponds to low levels of Tangible Net Worth 

to Tangible Assets and high default risk” (ibid: p. 12). 

10
 The latter type of variables are potentially correlated with past values of the idiosyncratic error, but are not correlated to 

its present and future values. A strictly exogenous variable is uncorrelated with past, present and future values of the error 

term. In equation (1), if it appears plausible that the current value of a regressor (such as tangible assets) is influenced by 

past shocks to profitability, that variable is treated as predetermined. When a variable (such as RISK) is likely to be de-

termined simultaneously along with the amount of debt, it is treated as endogenous. As a result, we treat as exogenous 

only Pavitt dummies and the DEP variable.  
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ries, and (the system estimator) has been shown to perform well in simulations” (Bond et al, 2001, 

p. 4), increasing the efficiency of the estimation. 11    

 

 

 
4. DATA 
 

The econometric analysis is based on data coming from several sources. Information on Italian 

manufacturing firms is drawn from Capitalia‟s 7th, 8th and 9th surveys, known as Indagini sulle Im-

prese Manifatturiere, conducted on all Italian manufacturing firms employing more than 500 work-

ers and on a stratified sample of firms with more than 10 workers. Each of these surveys, including 

mostly qualitative information, spans three years: the 7th survey, carried out in 1998, reports data for 

a panel of 4,493 firms for the period 1995-1997; the 8th one was conducted in 2001 and has data for 

a panel of 4,680 firms for the years 1998-2000, and the 9th, administered in 2004, includes 4,289 

firms for the period 2001-2003. Capitalia provides also balance sheet data on firms included in the 

surveys. By matching qualitative and accounting information, we obtain an unbalanced panel of 

5,998 firms for the period 1995-2003, for a total of 25,530 observations. As abovementioned, we 

focus on SMEs, which are bound to ask credit from banks with branches in the same local market 

where they operate. Therefore, we drop firms with more than 250 workers and those listed on the 

Stock Exchange.  

A second data source is the BILBANK dataset, edited by the Italian Banking Association (ABI), 

which provides, for each year in the period 1995-2003, balance sheet data on nearly all Italian 

banks. A third dataset is provided by the Bank of Italy and gives us figures on the territorial distri-

bution of branches for each Italian bank over the period considered in the analysis. Combining in-

formation on branches with ABI data on deposits at single bank level we have been able to imple-

ment the criterion described in sub-section 3.1 (footnote 4) to compute the HHI for each Italian 

                                                 
11

 More precisely, the system GMM estimator, along with the moment conditions of the GMM difference, uses the lagged 

differences of the regressors as instruments for the equation in levels. The main assumption underlying the use of mo-

ment restrictions in levels is that the unobserved effects are not correlated with changes in the error term.  
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province. It is worth noticing that aggregate deposits at provincial level (DEP) and BAD are also 

drawn from the Bank of Italy dataset.  

Finally, as previously mentioned, data on firm riskiness come from Moody‟s KMV. By using 

the RiskCalc model – a rating model elaborated to forecast firms‟ insolvency – Moody‟s KMV 

computed the Expected Default Frequency (EDF) for the firms included in our sample. The EDF 

are actual firms‟ default probabilities and, for SMEs, are estimated relying on balance sheet and 

sectoral information. In the econometric analysis we employ the cumulative EDF within one, three, 

and five years.12 After matching the information gathered from all the abovementioned sources, and 

accounting for the presence of potential outliers,13 we obtain the estimation sample presented in Ta-

ble 2. 

 

 

 
5. RESULTS  
 

Table 3 reports the SYS-GMM estimates. Column (2) shows the results obtained when the meas-

ure of prospective insolvency (RISK) indicates the default probability within one year, while the 

other two adjacent columns show those obtained when the insolvency measure expresses the prob-

ability that a firm goes bankrupt within three and five years, respectively. The standard errors (not 

reported) are consistent in the presence of any pattern of heteroskedasticity and autocorrelation 

within panels, and the p-values are reported below the coefficient estimates.   

Looking first at the diagnostic statistics, the autocorrelation tests signal in all regressions a strong 

first order correlation in the differenced residuals but no higher order autocorrelation, therefore 

supporting the assumption of lack of autocorrelation in the errors in levels underlying the estimator. 

Moreover, the Hansen test cannot reject the null hypothesis of validity of the over-identifying re-

                                                 
12

 For further details on the RiskCalc model we refer the reader to the Moody‟s KMV website.  

13
 For each variable involved in the econometric analysis, the observations lying in the first and last half percentile of the 

distribution have been dropped.  



14 

 

strictions, and the difference in Hansen test supports the validity of the additional instruments used 

by the SYS-GMM estimator.14  

Focusing on the variables of interest, the RISK coefficient is always negative and statistically 

significant – while the INTE coefficient is all the time positive, but individually significant (at 10% 

level) only when the dependent variable is RISK1. Nonetheless, as shown by the F-tests reported, 

the interaction term is always jointly significant with the RISK regressor.15 Therefore, the estimates 

in Table 3 seem to indicate that the likelihood of going bankrupt exerts a reductive effect on the 

amount of bank debt when the HHI is zero (and, hence, the interaction term is zero). However, 

since HHI is never zero in our sample, this provides us with limited information. More accurately, 

to analyze the marginal impact of the default probability for different levels of banking market con-

centration, we compute the marginal effect of RISK conditional on the value of HHI, and depict it 

across the entire range of the HHI by means of Figure 1.16 Looking at this latter, the RISK variable 

appears to have a negative and significant impact for a large part of the HHI values: the percentage 

of observations falling within the region of significance is close to 60%.17 Moreover, Figure 1 indi-

cates that – in the statistically significant region – the estimated marginal effect of RISK on BANK-

                                                 
14

 The estimates are obtained by using a subset of the available instruments. This is because, as Altonji and Segal (1994) 

point out, the use of all instruments implies small-sample downward bias of the coefficients and standard errors. 

15
 The divergence between individual and joint significance may be interpreted as a symptom of multicollinearity (see 

Brambor et al, 2006) induced by the inclusion of the interaction term. As Brambor et al. (2006, p. 70) point out: „„even if 

there really is high multicollinearity and this leads to large standard errors on the model parameters, it is important to 

remember that these standard errors are never in any sense „too‟ large – they are always the „correct‟ standard errors. 

High multicollinearity simply means that there is not enough information in the data to estimate the model parameters 

accurately and the standard errors rightfully reflect this‟‟. 
 

16
 See sub-section 3.1 for the marginal effect and standard error formulas. 

17
 As far as the not statistically significant region is concerned, the marginal effect of RISK on BANKDEBT is positive 

for values of HHI greater than (about) 16.5. The observations falling beyond this threshold, however, are only 7%. 
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DEBT decreases (in absolute value) when moving from lower to higher values of banking concen-

tration.18  

 
   Figure 1 
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By and large, our econometric results seem to indicate that a lower (higher) local credit market 

concentration implies a stronger (weaker) influence of firms‟ riskiness on the amount of bank debt 

granted to SMEs. Since the relationship between firms‟ riskiness and bank debt is negative, ceteris 

paribus, bank financing appears to be lower (higher) for riskier SMEs running in more (less) com-

petitive credit markets. In our view, these findings may represent evidence that a stronger bank 

competition could spur financial institutions to perform more accurate firms‟ screening. However, it 

is also reasonable to argue that bank financing to riskier firms could be lower in more competitive 

credit markets for a reason not related to bank screening: higher bank competition may erode the 

market power of incumbent banks, thus lowering their willingness to finance riskier firms.  

                                                 
18

 To economize on space, and also as they lead to the same conclusions, the graphs obtained when using the other two 

risk measures (RISK3 and RISK5) are omitted, but are available from the authors on request. It is worth mentioning that 

the only noticeable difference among the three graphs is the absolute value of the marginal effect of RISK. Indeed, the 

negative impact that the RISK variable exerts on BANKDEBT keeps decreasing (in absolute terms) when passing from 

the first measure to the last one. In other words, bank loans appear to be more affected by the probability of default within 

the current year, than by those within three and five years. 
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As claimed by an anonymous referee, the possibility that our evidence is compatible with inter-

pretations different from the one we offer is to some extent related to the structure of the dataset 

employed. Indeed, while the latter provides information on the annual stock of firm‟s bank debt, it 

does not allow us to distinguish whether (and to what extent) this debt is granted by „new banks‟ 

(meaning those which had not given credit to a firm before) or by banks having long-term relation-

ships with firms. In deciding whether to extend or deny new credit to their borrowers, the former 

„new banks‟ have the need to screen new borrowers, while the latter financial institutions probably 

rely on the outcomes of monitoring activity (rather than on a new screening process). Although the 

validity of this argument is fully acknowledged, we believe that there is at least one peculiarity of 

Italian bank-firm relationships for which the explanation of our results in terms of bank screening 

may be considered as plausible as the other interpretation relying on the market power of incumbent 

banks. We are referring to the broadly documented phenomenon of multiple banking relationships, 

which – even though existent in some other European countries – in Italy represents a very common 

feature also among medium and small entrepreneurships (see, for instance: Foglia et al, 1998; 

D‟Auria et al, 1999; Detragiache et al, 2000; Ongena and Smith, 2000; Carmignani and Omiccioli, 

2007). A likely consequence of such a widespread phenomenon might be that also firms with con-

solidated bank relationships could apply for credit to „new banks‟ (these latter understood in the 

sense above indicated). If so, one cannot exclude a priori that many firms in our sample were ad-

dressing new banks in the period taken into account – with the possible implication that screening 

represented the main bank activity for the entrepreneurships we analyzed. 19  

                                                 
19

 We also acknowledge that, as noted by an anonymous referee, our empirical model cannot capture the distinction be-

tween banks‟ incentives and banks‟ ability to perform screening – although, as indicated by the literature on the issue, 

both these aspects might be affected by credit market structure. Nonetheless, we are aware that taking into account this 

distinction would be relevant, both from a research perspective and in terms of policy implications. Indeed, as far as these 

latter are concerned, understanding which factors affect the incentives and which influence the ability of banks to screen 

entrepreneurships could shed new light on some important questions, as that of credit rationing to SMEs (an attempt to 

carry out such an analysis, by taking into account also bank monitoring, has been done by Agostino et al, 2008). 
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To summarize, the two interpretations so far discussed do not appear conflicting with each other; 

rather, it could be the case that the insights beyond both these explanations may jointly represent the 

source of the empirical regularity we find.   

 

 
5.1 Robustness checks 
 

To check the robustness of the results above discussed, we have carried out several sensitivity 

proofs. First, equation (1) has been re-estimated by incorporating additional potential explanatory 

variables. To take into account effects at the macro-region level, we introduce a geographical 

dummy (SOUTH), which is equal to 1 if firms are located in the Southern regions of Italy and 0 

otherwise. In addition, we account for some institutional and local market conditions, by adding a 

measure of efficiency of the judicial system (LEGENF), and a measure of the underground econo-

my (UNDERG).20As shown by the results reported in columns 5-6 of Table 3, these robustness tests 

leave unaltered the main conclusions reached by our analysis.21 For the sake of conciseness, we only 

report the following figure obtained from the results in column 6. 22 

 

 

 

 

 

 

 

 

                                                 
20

 Both measures are treated as exogenous in the estimations. LEGENF is given by the backlog of civil trials pending 

(first degree of judgement) on population, while UNDERG is given by the irregular number of labour units on popula-

tion. Data on civil trials have been drawn from ISTAT. Since they are available at judicial district level (which may in-

clude more than one province), we obtained the provincial figures by pondering with population. Data on the under-

ground economy come from the Italian Ministry of Welfare. 

21 
Our main findings are substantially confirmed also when we re-estimate equation (1) replacing DHHI with BHHI – this 

latter being the Herfindahl-Hirschman Index computed on bank branches at provincial level. We do not emphasize these 

results, however, as the Hansen is statistically significant. 

22 
Columns 5 and 6 of Table 3 display the estimation results when the dependent variable of equation (1) is RISK1. The 

outcomes obtained when using RISK3 and RISK5 are made available upon request. 
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Following the suggestion of an anonymous referee, we have also investigated the potential non-

monotonicity of the link between RISK and BANKDEBT, by re-estimating equation (1) with the 

square of RISK (1/3/5). The results of these further regressions, not reported and available upon 

request, seem to exclude the nonmonotonicity of ∂BANKDEBT/∂RISK. Indeed, the estimated coef-

ficients of RISK and RISK2 are always negative, and the latter is never individually significant.
23

 

As further sensitive checks, the dependent variable of equation (1) is replaced with some meas-

ures of firm‟s debt growth. Since we employ a dynamic model specification, to carry out such 

proofs we first use LNBANKDEBT – which is the natural logarithmic of (one plus) the ratio of 

bank debt to total assets (BANKDEBT) – and then replace LNBANKDEBT with LNBANDEBT_L, 

the latter being the natural log of (one plus) firm's total bank debt in levels. 24 The results from these 

additional estimations, reported in Table 4 (columns 2-4 and 5-7, respectively) – and exemplified 

by Figures 3 and 4 – clearly provide a further confirmation of our main findings. These therefore 

hold when we think in terms of firms‟ debt growth too.25 Evidence in favor of the foremost conclu-

                                                 
23

 It is worth mentioning that the inclusion of RISK
2
 in equation (1) requires a different formulation of (2) and (3). For 

further details, see the webpage related to the paper of Brambor et al. (2006), at: www.stanford.edu/~tbrambor/.  

24
 Broadly speaking, when the dependent variable is taken in logarithmic form and a first lag of the same variable is in-

cluded in the set of regressors (as in our case), the estimated coefficients of the latter can be interpreted as marginal ef-

fects on the rate of growth of the dependent variable (see, for instance, Oliveira and Fortunato, 2006).  

25
 Figure 3 is based on column 2 of Table 4, while Figure 4 is based on column 5 of the same table. 

http://www.stanford.edu/~tbrambor/
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sions of our analysis is also found when, using LNBANKDEBT or LNBANKDEBT_L as depen-

dent variables in equation (1), this latter is augmented with the extra potential regressors indicated 

above in this sub-section (i.e.: AGE2, TA2, SOUTH, LEGENF, UNDERG).26  
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6. CONCLUDING REMARKS 
 

This paper has been concerned with the role of credit market structure on banks‟ screening activ-

ity, a topic disputed in the literature. We have dealt with this issue by empirically investigating 

whether and to what extent the link between a firm‟s default probability and the amount of bank 

debt it receives is affected by the degree of competition characterizing the local credit market where 

the firm operates. Our approach moves from the consideration that if competition in credit markets 

affects banks‟ probability to screen, as shown by the literature on bank market structure, then (cete-

ris paribus) the effect of firms‟ default probability on credit quantity to entrepreneurships should be 

different, depending on the degree of bank competition. 

The research has been conducted on a large panel of Italian SMEs for the period spanning the 

years from 1995 to 2003. Having focused on Italian SMEs is relevant since these firms have little 

                                                 
26

 These latter estimates, and the figures obtained from the results in columns 3-4 and 6-7 of Table 4, are available upon 

request.  
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access to capital markets and are bound to ask credit from banks with branches in the same local 

market where they operate. The methodology adopted to implement the analysis consisted in speci-

fying a multiplicative interaction model, in which the impact of firms‟ riskiness profile on their 

usage of bank financing is made conditional on the level of local banking concentration. Moreover, 

both the role of firm-specific effects and the endogeneity of several determinants of bank debt have 

been taken into account. 

Our results suggest that in local credit markets where competition is more vigorous the influence 

of firms‟ riskiness on the amount of bank debt to small and medium entrepreneurships, as well as 

on firms‟ bank debt growth, is stronger. Since the relationship between firms‟ riskiness and bank 

debt is found negative, and ceteris paribus, bank financing appears to be lower for riskier SMEs 

running in more competitive credit markets. This evidence seems to be compatible with at least two 

explanations. On one hand, according to some contributions (i.e. Benfratello et al, 2006), competi-

tive pressures might stimulate banks to perform more accurate borrowers‟ screening, so that credit 

market competition would be beneficial in raising banks‟ efficiency in funds allocation. On the oth-

er hand, regardless of screening activity (and in line with Petersen and Rajan‟s, 1995 thesis), bank 

financing to riskier firms could be lower where credit competition is stronger because this latter 

might erode the market power of incumbent banks, thus reducing their incentives to finance higher 

riskier entrepreneurships.  

We have argued that both the above interpretations may be considered likewise plausible, and 

not necessarily conflicting with each other, as the conceptual mechanisms they subtend may jointly 

represent the source of our evidence. Nonetheless, to shed more light on the issue addressed in this 

paper, ongoing research is devoted to explore novel empirical strategies aimed at directly relating 

local credit market competition with both banks‟ incentives and ability to screen. From this research 

we also expect to draw some indications that may further corroborate the policy implication sug-

gested by the results of the present paper, namely that the profound transformation process of the 
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Italian banking industry – which started in the early 1990s and fostered competition in the sector 

(Angelini and Cetorelli, 2003) – might have improved funds allocation in the economy.  
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TABLE 1 - Description of variables used in the estimations 

                    

VARIABLE DESCRIPTION               

                    

BANKDEBT Bank debt to total assets             

RISK1  One year firm's default probability          

RISK3 Three years firm's default probability          

RISK5 Five years firm's default probability          

HHI Herfindahl-Hirschman index on deposits (provincial level)     

AGE * Current year minus firm’s year of establishment        

TA * Total assets                

TGASS (Property, plant, equipment and land) to total assets     

CASHFLOW 
(Net profit plus amounts charged off for depreciation, depletion and amortiza-
tion) to total assets 

LIQUI (Cash, accounts receivable, other current assets) to total assets   

TRD Trade debt to total assets              

GROU Dummy =1 if firms belong to a group and zero otherwise     

PAV1 Dummy =1 if firms belong to the traditional sectors and zero otherwise 

PAV2 Dummy =1 if firms belong to the scale sectors and zero otherwise   

PAV3 
Dummy =1 if firms belong to the specialized supplier sectors and zero other-
wise 

PAV4 Dummy =1 if firms belong to the science based sectors and zero otherwise 

DEP * Total banks' deposits (provincial level)         

BAD Bad loans to total loans (provincial level)         

                    

All the variables are drawn from the 7
th
, 8

th
 and 9

th
 Capitalia's surveys (Indagini sulle Imprese Manu-

fatturiere) with the exception of: i) HHI, obtained by our calculations on BILBANK data; ii) DEP and 
BAD drawn from the Bank of Italy's dataset. * These variables are taken in natural logarithm in the 
estimations of equation (1). 
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TABLE 2 - Summary statistics 

                    

Variable Mean   Std. Dev.   Min   Max   Obs 

                    

BANKDEBT
 a
 16.11   17.53   0   64.83   18016 

RISK1
 a
 0.29   0.37   0.06   7.33   18016 

RISK3 
a
 1.09   1.14   0.30   23.72   18016 

RISK5 
a
 2.00   1.91   0.67   38.63   18016 

HHI 11.29   3.76   5.01   29.49   18016 

AGE 
b
 23   15   1   96   18016 

TA 
c
 4.112   5.051   0.284   42.481   18016 

TGASS 
a
 22.79   15.30   0.45   71.50   18016 

CASHFLOW
 a
 12.98   7.55   -8.76   43.92   18016 

LIQUI 
a
 72.29   16.01   21.65   98.75   18016 

TRD 
a
 20.26   17.03   0   74.83   18016 

GROU 0.185   0.389   0   1   17987 

PAV1 0.521   0.500   0   1   17974 

PAV2 0.187   0.390   0   1   17974 

PAV3 0.255   0.436   0   1   17974 

PAV4 0.037   0.189   0   1   17974 

DEP 
d
 7,282   11,310   177   45,706   18016 

BAD
 a

 6.13   5.43   1.46   45.25   18016 

  
 

  
 

  
 

  
 

    

a
 In percentage terms; 

b
 in units; 

c 
in thousands of euro; 

d
 in millions of euro. The other variables are dum-

mies, with the exception of HHI (see sub-section 3.1). For the description of the variables see Table 1.  
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TABLE 3 - Dynamic panel-data estimation. One-step system GMM results 

                    

  DEPENDENT VARIABLE (BANKDEBT) 

                    

  Column 2   Column 3   Column 4   Column 5   Column 6 

                    

  RISK1   RISK3   RISK5   RISK1   RISK1 

                    

BANKDEBT(-1) 0.652   0.656   0.657   0.652   0.653 

  0.000   0.000   0.000   0.000   0.000 

RISK -15.75   -4.704   -2.674   -15.75   -16.04 

  0.018   0.026   0.031   0.018   0.018 

HHI -0.160   -0.193   -0.213   -0.161   -0.178 

  0.469   0.418   0.392   0.468   0.440 

INTE 0.967   0.292   0.168   0.966   0.995 

  0.085   0.096   0.099   0.086   0.081 

AGE -2.952   -2.923   -2.846   -2.950   -2.730 

  0.238   0.246   0.260   0.238   0.276 

AGE 
2
 0.657   0.657   0.646   0.657   0.636 

  0.127   0.130   0.137   0.128   0.142 

TA 25.34   24.97   24.82   25.33   25.71 

  0.010   0.011   0.011   0.010   0.010 

TA 
2
 -1.432   -1.412   -1.403   -1.432   -1.452 

  0.009   0.010   0.011   0.009   0.010 

TGASS -0.137   -0.138   -0.138   -0.137   -0.127 

  0.079   0.076   0.076   0.080   0.108 

CASHFLOW -0.749   -0.745   -0.740   -0.749   -0.750 

  0.000   0.000   0.000   0.000   0.000 

LIQUI -0.229   -0.231   -0.231   -0.229   -0.218 

  0.002   0.002   0.002   0.002   0.004 

TRD 0.353   0.355   0.356   0.353   0.354 

  0.000   0.000   0.000   0.000   0.000 

GROU -2.323   -2.302   -2.282   -2.325   -2.316 

  0.058   0.062   0.065   0.058   0.063 

PAV2 6.971   7.067   7.139   6.964   7.071 

  0.004   0.003   0.003   0.004   0.003 

PAV3 -0.432   -0.345   -0.281   -0.458   -0.177 

  0.856   0.885   0.906   0.856   0.946 

PAV4 7.417   7.962   8.159   7.418   9.245 

  0.155   0.129   0.120   0.155   0.098 

DEP -0.955   -0.949   -0.944   -0.957   -1.155 

  0.243   0.243   0.244   0.244   0.166 

BAD -0.071   -0.067   -0.064   -0.068   -0.085 

  0.230   0.260   0.280   0.458   0.392 

SOUTH             -0.056   -0.994 

              0.973   0.693 

LEGENF                 0.431 

                  0.122 

UNDERG                 -0.072 

                  0.311 
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Table 3 continued 
 
N.obs 

 
 

8183 

 
 

8183 

 
 

8183 

 
 

8183 

 
 

8183 

                    

Model test 34.06   34.4   34.67   32.77   30.24 

  0.000   0.000   0.000   0.000   0.000 

                    

F-test joint sign  3.61   3.09   2.8   3.61   3.58 

(RISK, INTE) 0.027   0.046   0.061   0.027   0.028 

                    

AB test (AR1)-FD -11.43   -11.41   -11.4   -11.43   -11.39 
  0.000   0.000   0.000   0.000   0.000 

                    

AB test (AR2)-FD 0.20   0.22   0.23   0.20   0.22 

  0.840   0.826   0.820   0.840   0.829 

                    

Hansen test  430.4   427.8   427.1   430.1   428.6 

  0.134   0.154   0.160   0.129   0.124 

                    

For the description of the variables see Table 1. In Italics are reported the p-values of the tests. INTE is 
the interaction term between HHI and RISK 1/3/5 in columns 2-4 and between HHI and RISK 1 in col-
umns 5 and 6. The variables AGE, TA and DEP are in natural logarithms. Constant and time dummies 
included but not reported. SOUTH is a territorial dummy, equal to 1 if firms belong to the Southern re-
gions and zero otherwise; LEGENF is the backlog of civil trials pending (first degree of judgement) on 
population; UNDERG is the ratio of irregular number of labour units to population. The variables 
LEGENF and UNDERG are at provincial level, and have been obtained by our calculations on ISTAT 
(Italian National Institute of Statistics) and Ministry of Welfare data (see sub-section 5.1). AB test (AR1)-
FD and AB test (AR2)-FD stand for Arellano-Bond test for AR in first differences and Arellano-Bond test 
for AR in second differences, respectively.  
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TABLE 4 - Robustness estimations. Changing the dependent variable 

                        

  DEPENDENT VARIABLE (LNBANKDEBT)   DEPENDENT VARIABLE (LNBANKDEBT_L) 

                        

  Column 2   Column 3   Column 4   Column 5   Column 6   Column 7 

                        

  RISK1   RISK3   RISK5   RISK1   RISK3   RISK5 

                        

LNBANKDEBT(-1) 0.584   0.587   0.587             

  0.000   0.000   0.000             

LNBANKDEBT_L(-

1) 
            0.469   0.469   0.468 

              0.000   0.000   0.000 

RISK -3.013   -0.964   -0.567   -5.462   -1.771   -1.050 

  0.025   0.021   0.020   0.041   0.034   0.032 

HHI -0.074   -0.086   -0.093   -0.148   -0.171   -0.186 

  0.037   0.030   0.026   0.047   0.036   0.031 

INTE 0.173   0.056   0.033   0.297   0.099   0.060 

  0.095   0.079   0.072   0.154   0.124   0.111 

AGE 0.193   0.190   0.188   0.522   0.516   0.514 

  0.069   0.074   0.077   0.021   0.023   0.023 

TA -0.284   -0.285   -0.282   0.024   0.024   0.033 

  0.008   0.009   0.010   0.931   0.932   0.909 

TGASS 0.026   0.026   0.027   0.041   0.041   0.043 

  0.178   0.172   0.160   0.316   0.313   0.297 

CASHFLOW -0.050   -0.049   -0.048   -0.117   -0.114   -0.111 

  0.005   0.009   0.011   0.002   0.003   0.004 

LIQUI 0.003   0.003   0.004   -0.012   -0.012   -0.010 

  0.873   0.860   0.833   0.751   0.766   0.793 

TRD 0.065   0.065   0.064   0.155   0.155   0.155 

  0.000   0.000   0.000   0.000   0.000   0.000 

GROU -0.059   -0.048   -0.042   0.013   0.039   0.053 

  0.667   0.730   0.766   0.964   0.892   0.854 

PAV2 -0.050   -0.057   -0.060   -0.097   -0.112   -0.120 

  0.460   0.400   0.372   0.491   0.426   0.398 

PAV3 0.058   0.053   0.051   0.235   0.221   0.216 

  0.348   0.398   0.422   0.065   0.085   0.095 

PAV4 0.465   0.457   0.453   1.050   1.032   1.024 

  0.000   0.001   0.001   0.000   0.000   0.000 

DEP -0.086   -0.087   -0.088   -0.127   -0.130   -0.134 

  0.058   0.060   0.056   0.232   0.228   0.214 

BAD -0.013   -0.013   -0.012   0.011   0.013   0.014 

  0.255   0.279   0.291   0.574   0.522   0.496 

                        

                        

N.obs 8183   8183   8183   8183   8183   8183 

                        

Model test 27.64   27.49   27.38   34.01   33.93   33.83 

  0.000   0.000   0.000   0.000   0.000   0.000 

                        

F-test joint sign 3.21   3.24   3.21   2.93   2.91   2.90 

(RISK, INTE) 0.041   0.039   0.040   0.054   0.054   0.055 
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Table 3 continued 
 
AB test (AR1)-FD 

 
 

-8.25 

 
 

-8.18 

 
 

-8.13 

 
 

-7.16 

 
 

-7.06 

 
 

-7.00 
  0.000   0.000   0.000   0.000   0.000   0.000 

                        

AB test (AR2)-FD -0.38   -0.37   -0.37   -0.53   -0.53   -0.54 

  0.704   0.710   0.708   0.595   0.595   0.590 

                        

Hansen test  106.8   107.6   108.0   111.1   112.7   113.4 

  0.671   0.652   0.641   0.611   0.571   0.550 

                        
For the description of the variables see Table 1. In Italics are reported the p-values of the tests. Both the dependent 
variables (BANKDEBT in columns 2-4 and BANKDEBT_L in columns 5-7) are taken in natural logarithms. LNBANK-
DEBT is the log of (one plus) the ratio of bank debt to total assets, while LNBANKDEBT_L is the log of (one plus) 
firm's total bank debt in levels. Since a lagged dependent variable is always included in the set of regressors, we can 
interpret the estimated coefficients of the latter as marginal effects on the rate of growth of the dependent vari-
able,that is in terms of firms' debt growth. INTE is the interaction term between HHI and RISK 1/3/5. The variables 
AGE, TA and DEP are in natural logarithms. Constant and time dummies included but not reported. AB test (AR1)-
FD and AB test (AR2)-FD stand for Arellano-Bond test for AR in first differences and Arellano-Bond test for AR in 
second differences, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


