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ABSTRACT Energy storage systems will play a key role in the establishment of future smart grids.
Specifically, the integration of storages into the grid architecture serves several purposes, including the
handling of the statistical variation of energy supply through increasing usage of renewable energy sources
as well as the optimization of the daily energy usage through load scheduling. This article is focusing on
the reduction of the grid distortions using non-linear convex optimization. In detail an analytic storage
model is used in combination with a load forecasting technique based on socio-economic information of
a community of households. It is shown that the proposed load forecasting technique leads to significantly
reduced forecasting errors (relative reductions up-to 14.2%), while the proposed storage optimization based
on non-linear convex optimizations leads to 12.9% reductions in terms of peak to average values for ideal
storages and 9.9% for storages with consideration of losses respectively. Furthermore, it was shown that the
largest improvements can be made when storages are utilized for a community of households with a storage
size of 4.6-8.2 kWh per household showing the effectiveness of shared storages as well as load forecasting
for a community of households.

INDEX TERMS Load prediction, grid distortion, local storages, non-linear optimization.

I. INTRODUCTION
Global average temperatures are rising due to the increasing
amount of greenhouse gas emissions causing natural disas-
ters and having negative impact to nature and humans [1].
As currently the largest share ofCO2 emissions are caused by
burning of fossil fuels, renewable energy sources are increas-
ingly employed in order to reduce the carbon footprint of
the primary energy sector [2]. However, with the integration
of increasing amounts of renewable energy, the supply of
energy is stronger varying due to the external dependencies
of renewable energies, i.e. wind or sunshine [3]. Therefore,
to account for the increasing volatility of energy generation,
combined with the volatility of energy demand, three major
topics have been addressed in literature in order to reduce
grid distortions and peak loads, namely load prediction, inte-
gration of storages and demand management [1], [4]. Espe-
cially, when considering storage optimizations or advanced
demand management usually a load prediction architecture
is combined with a shared storage unit in order to find opti-
mal charging/discharging strategies under certain constraints.
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Therefore, in the following chapters a detailed literature
review of load prediction, integration of electrical storages
and demand management is provided.

As regards load prediction it is a time series prediction
problem [4], [5]. Data can be collected from smart-meters,
usually one per customer, which in most cases is equivalent
to one per household. The energy consumption data, which
are usually collected with sampling period from one second
to one hour, in most cases consist of active power samples and
less often reactive power, load angle and current harmonics
[6], [7]. For the residential sector the interest is mostly in
short-term predictions (sub-hourly, hourly) for the prevention
of blackouts, but also in long-term predictions (monthly,
yearly) for national planning and investment [8], [9].
The prediction of energy consumption is a difficult task,
because except the periodic patterns (e.g. daily and weekly
routines) irregular components appear in the energy con-
sumption signal as well [10]. Energy prediction has been
utilized to predict the consumption of households and build-
ings. Two main approaches have been investigated, namely
the physical modelling and the data-driven approaches. The
physical models are based on thermodynamic coupling for
precise energy analysis and use parameters such as building
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construction details, operation schedules, climate character-
istics, etc. [1], [5]. Due to the high number of parameters
and the complex interactions, an accurate estimation of the
energy consumption is intrinsically difficult. Conversely, data
drivenmodels use recorded data and try to predict the demand
based on past energy consumption patterns. The data driven
methods have the advantage of faster calculation, while being
suitable for non-linear modelling [1]. Since the prediction
of energy consumption is a difficult task due to the irregu-
lar components appearing in the energy consumption signal
[10], several different methods for improving the load predic-
tion accuracy have been proposed. Several different machine
learning classifiers have been evaluated, namely Linear
Regression (LR) [10], Support Vector Regression (SVR) [11],
Decision Trees (DTs) [10] and deep learning methods like
Convolutional Neural Networks (CNNs) [12], Recurrent Neu-
ral Networks (RNNs) [10] and Long Short Term Memory
(LSTM ) [12]. Furthermore, additional input features like tem-
perature, humidity, radiation etc., have been used to improve
prediction accuracy [8], [9]. In detail, the approach presented
in [10] focuses on the different effects of the calendar, i.e.
seasonal and weekly effects, while providing insights on the
effect of different granularities of the output of the prediction
model. This comes with the advantage of having a predictor
that can possibly work with a lower data granularity (sam-
pling frequency), but might lead to forecasting errors for
transient events if the sampling period exceeds a certain limit.
Furthermore, the approach presented in [12] evaluates espe-
cially high resolution data (1/60 Hz) for spatial and temporal
resolution by combining a CNN and LSTM based model in
order to capture periodic as well as irregular patterns. This
comes, conversely to [10], with the advantage of capturing
very accurately transient responses due to the spatial and
temporal coverage of the model, however requires a by far
more complex,multi-dimensional CNN-LSTMarchitectures.

Storage systems have been integrated into households and
buildings in order to have an additional degree of freedom in
load management. Different storage types, namely hydrogen
storages [13], thermal storages with integrated gas and district
heating [14], as well as power to gas technologies [15], have
been studied in terms of their integration into microgrids as
well as their application for demand management systems.
Both optimizations for consumer households and utility com-
panies have been proposed [16]. Storage systems enable con-
sumer households to store electrical energy during times of
low demand at which electricity price is low, while consum-
ing or selling it back to the network during peak hours, thus
reducing energy cost [17], [18]. However, this could possibly
lead to sudden peak demands during low pricing periods and
thus multiple regulations in terms of dynamic pricing by the
utility grid operator. Therefore, for utility companies storage
systems can be used to de-couple the energy production from
the demand. Therefore, the generating capacity of power
plants will match the average electrical demand instead of
the peak demand as discussed in [19]. Demand Side Man-
agement (DSM) has been implemented utilizing both load

prediction and storage systems. Specifically, a dynamic game
theory approach for DSM considering forecasting errors was
presented in [16], with optimal battery sizing and advanced
battery modelling discussed in [1] and [20]. This approach
has the advantage of considering forecasting errors, utilizing
and accurate battery model with loss modelling and using a
quadratic cost function for energy pricing, however it does
not consider any methods for reduction of forecasting errors
as well as it does not consider grid distortion minimization as
an objective in the cost function. Feature extraction and fea-
ture ranking for accurate load prediction and load modelling
were evaluated in [21]. Furthermore, several optimization
approaches for cost minimization have been proposed within
microgrid structures, like model predictive control which
was used in [22] to reduce energy bills an accurately model
the degradation cost of the storage, while in [23] an offline
optimization for cost optimization was presented under the
assumption of zero forecasting errors. Especially in [22] the
advantage is the high power of model predictive control,
which however has the restriction of high computational
cost for long prediction horizons, while in [23] the mod-
elling without forecasting errors is a significant downside.
Moreover, load prediction and optimization architectures
using photovoltaic generation and battery powered vehicles
have been presented in [24]–[26] and [27]–[29] respectively.
Additionally, combined approaches for smart homes includ-
ing photovoltaic energy generation and storages as well as
demand management have been proposed [30]–[32]. More-
over, next to economic optimization constraints different opti-
mization approaches for demand management and demand
response have been proposed with optimization of thermal
comfort having a large share of these additional constraints.
Especially, thermal comfort was optimized under the consid-
eration of electricity generation through photovoltaic in [33]
and under consideration of occupancy in households [34].
Latest approaches have been focusing onmulti-carrier energy
systems as well as virtual energy hubs, thus considering the
physical structure of a microgrid with several energy sources,
e.g. thermal storages, electrical storages, power-to-gas, etc.,
and several consumers. In detail, economic optimizations
considering energy pricing have been considered for power
to gas technology with shiftable loads in [15], for a coalition
of several home energy hubs with a heuristic bidding strategy
in [35], for a community of households with storage as well
as electrical and thermal energy generator in [36] and for a
self-organized multi carrier energy system trying to optimize
its revenue across different local energy markets in [37].

The contribution of the proposed approach is twofold and
is mainly based on utilizing one common storage for a com-
munity of households while additional information of this
community is utilized to improve the load predictor and the
storage optimization. First, the accuracy of the load predic-
tion stage is improved through utilization of inter-household
dependencies, i.e. similar energy consumption patterns in
neighbouring households, and socio-economic information,
i.e. the size of the property or the age of the residents.
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To the best of the authors knowledge the utilization of
socio-economic features was not presented previously in the
literature. However, as real world implementations of a stor-
age optimization procedure mostly rely on ahead predictions
of the load demand [16], having an accurate load predictor
is crucial for applying a storage optimization strategy. Sec-
ond, whereas previous publications have focused strongly on
reducing cost or energy consumption when utilizing a storage
with a demand management system [22]–[24], thus focusing
on the consumer side, the proposed approach focuses on
minimizing the grid distortions and thus the generation side.
This is of importance as with rising proportion of renewable
energies high variances appearing not only on the demand
side but also on the generation side. Therefore, it is beneficial
to utilize energy storages in order to reduce the variance of
consumer demand, thus making consumer household con-
stant loads which are not varying over time [24]. Especially,
having consumer households with constant consumption over
time would be advantageous for the grid operator due to the
possibility of better planning and focusing on the variance of
the energy generation, i.e. modelling the statistical variance
of the renewable energy sources. The proposed solution is
presented as non-linear optimization problem in closed form
under consideration of an advanced storage model similarly
to [20].

The remainder of this article is organized as follows:
Section II gives a short introduction to the proposed archi-
tecture. In Section III the load management strategy is pre-
sented. In Section IV the experimental setup is described and
in Section V the evaluation results are presented. Finally,
discussions and conclusions are provided in Section VI and
Section VII respectively.

II. SYSTEM MODEL
As conventional grid structures do not include storages
and thus are not able to buffer fluctuations of energy
demand or supply, conventional energy generation units are
designed to operate at low variance delivering energy accord-
ing to the demand. However, with the integration of renew-
able energy sources in the grid the variance of the energy
supply is increasing as illustrated in Fig. 1.

As can be seen in Fig. 1a the energy demand of consumers
and industry underlies a high variance due to microscopic
events (e.g. load changes caused by daily or weekly activi-
ties, i.e. day/night patterns or weekdays and weekends) and
macroscopic demand changes (e.g. increased demand during
winter times due to additional heating). These demand vari-
ances were previously buffered by conventional power plants
generating energy according to the demand with very low
variance, e.g. through burning of fossil fuels (Fig. 1b) [3].
However, as this will not be possible with renewable energies
(e.g. wind or photovoltaic), due to their volatile behaviour as
illustrated in Fig. 1c, local storages have been proposed as
energy buffers reducing the variance at the demand side [1].
The architecture considered in this article consists of a utility
company (Section II-A) providing energy to a community of

FIGURE 1. Histogram of the energy demand and supply distribution
including estimates of the normal distributions (red line) in Germany
in 2014 [3]. Specifically, sub-figure a) illustrates the energy demand while
sub-figure b) and c) illustrate the energy generation for conventional and
renewable energy sources respectively.

FIGURE 2. Proposed smart grid architecture, adapted from [1], including a
utility company for energy generation (might include
conventional or renewable energy generation), a community of consumer
households sharing one common battery storage [1]. Energy might flow
directly from the utility company to the consumer household (PG) or be
stored intermediate in the storage (P In

B ).

households (Section II-B) and a local storage (Section II-C)
as illustrated in Fig. 2.

In detail, as illustrated in Fig. 2 the proposed high-level
architecture consists of a utility company distributing the
electrical energy to a consumers community via a grid. Addi-
tionally, to transferring the energy via the conventional grid
there is the possibility to intermediately store it into an energy
storage. In this architecture the power balance constraint is
formulated as:

PL(t) = PG(t)+ PB(t) (1)

where PL(t) is the aggregated load demand of the community,
PG(t) the power transferred via the grid and PB(t) the charg-
ing (PInB (t)) or discharging (POutB (t)) power of the battery.
Detailed models for the utility company, the grid and the
community are provided in Sections II-A,B,C.

A. UTILITY COMPANY
The utility company is providing energy to the community of
households via a grid, PG(t) ∀t : t ∈ {1, . . . ,T }, for each

15124 VOLUME 9, 2021



P. A. Schirmer et al.: Reducing Grid Distortions Utilizing Energy Demand Prediction and Local Storages

time step t . For the modelling of the utility company and the
grid the following assumptions have been made:

1) The generation capacity of the utility company is infi-
nite, thus it can always provide the demanded energy.

2) The grid has ideal/lossless behaviour.
3) The response to load changes is instant, thus no tran-

sients, i.e. changes in grid frequency, appear.
4) External weather conditions, i.e. sunshine, wind or rain,

are not explicitly considered by the model.

B. COMMUNITY MODEL
The community consists ofM households each of them con-
suming power pm(t)∀t : t ∈ {1, . . . ,T }, with 1 ≤ m ≤ M ,
for each time interval t as measured by a smart meter. Specif-
ically the aggregated load PL(t) and the average aggregated
load PL(t) consumed by the community will be:

PL(t) =
M∑
m=1

pm(t) (2)

PL(t) =
1
T

∑
T

P(t) (3)

A typical example of daily energy demand of the commu-
nity is illustrated in Fig. 3.

FIGURE 3. Hourly (P(t)) and average (P̄(t)) load demand for one day of a
community of consumer households from the Smart Meters in London
database.

As shown in Fig. 3 the load demand of the community is
strongly time varying during the day following the solar cycle
with a constant time shift of roughly 6h, with high demands
during the evening hours and low demand during the night.

C. STORAGE MODEL
A battery model considering charging/discharging efficiency,
ageing and self-discharging was developed in order to get a
realistic representation of a community storage used for load
scheduling. Specifically, Constant-Current-Constant-Voltage
(CC/CV) charging was implemented as it is the most com-
mon charging principle [38]. The charging and discharging
behaviours are illustrated in Fig. 4.

In detail, in Fig. 4 the charging and discharging behaviour
are illustrated for current, voltage and State of Charge (SOC).
Specifically, the battery is charged with a constant current
until charging capacity C∗ is reached, while for capacities

FIGURE 4. Schematic illustration of the charging and discharging
behaviour of a lithium-ion battery (solid: charging; dashed: discharging).
Black lines denote state of charge, while red and blue lines denote current
flowing out of the battery cell and voltage at the terminals respectively.

C > C∗ constant voltage is applied for the charging pro-
cess. Therefore, for SOCs C > C∗ the charging power is
slowly reduced and if a certain charging current is undercut,
the charging process is stopped [39]. In Eq. 4 the charging
behaviour for an incremental time step is described for the
CC and CV phase respectively [39]:

dC+

dt
=

{
η+ · IC = const, t ∈ CC

η+ · cmax · γ1 · e
−
t−t∗
γ2 , t ∈ CV

(4)

where C+ is the stored energy during charging, η+ is the
charging efficiency, IC the charging current, cmax the max-
imum capacity of the battery, and γ1 and γ2 are parameters
which are chosen such that the charging curve is continuous
at t = t∗. During the discharge process the battery is loaded
with a constant current until a certain voltage is reached and
the discharging process is stopped. In Fig. 4 the dotted lines
represent the case of discharging. The current is constant
over the complete SOC range. In detail the SOC is reduced
linearly and the voltage is dropping at the beginning and at the
end, while being nearly constant in between. The discharge
behaviour is described in Eq. 5 as formulated in [39].

dC−

dt
=

1
η−
· ID ∀C− ≥ cmin (5)

where C− is the stored energy in the battery during discharg-
ing, η− is the discharge efficiency, ID the discharge current
and cmin the minimum stored energy in the battery. Further-
more, internal short circuits and chemical reactions result in
a self-discharge of the battery [40]. For the self-discharge of
the battery a model as in [20] has been used:

dC−

dt
= (1− λ)t (6)
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where t is the total passed time and λ is the self-discharge rate
respectively. Moreover, the cyclic battery ageing/degradation
represents the capacity fade which occurs while the battery
is charged or discharged. For example, during charging at
low temperatures it can appear, that the Lithium-Ions do not
intercalate correctly, and metallic Lithium is deposited on the
electrode surface, which leads to a reduction in capacity [41].
The cyclic capacity fade 1C is described in [42] and formu-
lated in Eq. 7

1C = µC ·
∫
I dt (7)

where µC is the fading constant and I = |IC/D| is the
absolute value of the charging and discharging current, thus∫
I dt being the total processed energy (Ah) of the storage.

Accordingly in the proposed storage model Eq. 7 is used to
model the degradation.

III. LOAD MANAGEMENT
As discussed in Section II-B the load demand of the commu-
nity PL(t) and thus the grid load PG(t) is strongly fluctuating
over time. As load fluctuations are in general undesirable, due
to higher load on the grid and increased control actions of the
utility company [16], an optimized storage usage strategy is
presented. In detail, an optimization of the storage requires
predictions of future energy consumption values, thus a load
prediction architecture is introduced in Section III-A, while
the storage optimization based on constraint non-linear pro-
gramming is presented in Section III-B.

A. LOAD PREDICTION
The prediction of an energy consumption of the wth-step
ahead prediction of a target house m of the community can
be formalized as:

p̂m(t + w) = fθ (pm(t0 : t)) (8)

where [t0 : t] is the previous time interval used to predict
the wth sample at (t + w), pm(t0 : t) ∈ R(t−t0+1) is the
energy consumption of the previous timewindow, p̂m(t+w) ∈
R1 its step-ahead prediction of the wth sample and f (·) a
regression model (e.g. LR, SVR, LSTM, etc.) with a set of
free parameters θ .
We expect that across different households in the commu-

nity there are common energy consumption trends andmotifs,
as well as interdependencies due to potential socio-economic
similarities or in between them relationships, which poten-
tially have time lags between them or appear simultane-
ously [22]. This motivates us to use the energy consumption
history of M − 1 other households as an additional input of
information to enhance the prediction of energy load demand
of the target house, similarly to the architecture we proposed
in [43]. In that case the formalization of the problem is
expressed as:

p̂m(t + w) = fθ (pm(t0 : t), pm+1(t0 : t))

with 1 ≤ m < (M − 1) (9)

with pm(t0 : t) being the energy consumption signal in the
time window [t0 : t] for the mth neighboring household of
the community. Given that predictionmodels are trained from
several households’ data, the use of socio-economic informa-
tion of the consumers of the target house would result in load
demand forecasting models adapted to the characteristics of
each socio-economic group of consumers. Socio-economic
dependent models are expected to predict more precisely the
energy consumption behaviour of a house [21], [43] and the
prediction can be formalized as:

p̂m(t + w) = fθ (pm(t0 : t), pm+1(t0 : t), sm)

with 1 ≤ m < (M − 1) (10)

where sm ∈ RK is the K -dimensional socio-economic infor-
mation of the target house. The described architecture using
inter-household energy data and socio-economic informa-
tion for prediction of energy consumption using a regression
model is shown in Fig. 5.

FIGURE 5. LSTM architecture, including the data fusion stage as well as
the neural network layout, for energy consumption prediction for the mth

household out of a set of M households. Inter-household energy data as
well as socio-economic information have been considered.

As can be seen in Fig. 5 the proposed load predic-
tion architecture consists of the data fusion stage, using
the energy consumption signals of the different houses and
the socio-economic information of each household, and the
regression stage providing predictions for the target house
p̂m(t + w). For the regression stage LSTM was chosen as it
was found to outperform LR, DTs, DNNs and RNNs on a
similar architecture [44]. Furthermore, it must be noted that
conversely to [44] the seq2point learning was used instead of
seq2seq learning and each time ahead prediction was calcu-
lated separately similar as in [16].

B. STORAGE OPTIMIZATION
LetP = [p(i), p(i+1), . . . , p(i+W )] be a frame of power con-
sumption of length W , P ∈ RW

+ , where p(i) is the i
th sample

of PL and let P be the mean value of that frame. Furthermore,
let PB = [pB(i), pB(i + 1), . . . , pB(i + W )] be a frame of
lengthW , PB ∈ RW , describing the charging and discharging
behaviour of the storage. Let g(·) be a cost function consider-
ing the cost of employing frame PB as a charging/discharging
strategy. In detail, each sample in frame PB is optimized
in such a way, that it reduces the grid fluctuation and
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minimizes Eq. 11.

g=
∑
W

∥∥∥∥∥∥∥
PL
...

PL

−

 P(i)

...

P(i+W )

+
 PB(i)

...

PB(i+W )



∥∥∥∥∥∥∥
2
(11)

where ‖·‖2 is the second norm. As can be seen in Eq. 11
the cost function g(·) depends on the optimization criteria,
namely the average power demand of the community PL ,
the instantaneous load demand P and the optimized charg-
ing/discharging strategy PB. In detail optimizing the charg-
ing/discharging strategy without any further constraints can
be formalized as in Eq. 12:

PB = argmin
PB∈R

g(PB, P̄L ,P) (12)

The solution for optimizing g(·) without any restrictions
on Eq. 12 is shown in Fig. 6a for one frame of power
consumption. In detail the solutions for one frame P are
plotted, namely the grid power PG, the charging strategy of
the battery PB and the capacity C . As illustrated in Fig. 6a
an optimization of Eq. 12 might violate the condition C > 0.
As the storage capacity cannot be negative some restrictions
need to be put on Eq. 12, thus Eq. 12 is modified as illustrated
in Eq. 13:

PB = argmin
PB∈R

g(PB, P̄L ,P)

s.t. 0 ≤ C ≤ cmax (13)

The solution for solving Eq. 13 is illustrated in Fig. 6b
for PG, PB and C respectively, meeting the restrictions on a
finite storage capacity. However, investigating the grid power
PG large distortions appear, as the storage capacity is not
optimally scheduled. Therefore, additional constraints need
to be put on Eq. 13 in order to reduce the grid distortions.

PB = argmin g(PB, P̄L ,P)

s.t. Var(P+ PB) = 0

s.t. 0 ≤ Cinit + A · PB ≤ Cmax (14)

where Cinit ∈ RW ,Cmax ∈ RW and 0 ∈ RW are vectors
of the initial and maximum storage capacities cinit and cmax
as well as the zero vector, while A ∈ RW×W is a quadratic
lower triangular matrix with unity elements. In detail, the first
constraint of Eq. 14 (Var(P+ PB) = 0) ensures that the grid
fluctuations are minimal thus reducing the distortions caused
by the changing demands of the households, while the second
constraint of Eq. 14 (0 ≤ Cinit +A ·PB ≤ Cmax) ensures that
the capacity of the storage are within the defined minimum
and maximum boundaries. In order to turn Eq. 14 into a
convex optimization problem with the non-linear constraint
of having zero variance of the grid load (Var(P + PB) = 0),
Eq. 14 is reformulated as in Eq. 15.

PB = argmin g(PB, P̄L ,P)

s.t. Var(P+ PB) = 0

FIGURE 6. Storage optimization using cost function optimization under
certain constraints: a) without constraints, b) with finite storage capacity
c) with the proposed optimal load scheduling.

s.t. Cinit + A · PB ≤ Cmax
s.t. − (Cinit + A · PB) ≤ 0 (15)

where the second constraint of Eq. 14 is split into two convex
constraints making it solvable with standard solvers. The
solution for the optimized operational strategy is illustrated
in Fig. 6c.

In detail, Fig. 6 illustrates an example for the load condi-
tions of one day, including the load demand P(t), the grid load
PG and battery charging/discharging PB for three different
constraints as well as the SOC of the storage. As illustrated
in Fig. 6 the optimization in Eq. 15 leads to an optimal
solution of the storage capacity for a frame of power con-
sumption P. The grid load PG is reduced to its optimal value,
PG(t) = PL + ε ∀t ∈ {i, . . . , i + W }, being constant for
all samples of frame P, where ε is an error term depending
on the initial conditions of the storage cinit and the maximum
storage capacity cmax .

IV. EXPERIMENTAL SETUP
The architecture of the system model presented in Section II
and the optimized load management including load predic-
tion and storage optimization presented in Section III were
evaluated using the dataset, parametrizations and experimen-
tal protocols presented below.

A. DATASET
To evaluate the proposed architecture the publicly available
dataset ‘‘Smart Meters in London’’ (SMinL) [45] was used.
The dataset consists of a re-factored version of the London
data store containing the energy readings from 5567 house-
holds in London measured between November 2011 and
February 2014 at a sampling rate of 1 sample per 30 min.
In addition, the dataset contains annotations regarding the
socio-economic background of the residents. Specifically,
a set of 17 social groups, called ACRON groups, was formed
out of the total number of households. Each of these groups
is characterized by a set of 825 socio-economic features
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clustered in 84 subcategories and 15 main categories. For
our evaluation the year 2013 (1st of January 2013 – 31st

of December 2013) was used, since year 2012 has sev-
eral gaps in the measurements, using 50 households per
ACRON group, thus a total of 700 households. Furthermore,
we excluded ACRON-{B, K, M} as they have missing sam-
ples in the selected time interval. The average properties
of the 50 households of each ACRON group for the year
2013 are tabulated in Table 1.

TABLE 1. List of Average Properties From the Evaluated ACRON Groups
Form the Smart Meters in London Database [45]. The Features of Each
ACRON-X Dataset Consist of the Average of 50 Households From the Year
2013.

As can be seen in Table 1 the ACRON groups cover
a wide spectrum of different household characteristics
with significant variations in average energy consump-
tion, different number of residents, average age of resi-
dents, etc., thus making it suitable for training the proposed
LSTM-based architecture using inter-household energy data
and socio-economic information.

B. PREDICTOR PARAMETERS
For the regression stage a LSTM model was used, with the
architecture of the LSTM being illustrated in Fig. 5, similar
as in [46]. The free parameters of the LSTM, namely the
number of layers and the number of nodes per layer were
optimized after grid search on a bootstrap subset from the
SMinL database, using only the energy consumption data of
each target house. The free parameters optimization of the
LSTM model with respect to the mean absolute error (see
Eq. 17) are shown in Table 2.

As can be seen in Table 2 the optimal model consists of two
layers with 16 nodes per layer. The state activation function
of all LSTM layers is the hyperbolic tangent (tanh).

C. STORAGE PARAMETERS
For the storage modelling described in Section II-C and the
storage optimization described in Section III-B the follow-
ing parameters have been used. We adopted the charging

TABLE 2. Parameter Optimization Results in Terms of MAE (%) for the
Proposed LSTM Model for Different Numbers of Layers and Nodes
Evaluated on a Bootstrap Dataset of the Smart Meters in London
Database [45].

TABLE 3. Parameters Used for Storage Optimization are Based on the
Tesla Home Storage System (PowerWall)as well as Previous Publications
[3], [16], [42]. Note That c∗init Refers to the Initial Capacity for the First Day
of Evaluation and That the Charging Efficiency of the Tesla Home Storage
was Split Equally Between Charging and Discharging Similar as in [16].

and discharging efficiency parameters (η+ and η−) of the
Tesla Powerwall 2 with the overall efficiency being equal to
90 % [1]. Furthermore, it was assumed that the charging and
discharging efficiency account to equal parts to the overall
efficiency. All storage parameters are tabulated in Table 3.

Specifically, the maximum capacity cmax was determined
such that Eq. 11 can be minimized for the community of
households (Section IV-A) as described in [3] and shown in
Eq. 16.

cmax = max{
∫
T
P(t)− Pdt} − min{

∫
T
P(t)− Pdt} (16)

As tabulated in Table 3 the maximum capacity needed to
minimize the grid distortions of the 700 evaluated households
are 64.5 TWh, thus 92.1 kWh storage per household being
equal to approximately 7 Tesla Powerwall storages. As Tesla
Powerwall storages are freely configurable up to 10 storage
elements this is a realistic scenario for our evaluation.

D. EVALUATED SCENARIOS
Three different experimental protocols for load prediction
and five different experimental protocols for storage opti-
mization were designed. In detail, the load prediction scenar-
ios are the baseline (BL), where a predictor is modelled for
every house as described in Eq. 8, the interhousehold (IH),
where the predictor is considering neighbouring houses of the
community as in Eq. 9 and the social (SO) one considering
also social information as described in Eq. 10. Furthermore,
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TABLE 4. Four Experimental Protocols With According Storage Sizes (C)
and Number of Step Ahead Predictions (W ).

for the storage optimization five different scenarios, for dif-
ferent sizes of storages and different numbers of ahead pre-
dictionsW have been considered. The experimental protocols
are tabulated in Table 4.

In detail protocol #1 is considered as baseline system
with no storage installed and thus no optimization applied.
Protocol #2 is the ideal case of optimization as in Eq. 12.
Protocol #3 is the case of a finite storage without optimization
through ahead prediction as in Eq. 13. Protocol #4 is the
proposed optimization as in Eq. 15 for different storage sizes
and numbers of ahead predictions. Protocol #5 is an ideal case
assuming perfect knowledge of future energy consumption,
thus without forecasting errors.

V. EXPERIMENTAL RESULTS
The architecture presented in Section II with the optimiza-
tions presented in Section III was evaluated according to
the experimental setup described in Section IV. Specifically,
the performance of the predictor is presented in Section V-A
and the load optimization and its influences on the grid
distortions are presented in Section V-B.

A. LOAD PREDICTION
The performance of the predictor was evaluated in terms of
Mean Absolute Error (MAE), i.e.:

MAE =
1
M

M∑
m=1

∑T
t=1 |p

t
m − p̂

t
m|

T
(17)

where p̂m is the predicted energy value,M is the total number
of households and T the number of frames. The results for the
three different experimental protocols and W = 48 samples
ahead prediction are illustrated in Fig. 7.

As can be seen in Fig. 7 the IH and SO protocols signif-
icantly outperform the baseline system. In detail, for step
ahead greater than 40 samples (20 h) the prediction error
of the baseline system increases to 5 %, while the IH and
SO protocols retain the error below 2 %. This indicates the
influence of inter household information and socio-economic
information in load demand prediction. Especially, utilizing
the energy consumption data of the community of households
leads to a significant reduction in forecasting errors (BL pro-
tocol vs. IH protocol) which is probably owed to the common
energy consumption patterns within households in the same
neighbourhood, i.e. there might be temporal shifts between
households with different age structure etc., as discussed in
Section III-A.

FIGURE 7. Load predictions errors in terms of MAE (%) for different
number of steps ahead predictions and different load prediction
scenarios: baseline (BL), inter household (IH) and socio-economic (SO),
using the load prediction setups from Section III-A.

B. GRID DISTORTION
The performance of the storage optimization was evaluated
in terms of peak to average value of the grid power PG, i.e.:

PAR =
∑
T

max(PτG)∑
w∈W PτG

(18)

where PτG is the grid power of the τ th frame and T is the
number of all frames. The grid distortion for both ideal and
real storage models as well as for experimental protocols
#1 – #5 are shown in Fig. 8 and Fig. 9.

FIGURE 8. Storage optimization without consideration of forecasting
errors for ideal storage and real storage models in terms of PAR. In detail,
protocol #1 shows distortions without utilizing a storage, protocol
#2 considers a storage size large enough to compensate all distortions,
protocol #3 illustrates the distortions without any optimization and
protocol #5 illustrates the distortions for the proposed optimization in
Eq. 15.

As can be seen in Fig. 8 experimental protocol #1 and
#2 are independent of the predictor and optimization as with
C = 0 there is no possible optimization and with C = cmax
distortion is zero by definition. It is noted, that the ideal
storage is reaching zero distortions before the real storage,
which is due to the losses of the real storage as described in
Section II-C. Furthermore, protocol #3 illustrates the upper
boundary for distortions for a specific storage capacity C
without any optimization and is thus considered as baseline
system. Specifically, protocol #5 shows the reduced distor-
tions for a real and ideal storage model without consideration
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FIGURE 9. Storage optimization with consideration of forecasting errors
for ideal storage and real storage models in terms of PAR. In detail,
protocol #3 illustrates the reference distortions without utilizing any
optimization while protocol #4 illustrates the distortions of the proposed
optimizations from Eq. 15 under considerations of the IHS load
forecasting protocols as described in Section III-A.

of forecasting errors. It can be seen that, compared to the
baseline system, the largest reductions in grid distortions
are achieved within 5-10 % (4.6-8.2 kWh) of the maximum
storage capacity as illustrated in area i), which is in line with
the work of [1] reporting optimal storage sizes of 5 kWh
per household. Specifically, the maximum distortion reduc-
tion of protocol #5 is achieved for C = 8 % leading to
reductions of 12.9 % and 9.9 % for ideal and real storage
respectively. Additionally, protocol #4 considering forecast-
ing errors, is shown in Fig. 9.

As shown in Fig. 9 the approach considering load fore-
casting errors is achieving maximum distortion reduction for
C = 8 % leading to reductions of 10.0 % and 8.4 % for ideal
and real storages, respectively. Compared to the approach
without forecasting errors the approach performs 2.5 - 2.9 %
worse, which is roughly in the order of the forecasting error
as illustrated in Fig. 7.

In order to compare the proposed optimization, the work
of Pilz et al. utilizing a dynamic game approach, is used for
comparison [16]. Specifically, the work in [16] considers pro-
tocols with and without forecasting errors as in the proposed
approach and uses exactly one year of data while using the
same performance metric. Conversely, a different dataset was
used utilizing only 25 households with a maximum storage
size of 13.5 kWh per household and a variable participation
of household in the optimization approach of [16]. Therefore,
to assure fair comparison we have recalculated the results
using the database [48] and the households as used in [16].
The results are illustrated in Fig. 10.

As illustrated in Fig. 10 the proposed approach leads to
equal distortions for maximum storage utilization for both
setups with and without consideration of forecasting error.
Additionally, distortions are equal without storage utilization
by definition.

Conversely, for intermediate storage sizes the proposed
method results in minimal grid distortions as described in
Section III-B further reducing distortions up-to 10.7 % and

FIGURE 10. Comparison of storage optimization between DSM approach
in [16] and the proposed methods with (protocol #4) and without
(protocol #5) consideration of forecasting errors.

12.1 % for setups with and without consideration of fore-
casting errors respectively. However, it has to be mentioned
that the optimization goal of the DSM scheme in [16] is
optimization of the consumer households, thus considers
energy pricing, whereas the proposed approach optimizes
grid distortions. Therefore, each approach is optimal towards
its optimization objective.

VI. DISCUSSION
Further to the presented experimental results in Section V
an extended discussion for real world implementation of the
proposed architecture is needed. Especially, two different
aspect must be considered. First, while the above evaluations
have only considered the generation side and specifically
the reduction of grid distortions also the consumer side and
especially the cost per consumer for a shared energy sys-
tem must be considered. For the purpose of cost estimation
previous articles have proposed different cost functions, i.e.
two-step linear functions as described in [49] with different
slops or quadratic cost functions [16], [49]. A quadratic cost
function as used in [49] is described in Eq. 19:

C(Ed ) = c2Ed + c1Ed + c0 (19)

where C(Ed ) describes the dynamic cost depending on the
daily energy consumption Ed and c2 > 0, c1 ≥ 0 and
c0 ≥ 0 are a set of hyper-parameters describing the shape
of the cost function. In detail c2 and c1 define the slope of
the quadratic function and thus the dynamic price change
depending on the daily energy consumption, while c0 is an
offset parameter and can be seen as a daily fee for being
part of a community of consumer households having a shared
storage. Therefore, the savings of a consumer being part of
a community model with shared storage then depend on the
values of c2, c1 and c0, i.e. the questions if it is profitable
to pay a small daily fee for having a smaller increase in the
cost function compared to having no fixed daily fee while
having strongly increasing energy costs. However, numerical
estimation of the values c2, c1 and c0 is difficult as many
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parameters must be taken into consideration, i.e. initial cost of
the storage, cost of wiring and transmission, costs for building
accurate load forecasting models, etc., which is outside the
scope of this article. Second, as shown in the experimental
results the proposed optimizations require data collection
from several consumer households, i.e. for building the load
prediction model with inter-household connections, as well
as socio-economic information. As such information might
be privacy sensitive, especially socio-economic information
might include properties like residents’ age, number of res-
idents per household, etc., evaluations can be performed if
users are willing to share such information in return for
reduced energy costs or participation in the usage of a shared
community energy storage unit. In detail, the acceptance of
consumers does significantly influence the ability of real
world implementation as a community of households should
be in relatively close proximity to the shared energy storage.

VII. CONCLUSION
In this article an storage optimization for a community of
households was presented in order to reduce grid distor-
tions. Specifically, the socio-economic information of the
community was utilized to improve the quality of the load
predictor, and the enhanced prediction results were utilized
to reduce the grid distortions using a non-linear convex
optimization approach. The proposed methodology was eval-
uated on the Smart Meters in London database, showing
accuracy improvements of up to 3% in terms of absolute
MAE improvement for the load prediction and 12.9% reduc-
tions of grid distortions for a community of household uti-
lizing one common storage. In detail, it was shown that
the proposed optimization procedure leads to minimal grid
distortions for an arbitrary storage size and load of a com-
munity of households. Specifically, it was shown that the
largest performance improvements have been achieved when
utilizing 4.6-8.2 kWh of storage per household. Based on the
results of utilizing a shared storage in combination with a
community based load prediction the following two topics
should be investigated in future research. First, a cost function
evaluation considering also the cost of having one common
load predictor compared to having a single load predictor
for each household. Second, investigation of the willingness
of consumers to share socio-economic information with the
smart-grid and/or utility company in in order to reduce energy
bills by utilizing a common energy storage unit. We deem
the proposed methodology can result in less grid distortion,
which in turn can result in more stable and cost-efficient
utility grids, both for the benefit of the provider and the
consumer.
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