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A Laplace transform finite difference
scheme for the Fisher-KPP equation

Colin L Defreitas and Steve J Kane

Abstract

This paper proposes a numerical approach to the solution of the Fisher-KPP reaction-diffusion equation in which the

space variable is developed using a purely finite difference scheme and the time development is obtained using a hybrid

Laplace Transform Finite Difference Method (LTFDM). The travelling wave solutions usually associated with the Fisher-

KPP equation are, in general, not deemed suitable for treatment using Fourier or Laplace transform numerical methods.

However, we were able to obtain accurate results when some degree of time discretisation is inbuilt into the process.

While this means that the advantage of using the Laplace transform to obtain solutions for any time t is not

fully exploited, the method does allow for considerably larger time steps than is otherwise possible for finite-

difference methods.
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Fisher’s equation

Fisher1 suggested the equation,

@u

@t
¼ D

@2u

@x2
þ Kuð1� uÞ; (1)

to describe the propagation of a favourable gene in an
infinitely long domain. The equation models the diffu-

sion of an advantageous gene in a 1D habitat. A very

informative discussion of the Fisher equation as it relates

to propagation is given by.2,3 The expression in equation

(1) combines the logistic and diffusion equations to
simulate the respective processes of population
growth and random dispersal of the advantageous
gene under consideration. Thus D and K in (1) are
the usual positive parameters associated with the diffu-
sion and logistic equations.

Since its original development the Fisher-KPP equa-
tion has been used extensively to describe a wide vari-
ety of processes including biology, chemical kinetics,
auto-catalytic chemical reactions, branching
Brownian motion, flame propagation, neurophysiolo-
gy, the evolution of a neutron population in a nuclear
reactor and chemical wave propagation.4

Seen in terms of gene propagation the solution u(x,
t) of (1) represents the proportion of the mutant gene at
a point x in its domain at some time t. Hence we must
have that,

0 � uðx; tÞ � 1 (2)

Fisher showed that (1) together with the additional
boundary conditions,

uð�1; tÞ ¼ 1 and uðþ1; tÞ ¼ 0 (3)

Exhibit travelling wave solutions of the form,

uðx; tÞ ¼ uðx� ctÞ (4)
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moving at constant speed c in the positive x direction

provided

c � Cmin (5)

when Cmin ¼ 2
ffiffiffiffiffiffiffiffi
KD

p
.5

Thus the Fisher-KPP equation has an infinite number
of travelling wave solutions, each moving with a wave

speed c � 2. The solutions of u(x, t) then connects the
steady-state solution at u¼ 1 and the steady-state solu-

tion at u¼ 0. In keeping with the analysis of these steady-
state conditions, u¼ 1 is stable, while u¼ 0, unstable.

It is worth noting that analytical solutions of the
Fisher-KPP equation exist for only a small class of

problems and hence the importance of developing effi-
cient numerical schemes to obtain solutions to (1).

Although Fisher proposed his model for the wave
advancement of an advantageous gene in 1937, it was

not until 1974 that numerical solutions to the equation
began to appear. The first of which was the seminal

paper by Canosa6 who used the Accurate Space
Derivative method (ASD), sometimes referred to as

the pseudo-spectral approach. Since then, many
researchers have investigated numerical solutions to

equation (1) for which Anjal et al. give a comprehen-
sive summary of the main contributions.4 However,

these methods all incorporate some small time discre-
tisation process, which requires iterations of the algo-
rithm at each time step. As we discuss in the next

section, our proposed solution to (1) allows us to
obtain accurate results with considerably larger discre-

tisation in the time domain.
In developing a numerical approach to solve the

Fisher-KPP equation, we needed to keep two impor-
tant points in mind. First, Canosa6 showed that all

waves are stable against small local perturbations but
linearly unstable against general perturbations of infi-

nite extent. This sensitivity to perturbations of infinite
extent is essential for us because, as we explain in sec-

tion ‘Numerical examples and discussion’, the LTFDM
involves inversion procedures which can introduce per-

turbations into the solution.
The second point is that Canosa was able to dem-

onstrate by a simple stability analysis that computation
is unstable against round-off errors building up at the

leading tail of the waves.6 We were able to overcome
this difficulty by a particular application of the inver-

sion process for the LTFDM.

The Laplace transform finite difference

method

We consider an approach to the numerical solution of

the Fisher-KPP equation (1) in which the space

variable is developed using a purely finite difference

approach and the time development is obtained using

a hybrid LTFDM.
The significant advantage of this method is that it

eliminates the time dependency parameter and the

associated discritisations which are necessary to

obtain solutions at a particular time t.
When using finite difference and other time discre-

tisation methods to solve differential equations, the size

of the time step is limited by the stability conditions

required for convergence of the scheme. In linear cases,

this usually involves hundreds and sometimes thou-
sands of time steps to arrive at the solution for some

desired time. Iterations are then required at each time

step which involves using a variety of matrix methods

to solve the vast systems of linear equations generated

by the scheme.
For non-linear cases, this is compounded by the fact

that a further iterative process is usually required at

each time step. Since each of these iterations introduces

a certain amount of round-off and truncation error,
careful consideration must be given to their control

and management when implementing these schemes.
The Laplace transform has the potential of doing

away with time discretisation, and it’s associated
error management by transforming the time domain

into the Laplace space, s, via the integral transform,

Z 1

0

fðtÞe�st dt ¼ FðsÞ (6)

Then computations done in the Laplace space, s, can

be inverted back into the time domain at any desired

time t. Hence the LTFDM can lead to the required
solution with virtually one-time step. By employing

this method, we can potentially obtain substantial

increases in speed and accuracy over traditional finite

difference and time discretisation methods. With the

additional benefit of reducing by one the dimensions
of the governing equation, simplifying the resulting

finite difference scheme needed to discretise the remain-

ing space variable.

Inverting the data

The recovery of the function f(t) is via the inverse
Laplace transform which is most commonly defined

by the Bromwich integral formula

L�1 FðsÞf g ¼ fðtÞ ¼ 1

2pi

Z uþi1

u�i1
FðsÞ est ds (7)

for some u 2 R.7 The the choice of s in (6) and so in (7)

is not an arbitrary one. If we choose s so that it lies on
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the positive real axis, we are treating the solution of (6)

as a positive real integral equation. The problem here is

that the inverse problem is known to be ill-posed,

meaning that small changes in the values of F(s) can

lead to large errors in the values for f(t).3

Hence when Laplace transform methods are

employed for finding numerical solutions to partial dif-

ferential equations, we must take account of the fact

that that the corresponding inversion methods can be

highly sensitive to the inevitable noisy data that arises

in their computation via truncation and round-off

error, a process which is exacerbated for non-linear

schemes. Our method attempts to mitigate these factors

by employing the Fixed Talbot inversion algorithm. In

our earlier work,8 we have shown that this inversion

scheme reduces the effects that noisy data can have in

adversely perturbing the finite difference scheme. In

this sense it can produce better results than the

widely used Stehfest inversion method.

Method

We first non-dimensionalise equation (1) by letting

u ¼ U�u x ¼ L�x and t ¼ T�t (8)

Employing the chain rule,

@

@x
¼ 1

L

@

@�x
and

@

@t
¼ 1

T

@

@�t
(9)

By letting U¼ a, T ¼ 1
Ka and L ¼

ffiffiffiffiffi
D
Ka

q
, and dropping

the overbars (1) becomes,

@u

@t
¼ @2u

@x2
þ uð1� uÞ (10)

with boundary conditions

uð�1; tÞ ¼ 1 and uðþ1; tÞ ¼ 0 (11)

The Laplace transform of the time derivative in (10) is

L @u

@t

� �
¼ s�uðx; sÞ � uðx; 0Þ (12)

where

�uðx; sÞ ¼ Lfuðx; tÞg (13)

And the Laplace transform of the space derivative in

(10) is

L @2u

@x2

� �
¼ d2

dx2
�uðx; sÞ (14)

However, it is well known that the Laplace trans-
form cannot be successfully performed on non-linear
governing equations and so some linearizaton process
is necessary before the LTFDM can be implemented.9

To overcome this, we follow Zhu et al.10 who success-
fully applied the Laplace Transform dual reciprocity
method to diffusion equations of the form,

r2u ¼ @u

@t
� bfðuÞ (15)

where b is a given constant and f(u) is a non-linear
function. Zhu first decomposed the function f(u) in equa-

tion (15) into ~fð~uÞ then in order to find the solution of
the unknown function at particular time t1 equation
(15) is linearised as

r2u ¼ @u

@t
� b~fð~uÞu (16)

in which ~u is the previously iterated solution at time t1.
Thus for equation (1) we would have,

@u

@t
¼ @2u

@x2
þ u� u~u (17)

Then the Laplace transform of (17) is,

�uðx; sÞ � uðx; 0Þ ¼ d2

dx2
�uðx; sÞ þ �uð1� ~uÞ (18)

with transformed boundary conditions,

�uð�1; tÞ ¼ 1

s
and �uðþ1; tÞ ¼ 0 (19)

Using a central-difference scheme on the space
derivative, the finite difference scheme for (18) is,

�ui�1 � �uið2þ dx2sj þ dx2 � dx2~uiÞ þ �uiþ1 ¼ �dx2uð0Þi
(20)

where dx is the size of the space step in the x-direction,
sj is the jth Laplace parameter and uð0Þi ¼ uðxi; 0Þ.
Then (20) can be expressed as the tridiagonal system,

a1j 1 0

1 a2j
. .
.

. .
. . .

.
1

0 1 an�1j

0
BBBBB@

1
CCCCCA

u1
u2
. . .
. . .
un�1

2
66664

3
77775 ¼ �

dx2uðx1; 0Þ þ 1

sj
dx2uðx2; 0Þ

. . .

. . .
dx2uððxn�1; 0Þ<

2
66666664

3
77777775
(21)
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where

aij ¼ 2þ dx2sj þ dx2 � dx2~ui (22)

in (20). After solving this tridiagonal system the data is
then inverted to transition from the Laplace space, s,
back into the time domain.

The Stehfest algorithm for numerically inverting the Laplace

transform. In their wide-ranging study of algorithms for
inverting the Laplace transform Davies and Martin10

cite the Stehfest algorithm [15] as providing accurate
results on a wide variety of test functions. Since then
this algorithm has become widely used for inverting
the Laplace Transform and being favoured due to its
reported accuracy and ease of implementation.

The algorithm takes the transformed data in the
Laplace space F(s) and produces fðt1Þ for a specific
time value t¼ t1. Choosing

sj ¼ j
ln2

t1
; j ¼ 1; 2; . . . ::M; for M even (23)

The numerical inversion is given by

fðtÞ� ln2

t

XM
j¼1

AjFðsjÞ (24)

with

Aj ¼ ð�1ÞM2þj ¼
Xmin j;M2ð Þ

k¼bjþ1
2 c

k
M
2 ð2kÞ!

M
2
� k

� �
!k!ðk� 1Þ!ðj� kÞ!ð2k� jÞ!

(25)

Theoretically, f(t) becomes more accurate for larger
M, but the reality is that rounding errors worsen the
results if M becomes too large. According to Stehfest,“
The optimum M is approximately proportional to the
number of digits the machine is working with”.11

Also in our earlier work we found that the Stehfest
algorithm does not handle noisy data well.8 As we
show in section ‘Numerical examples and discussion’,
this can have the effect of introducing perturbations
into the travelling wave solutions of the Fisher-KPP
equation.

The fixed Talbot algorithm for numerically inverting the Laplace

transform

Here we use the function.

SðzÞ ¼ z

1� e�z
(26)

which maps the closed interval M ¼ ½�2pi; 2pi� on the

imaginary z�plane onto the curve L in the s-plane

giving the integral,

fðtÞ ¼ 1

2pi

Z
L

FðsÞ est ds (27)

(See Logan12 for the details of this transformation).
Next we follow the procedure as adopted by Logan

for numerically integrating (27).
With s ¼ SðzÞ this becomes

fðtÞ ¼ 1

2pi

Z
M

½FðSðzÞÞ eSðzÞt S0ðzÞ � dz (28)

where

S0ðzÞ ¼ 1� ð1þ zÞe�z

ð1� e�zÞ2 (29)

For convenience we write,

fðtÞ ¼ 1

2pi

Z
M

Iðz; tÞ dz (30)

where

Iðz; tÞ ¼ ½FðSðzÞÞ eSðzÞt S0ðzÞ � (31)

The integral in (30) is then rotated by p
2 so the inter-

val of integration is now real and becomes ½�2p; 2p�,
then we use the trapezoid rule with n odd and w ¼ �iz

to obtain

fðtÞ� 1

n
ðIð2piÞ þ Ið�2piÞ þ 2

Xn�1

j¼1

IðiwjÞ
8<
:

9=
; (32)

where

wj ¼ 2p
2j

n
� 1

� �
(33)

and we note that Ið2piÞ ¼ Ið�2piÞ ¼ 0.12

Numerical examples and discussion

Example 1

For our first example we use (10)

@u

@t
¼ @2u

@x2
þ uð1� uÞ
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and its associated boundary conditions,

uð�1; tÞ ¼ 1 and uðþ1; tÞ ¼ 0:

Ablowitx and Zeppetella13 give an exact solution for

a particular wave speed c ¼ � 5ffiffi
6

p as

uðx; tÞ ¼ 1

1þ exp
ffiffi
1
6

q
x� 5

6

� �
t

� �	 
2 (34)

which we use to compare our numerical results with.
When we first implemented the LTFDM it produced

distortions in the upper tail of the travelling wave for

larger values of t. This is shown in Figure 1. We even-

tually surmised that these distortions were due to the

existence of perturbations of infinite extent. In other

words, the approximation of the initial condition on

a finite domain. A stability analysis carried out by

Gazdang et al.14 showed that super speed waves or

waves with speed greater than Cmin could be main-

tained if subject only to infinitesimally small positive

pertubations.
As is well known, the numerical inversion of the

Laplace transform is a perturbed problem. Thus per-

turbations generated by the numerical scheme itself can

then introduce noise into the inversion algorithms

which cannot be completely filtered out. However, we

found that these perturbations can be reduced if some

time discretisation, together with a reinitialisation of

the initial condition, is introduced into the numerical

method. While the full benefit of using the Laplace

transform, i.e., to solve for any time t is partially dimin-

ished, introducing some measure of time discretisation

meant we were able to use larger time steps than would

be the case for other finite difference methods.15

As we have shown in our previous work,8 the Fixed

Talbot inversion method is more efficient at filtering

out this noise than the more widely used Stehfest algo-

rithm. This is shown in Figures 2 and 3 where oscilla-

tions in the right-hand tail are present when using the

Stehfest inversion method for the time step t¼ 0.8 but

are absent in the Talbot inversion method. Thus

smaller time steps are required for comparable accura-

cy for the Stehfest inversion than for the Talbot.

Because of its inability to deal adequately with noisy

data, the Stehfest algorithm is also sensitive to the spa-

tial step size dx as smaller space discretisations can also

introduce round-off error into our computations.

Hence our choice of using the Talbot algorithm for

carrying out the LTFDM inversion procedure.

Details of this method on the field of study can be

found in.
8

The Talbot algorithm is also very effective in dealing

with the build-up of round-off error in the right tail of

the waves. As Canosa points out “This does not seem

due to the numerical method used but to the physical

nature of the problem described by the equation which
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Figure 2. Profile using Stehfest. t¼ 0.8.
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Figure 1. Profile without time discretisation. t¼ 1.5.
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Figure 3. Profile using Talbot. t¼ 0.8.
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gives rise to an exponential growth of the solutions

when this is exponentially small. This basic difficulty

makes it difficult to do a rigorous simulation of the

solutions of Fisher’s equation”.
This effect is shown in Figure 4. However, we over-

come this problem by merely increasing n in (32) from

n¼ 55 to 555, which completely removes the instability

and restores the travelling wave profile Figure 5. The

restoration of the travelling profile is due to the Talbot

algorithm’s ability to filter out noise with increasing n.8

While no exact solutions exist for (1) for wave

speeds other than c ¼ � 5ffiffi
6

p we can use the approximate

asymptotic solution,

UðzÞ ¼ ð1þ e
z
cÞ�1 þ 1

c2
e
z
cð1þ e

z
cÞ�2log

4e
z
c

ð1þ e
z
cÞ2

" #
þO

1

c4

� �

(35)

With c � Cmin ¼ 2 and z ¼ x� ct, to test our numer-

ical scheme for a variety of wave speeds. The accuracy of

the asymptotic solution increases for large c.16

Example 2

Cattani, Carlo et al.17 give an exact solution for the

Fisher type equation,

@u

@t
¼ v

@2u

@x2
� bu2 þ au (36)

where

t 2 ½0; t�; 0 < t � 1; �1 < x < 1 (37)

with the boundary condition

uð�1; tÞ ¼ 0:5; uð1; tÞ ¼ 0 (38)

and initial condition,

uðx; 0Þ ¼ � 1

4

a

b
sech2 �

ffiffiffiffiffiffiffi
a

24c

r
x

 !
� 2tanh �

ffiffiffiffiffiffiffi
a

24c

r
x

 !
� 2

" #

(39)

The exact solution is,

uðx; tÞ ¼ � 1

4

a

b

sech2 �
ffiffiffiffiffiffiffi
a

24c

r
xþ 5a

12
t

 !

� 2tanh �
ffiffiffiffiffiffiffi
a

24c

r
xþ 5a

12
t

 !
� 2

2
666664

3
777775
(40)

Since no exact solution exists for all wave speeds for

(36) we derived a perturbation solution to test the

numerical scheme at a variety of wave speeds. The per-

turbation solution for this case is given as,

UðzÞ ¼ 1

2
ð1þ e

z=2
c Þ�1 þ 1

c2
e
z
cð1þ e

z=2
c Þ�2log

ffiffiffi
2

p
e
z=8
c

ð1þ e
z=2
c Þ2

2
4

3
5

þO
1

c4

� �
(41)

Results

In our investigations we found our algorithm performs

with equal accuracy for space steps 0 < dx � 1 and

with the Laplace transform used within the time steps

�t ¼ 0:1; 0:2 and 0.4. This shows that it is stable

across a wide variety of parameters.
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Figure 5. Talbot: n¼ 555 for t¼ 1 to 5.
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Figure 4. Talbot: n¼ 55 for t¼ 1 to 5.
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Figure 6 shows the travelling wave profile for (11)

example 1, compared with exact solution.13 The time

discretisation used in the LTFDM is �t ¼ 0:2 with a

space step of dx ¼ 0:1. The numerical results show

good agreement with the exact solution.
Figure 7 shows the travelling wave profile for (32)

example 2 with exact solution.17 The time descritisation

used in the LTFDM is �t ¼ 0:2 with a space step of

dx ¼ 0:1. The numerical results show good agreement

with the exact solution.
Figure 8 shows the travelling wave profile for exam-

ple 1 compared with the perturbation solution for wave

speeds C ¼ 4; 8; 12; 16; 20. The time descritisation used

in the LTFDM is �t ¼ 0:2 with a space step of

dx ¼ 0:1. The numerical results show good agreement

with the exact solution.
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Figure 8. Profile Example 1, Dt ¼ 0:2, t¼ 1, C ¼ 4 : 4 : 20.

-30 -20 -10 0 10 20 30
-0.2

0

0.2

0.4

0.6

0.8

1
data1
data2

-30 -20 -10 0 10 20 30
x

-0.2

0

0.2

0.4

0.6

0.8

1
u(

x,
t)

Numericval
Exact

Figure 6. Profile Dt ¼ 0:2, t¼ 1 to 5.
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Figure 7. Profile Dt ¼ 0:2, t¼ 1 to 5.
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Figure 9. Profile Examole 2, Dt ¼ 0:2, t¼ 1, C ¼ 4 : 4 : 20.
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Figure 10. Example 1 Error Profile Dt ¼ 0:1, t¼ 1, C¼ 10.
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Figure 9 shows the travelling wave profile for exam-
ple 2 compared with perturbation solution (41) for
wave speeds C ¼ 4; 8; 12; 16; 20. The time descritisation
used in the LTFDM is �t ¼ 0:2 with a space step of
dx ¼ 0:1. The numerical results show good agreement

with the exact solution. Figures 10-12 show the error

profile for example 1 for the wave speed shown.
Tables 1-3 present the results for Example 1 for

times t¼ 1, t¼ 2, and t¼ 4. For all cases shown we

set �t ¼ 0:1, n¼ 555, dx ¼ 0:25, and L¼ 60.
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Figure 11. Example 1 Error Profile Dt ¼ 0:1, t¼ 1, C¼ 15.
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Figure 12. Example 1 Error Profile Dt ¼ 0:1, t¼ 1, C¼ 20.
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Figure 13. Example 2 Error Profile Dt ¼ 0:1, t¼ 1, C¼ 10.
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Figure 14. Example 2 Error Profile Dt ¼ 0:1, t¼ 1, C¼ 15.
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Figure 15. Example 2 Error Profile Dt ¼ 0:1, t¼ 1, C¼ 20.
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Figure 16. Example 2 Error Profile dx ¼ 1.
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Tables 4-6 present the results for problem 2 for times

t¼ 1, t¼ 2, and t¼ 4. For all cases shown we set

�t ¼ 0:4, n¼ 555, dx ¼ 0:25, and L¼ 60.
For brevity we give a sample of the results in Tables

7-9 of the comparison of our method with the

approximate perturbation solution for example 2 with

t¼ 1. The length L is increased for higher wave speeds
to ensure full propagation of the wave as it moves to

the right with increasing speed. In all cases

n¼ 555dx ¼ 1; �t ¼ 0:1. Figures 13-16 below show

the error profile for example 2 comparing our scheme

with the approximate perturbation solution at t¼ 1, for
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Figure 17. Example 2 Error Profile dx ¼ 0:5.
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Figure 18. Example 2 Error Profile dx ¼ 0:25.
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Figure 19. Example 2 Error Profile dx ¼ 0:05.

Table 1. Example 1, t¼ 1.

x Numerical Exact Error

�20 0.999742 0.999753 1:0 ð�5Þ
�12 0.993285 0.995552 2:6 ð�4Þ
�4 0.845643 0.849618 1:2 ð�3Þ
2 0.252043 0.254227 8:6 ð�3Þ
4 0.0956577 0.096161 5:2 ð�3Þ
8 0.0.006466 0.006515 7:5 ð�3Þ
12 0.000178 0.000284 3:7 ð�4Þ

Table 2. Example 1, t¼ 2.

x Numerical Exact Error

�20 0.999884 0.999893 8:8 ð�6Þ
�12 0.996963 9,97,190 2:3 ð�4Þ
�8 0.984656 0.995740 1:1 ð�3Þ
0 0.698929 0.707501 1:2 ð�2Þ
4 0.255059 0.490844 1:5 ð�2Þ
8 0.027968 0.028250 2:0 ð�2Þ
10 0.006447 0.006719 2:1 ð�2Þ

Table 3. Example 1, t¼ 4.

x Numerical Exact Error

�20 0.999976 99,99,808 3:4 ð�6Þ
�12 0.999379 0.999468 8:9 ð�5Þ
�6 0.992958 0.993864 9:2 ð�4Þ
2 0.846588 0.856205 1:1 ð�2Þ
4 0.88938265 0.90291741 1:5 ð�2Þ
6 0.490436 0.500723 2:1 ð�2Þ
10 0.100190 0.103045 2:8 ð�2Þ

Table 4. Example 2. t¼ 1.

x Numerical Exact Error

�20 0.497713 0.497780 1:3 ð�4Þ
�12 0.477704 0.478304 1:3 ð�3Þ
�8 0.434286 0.435769 3:4 ð�3Þ
�1 0.220496 0.98636 8:5 ð�3Þ
4 0.0512810 0.051519 4:5 ð�3Þ
15 0.000163 0.000162 6:2 ð�3Þ
20 9.33(-6) 9.34(-6) 4:5 ð�4Þ
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various wave speeds. The error profile and the corre-

sponding range of errors remain unchanged for varying

wave speeds, for example, 1, but the error decreases

with increasing wave speed, for example 2.
The Figures 17 to 19 demonstrate the stability of the

results for varying mesh size dx. For brevity we show this

for problem 2 at wave speed C5 20 and for time t5 1.

We were able to achieve the same error profile with these

mesh sizes for all the problems investigated in this paper.

Conclusion

This paper proposes a numerical approach to the solu-

tion of the Fisher-KPP reaction-diffusion equation in

which the space variable is developed using a purely

finite difference scheme and the time development is

obtained using a hybrid Laplace Transform Finite

Difference Method (LTFDM). This method to our

knowledge has not previously been applied to the

Fisher-KPP equation, and Laplace transform methods

are generally not deemed suitable for equations which

have travelling wave solutions.
However, by introducing some time discretisation

into our LTFDM we were able to obtain results

which have less than one per cent error over a range

of times, space and time discretisation, for variety of

wave speeds. The time discretisation was necessary to

reduce perturbations of infinite extent which occur in

numerical schemes for the Fisher-KPP equation. These

perturbations can have a detrimental effect on the

LTFDM since all the numerical schemes for inverting

the Laplace transform are highly perturbed problems.
Thus crucial to the success of the method outlined in

this paper is the choice of the Fixed Talbot inversion

algorithm which as we have shown in our earlier work

is best at dealing with the inherent noise generated in

finite difference schemes. This algorithm also had the

effect of ironing out the build-up of round-off error in

the right-hand tail of the travelling wave a consequence

of the physical nature of the problem.
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Table 5. Example 2. t¼ 2.

x Numerical Exact Error

�20 0.498548 0.497780 2:2 ð�4Þ
�8 0.456965 0.459476 5:8 ð�3Þ
�8 0.434286 0.435769 3:4 ð�3Þ
01 0.238570 0.242958 1:8 ð�2Þ
4 0.087159 0.088343 1:3 ð�2Þ
15 0.000432 0.000432 7:9 ð�2Þ
20 2.53(�5) 2.52(�5) 1:1 ð�4Þ

Table 6. Example 2. t¼ 4.

x Numerical Exact Error

�20 0.499320 0.499413 1:9 ð�4Þ
�8 0.479300 0.481756 5:1 ð�3Þ
�1 0.375701 0.383712 2:1 ð�2Þ
01 0.238570 0.242958 1:8 ð�2Þ
2 0.272176 0.279941 2:8 ð�2Þ
15 0.002122 0.002123 2:3 ð�2Þ
20 0.00013143 0.0001311 1:9 ð�3Þ

Table 7. Example 2 t¼ 1 C¼ 10.

x Numerical Exact Error

�124 0.499186 0.499190 1:0 ð�5Þ
�100 0.497323 0.497399 1:5 ð�4Þ
�40 0.451696 0.451966 6:0 ð�4Þ
�30 0.425057 0.425457 9:4 ð�4Þ
10 0.214997 0.215853 4:0 ð�3Þ
20 0.155856 0.156620 5:0 ð�3Þ
50 0.009998 0.010083 8:5 ð�3Þ

Table 8. Example 2 t¼ 1 C¼ 15.

x Numerical Exact Error

�140 0.496314 0.496336 4:4 ð�5Þ
�100 0.486330 0.486413 1:6 ð�4Þ
�40 0.414178 0.414573 6:0 ð�4Þ
�20 0.425057 0.425457 9:5 ð�4Þ
0 0.279545 0.280139 2:1 ð�3Þ
40 0.1242715 0.124647 3:0 ð�3Þ
80 0.039467 0.039600 8:5 ð�3Þ

Table 9. Example 2, t¼ 1C¼ 20.

x Numerical Exact Error

�182 0.495876 0.495901 4:9 ð�5Þ
�100 0.469727 0.469891 3:5 ð�4Þ
�10 0.310285 0.310802 1:7 ð�3Þ
�20 0.425057 0.425457 9:5 ð�4Þ
50 0.133185 0.133472 2:2 ð�3Þ
70 0.090021 0.090213 2:1 ð�3Þ
176 0.007480 0.007496 8:5 ð�3Þ
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