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Abstract
Most utilities across the world already have demand response (DR) programs in place to
incentivise consumers to reduce or shift their electricity consumption from peak periods
to off-peak hours usually in response to financial incentives. With the increasing elec-
trification of vehicles, emerging technologies such as vehicle-to-grid (V2G) and vehicle-
to-home (V2H) have the potential to offer a broad range of benefits and services to
achieve more effective management of electricity demand. In this way, electric vehicles
(EV) become distributed energy storage resources and can conceivably, in conjunction
with other electricity storage solutions, contribute to DR and provide additional capacity
to the grid when needed. Here, an effective DR approach for V2G and V2H en-
ergy management using Reinforcement Learning (RL) is proposed. Q-learning, an RL
strategy based on a reward mechanism, is used to make optimal decisions to charge or
delay the charging of the EV battery pack and/or dispatch the stored electricity back to
the grid without compromising the driving needs. Simulations are presented to demon-
strate how the proposed DR strategy can effectively manage the charging/discharging
schedule of the EV battery and how V2H and V2G can contribute to smooth the
household load profile, minimise electricity bills and maximise revenue.

1 | INTRODUCTION

The ongoing challenge facing utilities across the world is to
deliver electricity to customers during peak demand periods
while keeping the power grid stable by balancing supply
and demand of electricity. Today, most utilities have demand
response programs (DR) in place to incentivise end-use
customers to lower or shift their electricity usage at peak
times. DR is essentially a class of Demand-Side Manage-
ment (DSM), and has long been used by utility companies
to optimise the operation of distribution grids while deliv-
ering reliable and cost-effective electricity supply to cus-
tomers. Several DR approaches are adopted by utility
companies and may be classified into two categories:
incentives-based programs and price-based programs. In
incentives-based programs, participating consumers are
awarded fix or time-varying payments for their consent to
reduce energy consumption at peak hours or during con-
tingency events [1].

Price-based DR is an indirect means for electricity sup-
pliers to control consumers’ electricity loads. In these pro-
grams, customers are charged with different rates based on the
electricity price throughout different time periods. In this case,
end-users have complete control over their loads and can
adjust or schedule their demand in response to electricity price
signals received from their energy supplier. Therefore, energy
consumption can be reduced during peak hours when the
prices are higher [2].

More recently, there has been a gradual shift towards the
adoption of Electric Vehicles (EVs) in the automotive industry.
The main drivers are the economic and environmental benefits,
the technological improvement in batteries’ energy density,
government policies offering financial rewards such as tax
breaks or rebates to EV owners [3]. In a report published by
the UK National Grid in Future Energy Scenarios, the number
of EVs is expected to grow significantly to 11 million by 2030
and to 36 million by 2040 [4]. EVs charging during peak hours
leads to electricity price increase, additional demand and
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imposes severe stress on the distribution grid. This may create
problems such as feeder congestion, distribution transformer
overloads and excessive voltage drops which may impact the
overall electricity network [5]. In contrast, off-peak EV
charging benefits EV owners from lower electricity prices and
helps reduce stress on the power grid. On the other hand, EVs
could also serve as a temporary energy storage and supply
power to home appliances during short-term outages, provide
emergency charging to other EVs or feed power to the utility
grid when needed. However, draining the complete EV bat-
tery energy during the day could potentially disrupt EV avail-
ability for travel needs [6]. Therefore, a more sophisticated
management of the EV battery is required. As such, a holistic
approach must be adopted for EVs to serve as a DR resource
and close the energy gap. For example, in [7], a fair demand
response with electric vehicles (F-DREVs) is proposed for a
cloud-based energy management service to maximise in-
centives by minimising global cost within the given time
period, and smooth fluctuations of EVs loads. In [8], a new
scheduling approach is proposed for isolated microgrids
(MGs) with renewable generations by incorporating demand
response of EVs.

V2G technology has attracted a great deal of research in-
terest in recent years both within the academic community and
industry. A review on the impact of V2G technology is pre-
sented in [9]. In [10], different control schemes to enable EV
grid integration are reviewed and the advantages and disad-
vantages of V2G integration are discussed with respect to the
transient stability of the power grid at the transmission and
distribution levels. The authors in [11] proposed a combined
control and communication approach to ensure efficient
energy transfer and maintain a balance between energy
suppliers and consumers. Energy management of EV battery is
proposed in [12] by taking into consideration the V2G
connection, prices for selling and purchasing electricity, and the
daily load profile of household appliances. In [13], an opti-
mised smart charging and discharging coordination scheme
using Linear Programming (LP) based on a heuristic algorithm
is proposed for V2G technology. The aim of the proposed
algorithm is to cope with a variety of loads and departure times
of EVs. Bayesian Neural Networks (BNN) have been
proposed in [14] for predicting electricity prices for charging/
discharging EV battery while minimising charging costs over a
long-term time horizon.

Classical optimisation methods such as linear program-
ming, dynamic programming and their counterparts have been
applied to the scheduling of EV charging/discharging. How-
ever, these methods suffer from the curse of dimensionality
and cannot adapt to the environment's stochasticity including
unpredictable load profile, price signals and changing driving
patterns. Global search methods such as genetic algorithm,
swarm intelligence and their hybrids with the linear optimisa-
tion methods are also used for solving power management
problems. However, these methods are generally slow and
computationally intensive; thus they are not suitable for real-
time. In addition, when using such methods, which do not
have a learning component, optimisation iterations are needed

for every new load and generation profile, which is also
computationally intensive. Machine learning techniques such as
reinforcement learning algorithms offer a better alternative as
they can be trained offline for a general load and generation
profile and then they can be applied online for any load profile,
dynamic electricity price signal and various driving patterns.

Reinforcement Learning (RL) has been successfully used in
various applications related to energy management, decision
and control. RL models have excellent decision-making ability
due to their ability to solve problems without a priori knowl-
edge of the environment. Multi-agent reinforcement learning
has been proposed for the optimal scheduling of household
appliances including V2G technology in smart home to opti-
mise the energy utilisation [15]. However, multi-agents RL
requires setting several agents, with each agent having different
actions and rewards therefore making the learning process
more complex. Other studies have focussed on using Markov
Decision Process (MDP) algorithms in HEMS to determine
the optimal strategy for the scheduling of EV charging and
discharging [16]. However, these algorithms require historical
data, such as electricity prices and battery State-of-Charge
(SOC) as inputs to compute the charging/discharging sched-
ules in real-time.

Thus, the original contributions of the proposed method
can be summarised as follows: (i) a new and flexible DR-based
energy management strategy is proposed for EV charging and
discharging operations without compromising the owner's
driving needs and convenience. The proposed approach works
with a single agent and uses a reduced number of state-action
pairs and fuzzy logic for state space and reward functions
instead of the classical rule-based techniques. (ii) the driving
patterns are considered in this paper, where the EV model is
interfaced to Google map via the App Designer Tool of
MATLAB that enables the calculation of the distance, power
required, and arrival and departure times for each trip. (iii) this
study also quantifies the potential cost savings of various
operating modes, including V2G, V2H, and G2V. (iv) this
paper also evaluates the impacts of the participation of EVs in
peak shaving within a residential area consisting of 100 homes.
This model can be adjusted to any electricity network, inde-
pendently of the country in which it may be located, and even
if the demand conditions, electricity prices, and user's behav-
iour are different from the case study presented in this paper.

This paper is organised as follows: In Section 2, V2G and
V2H technologies are briefly described. Section 3 presents the
modelling of EVs. The concepts of RL and Q-learning model
are presented in Section 4. Section 5 presents the results and
discussion. Finally, the conclusions of the paper are summar-
ised in Section 6.

2 | OVERVIEW OF V2G AND V2H
TECHNOLOGIES

V2G and V2H are two technologies in which EVs having
bidirectional power flow capability can connect to the charging
station to draw power from the grid, deliver power to the grid

2 - ALFAVERH ET AL.



or provide back-up electricity supply to a home. The general
energy flow diagram of charging/discharging modes of V2G
and V2H structures within HEMS is illustrated in Figure 1.

A typical bidirectional EV battery charger consists of
bidirectional AC/DC and DC/DC converters as shown in
Figure 2 [17]. In charging mode, the bidirectional AC/DC
converter is used to convert the AC grid power to DC for
the battery and in discharging mode, the DC battery power
is converted to AC power and injected back to the grid or
used to supply the house. The DC/DC converter, on the
other hand, controls the bidirectional power flow by using
current control technique. The DC/DC converter can act as
a buck or boost converter during charging or discharging
mode, respectively.

With the advancement in battery technologies, the energy
storage capacity of EVs has significantly improved. Currently,
the capacity of EV batteries varies from 1 to 100 kWh. Battery
capacity of Nissan Leaf 2018 is 40 kWh, that of Tesla Model 3
is 80 kWh and Tesla Model S is 100 kWh.

2.1 | Vehicle-to-grid (V2G)

V2G technology is attractive due to the benefits it provides
to grid operators and EV owners and its positive impact on
the environment. EVs with V2G capability are considered as
an alternative energy source for the grid and can provide
ancillary services to the grid such as frequency/voltage
support, load balancing, support to intermittent power of
renewable energy, reactive power support, valley filling and
peak shaving. Therefore, an effective energy management is
required to coordinate the charging/discharging modes of
the EV battery. Smart chargers and their energy manage-
ment system are key factors in the implementation of
bidirectional V2G scheme. In [18], the authors proposed a
controllable EV charger that enables an autonomous smart
energy management system in a residential sector. The
proposed power converter topology allows charging/dis-
charging operations at different power levels. Several V2G
demonstrator projects have been conducted around the
world over the recent years most of them in Europe. Some
of these V2G models have been adopted by leading car
manufacturers and are already in the marketplace. In the
UK, the Sciurus project is among the world's largest V2G
projects aimed to develop and deploy a large number of
chargers for domestic use. This project aims to validate
the technical and commercial benefits of the V2G technol-
ogy to the power grid and demonstrate its value to EV
manufacturers [19]. In Germany, the world's leading car
manufacturer Nissan, the transmission system operator
TenneT and The Mobility House energy supplier have suc-
cessfully completed a substantial V2G pilot project. The
project aims to respond to the increasing concern of Ger-
many about saving the surplus of energy generated from
renewable, intermittent sources such as wind energy. In this
project, Nissan Leaf batteries are used for energy storage.
When fully charged, the batteries feed the stored energy

back to the grid when needed [20]. The SEEV4-City project,
funded by the EU Interreg North Sea Region, aims to
deploy V2G technology to use EV batteries as short-term
storage of renewable energy to support the grid or redi-
rect the available energy form vehicles to homes, neigh-
bourhoods or cities [21].

2.2 | Vehicle-to-home (V2H)

V2H enables an EV to act as a backup power source and
supply electricity to a home during short-term power outages
or contribute to peak demand reduction, smooth home energy
consumption, and minimise energy purchase from the grid.
Some of the very significant and unique features of V2H
technology is its simple implementation and some car manu-
facturers have already started deploying this technology. For
example, Mitsubishi Motors Corporation (MMC) announced a
new EV model called Dendo Drive House (DDH) at the 89th
Geneva Motor Show [22]. This model is considered as a
packaged system comprising an EV/PHEV, solar panel and a
bidirectional V2H charger. DDH offers owners savings on
charging costs and an emergency power source. Nissan
Australia launched a new version of Nissan Leaf Plus that
incorporates V2H capability [23]. V2H-equipped Leaf can be
used as energy storage with the capability to supply energy to
household appliances.

F I GURE 1 Block diagram of EV technologies integrated to HEMS.
EV, electric vehicles

F I GURE 2 V2G using bidirectional converters. V2G, vehicle to grid
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3 | MODELLING OF THE GRID
INTEGRATION FRAMEWORK

3.1 | Modelling of V2G and V2H systems

Figure 3 depicts the overall structure of the EV model inter-
faced with the grid and the home and illustrates the operations
modes and services it can provide during these modes.

Table 1 shows different types of EVs with different battery
capacity and brands. The Nissan LEAF 2018 model is used in
the simulations. The battery has a maximum capacity of
40 kWh which gives a driving autonomy of 151 miles, a
charging time of 8 h to be fully charged (230 VAC 15 A).

The total power stored in the EV battery is given by the
following equation:

ETotalEV ¼ Eint þ ΔEch − ΔEdis−A − ΔEdis−grid − Etrip ð1Þ

Where ETotalEV is the net energy stored in the battery, Eint is
the initial energy stored in the battery, ΔEch is the energy drawn
from the grid to charge the EV battery, ΔEdis−A represents the
energy delivered to the household appliances, ΔEdis−grid is the
energy fed to the grid and Etrip denotes the total energy
consumed by the EV during the trip.

ΔEch ¼ mG2V ∫
tout

t in

PchðtÞ: dt ð2Þ

ΔEdis−A ¼ mV 2H ∫
tout

tin
PdisðtÞ: dt ð3Þ

ΔEdis−grid ¼mV 2G ∫
tout

tin
PdisðtÞ: dt ð4Þ

where PchðtÞ and PdisðtÞ are the charging and discharging
power, respectively. mV 2H , mV 2G and mG2V represent the
status of the EV connection mode and assume values 0 or 1.

The proposed management strategy depends also on the
SOC of the battery which is the key parameter in the EV as it is
a measure of the amount of the energy stored in it. The typical
estimation of the SOC of the EV battery is based on the
charging/discharging energy as follows:

SOC ¼ SOCint þ
ΔEch þ ΔEdis−A þ ΔEdis−grid

EratEV
ð5Þ

where SOCint is the initial SOC and EratEV is the energy capacity
of the battery.

Considering the battery lifecycle, some constraints have
been imposed on the power delivered by the EV to the grid
(V2G) or to the home (V2H) and on the battery State-of-

Charge (SOC). Equation (6) shows that the EV power is
limited between the minimum operating power Pmin to be
supplied to the EV and the maximum power range Pmax to be
injected in the grid/home.

Pmax ≥ Pdis; Pch ≥ Pmin ð6Þ

Similarly, Equation (7) prevents deep discharging and full
charging of the EV battery by imposing a minimum SoC
(SOCmin) and a maximum SOC (SOCmax), respectively:

SOCmin < SOC < SOCmax ð7Þ

3.2 | Modelling of EV driving patterns

The EV model is interfaced to Google map via the App
Designer Tool of MATLAB and allows the calculation of
the distance, power required, arrival and departure time
for each trip. This information will be employed for
scheduling the battery charging and discharging times to
ensure the vehicle is always sufficiently charged for the
next trip.

The availability of EV refers to whether the vehicle is
parked at home and accessible for either V2H or V2G con-
nections and is defined as follows:

Cev ¼
�

1 EV available
0 EV not available ð8Þ

F I GURE 3 Selection of EV operation modes. EV, electric vehicle;
G2V, grid to vehicle; V2G, vehicle to grid
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Using the designed user-interface, the EV owner can
schedule his/her trip by selecting the destination and departure
times as shown in Figure 4.

Once the trip distance is determined, the energy required
for the trip is calculated as follows:

Etrip ¼
Dtrip
Dmax

� EratEV ð9Þ

where Dtrip and Dmax are the distance of the trip and the
maximum distance the EV can travel with full SOC, respec-
tively, Erat

EV denotes the maximum energy capacity of the EV
battery.

3.3 | Modelling of the household load profile

Smart meters are used in smart home to receive the price signal
from an energy supplier and collect the power data of all
household appliances, and then send them to HEMS. Gener-
ally, the daily power consumption of a typical household
contains two peaks occurring during the morning and evening
times when energy prices are higher.

The off-peak period corresponds to the period of the day
when electricity prices are lower since household activities such
as washing, cleaning, cooking, and watching TV are reduced. In
this work, the household appliances are divided into shiftable
and non-shiftable appliances. Therefore, at each time step
(considered as an hour in this work), the total power demand
of all appliances during a certain hour is given as follows:

ETh ¼
XN

n¼1
eshf tn :J shf tn þ

XM

m¼1
enonm :Jnonm ð10Þ

Where eshf tn and enonm represent the rated power of each
shiftable appliance and non-shiftable appliance, respectively.
J shf t=nonn=m denotes the status of the appliance and takes values
0 (off) or 1 (on), respectively, t ∈ f1; 2; 3;…; 24g represents
the hour of the day, n ∈ f1; 2;…; Ng is the appliance number
and N is the total number of the shiftable appliances.
m ∈ f1; 2;…Mg refers to the appliance number and M is the
total number of the non-shiftable appliances.

4 | V2G DEMAND RESPONSE BASED
ON Q-LEANING

With V2G technology, EVs become a distributed energy
storage and can offer a range of ancillary services by back-
feeding power to the electricity grid such as demand
response, peak-load management, voltage support, frequency
regulation and will enable EV owners to save on energy costs
and generate revenue through price arbitrage. V2G technology
is evolving at an accelerated pace and research is ongoing to
enhance its functionality and implementation.

This paper proposes an effective V2G-based demand
response approach for the energy management of residential
loads using Q-learning and RTP.

4.1 | Overview of Q-Learning

Reinforcement Learning (RL) is a machine-learning type of
computational algorithm in which an agent tries to maximise
the total reward over time by taking actions and interacting
with an unknown environment.

RL algorithm works based on main six parameters namely,
agent, environment, state space S, action space A, rewards R,
and action-value Q(s; a). Generally, the RL-agent interacts
with an environment as shown in Figure 5.

At each time step t ¼ f0; 1; 2;…g QUOTE t ∈ f0; 1;
2;…g the agent takes an action at ∈ AðtÞ based on a certain

policy π at a given state st ∈ SðtÞ. The environment then
observes the new state stþ1 ∈ SðtÞ and computes a numerical
reward rðst; atÞ to evaluate the performance of the action
taken which is then fed back to the agent as shown in
Figure 5. Based on the calculated reward, the agent will
optimise its policy π and hence maximise the accumulated
future rewards.

In RL algorithm, the action-value function refers to ‘‘how
good’’ the action taken performs for a certain state based on a
certain policy π, and is denoted as Qπðs; aÞ. This action-value
function is defined as the mathematical expectation of the total
rewards that the agent will obtain in the future:

Qπðs; aÞ ¼ Eπ

"
X∞

k¼0

γkrtþkþ1j st ¼ s; at ¼ a
#

ð11Þ

TABLE 1 Different types of EVs
Manufacturer Model kWh Miles Battery Type

Ford 2018 Focus Electric 33.5 115 Liquid-cooled lithium-ion battery

Volkswagen 2018 Volkswagen e-Golf 35.8 120 Lithium-ion battery

Nissan 2018 Nissan LEAF 40 151 Lithium-ion battery

Chevrolet 2018 Chevy Bolt 60 238 Nickel-rich lithium-ion

Tesla 2018 Tesla model 3 75 285 Lithium-ion battery

Abbreviation: EV, electric vehicle.
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Where Eπ denotes the expectation of total rewards by
following policy π, γ is known as the discount rate and
describes the relationship between the current and future
rewards. It takes a value in the interval [0, 1], where ‘0’ means
the agent relies on the current reward only and ‘1’ indicates that
the agent will strive for the future rewards.

At each state, the agent can take at least one optimal action
and receive the highest reward. Therefore, the optimal policy
aims to choose the optimal action with the highest Q-value as
follows:

πða|sÞ ¼ argmaxðQðs; aÞÞ ð12Þ

Q-learning is a model-free RL algorithm that aims to learn
a policy which guides the agent towards the optimal action

under certain states. The procedure of Q-Learning is to create
a Q-matrix that has a dimension of S � A and then assign a
Q-value Qðst; atÞ to each state-action pair at time step t, and
then update this value at each iteration to optimise the agent's
performance.

The action-value Qðst; atÞ is updated using the following
equation:

Qðst; atÞ← ð1 − αÞQðst:atÞ þ α½rðst; atÞ þ γ:max Qðstþ1; atþ1Þ�

ð13Þ

where α (0 < α < 1Þ denotes the learning rate and determines
how much the new reward affects the old value of Qðst; atÞ.
For instance, α¼ 0 means that the new information obtained
is ignored and hence the reward received does not affect the
Q-value. When α¼ 1, only the latest information is
considered.

4.2 | Q-learning model for the EV

RL is adopted here to make an optimal decision on charging or
discharging of EV battery under dynamic electricity prices and
different energy consumption patterns using an intelligent

F I GURE 4 User-interface for scheduling trips

F I GURE 5 Reinforcement learning process
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agent which controls the dynamic process by executing
sequential actions. The dynamic process is characterised by a
state-space and a numerical reward that evaluates the new state
when a given action is taken. In this paper, the Q-learning
model components are defined as follows:

4.2.1 | State-space implementation using fuzzy
logic

To reduce the number of states, fuzzy logic toolbox of
MATLAB software is used. The state-space here is represented
by the total household loads profile, SOC of the EV battery,
availability of the EV and the electricity price signal. To
simplify the model and reduce the computation time, the
household power demand is divided into four levels as
Extremely Low, Low, High and Extremely High. The SOC of
the EV battery is defined as Extremely Empty, Low, High and
Extremely Full; the EV availability can be Available or Un-
available. Finally, the price signal is categorised into Cheap and
Expensive price.

The state is formulated using Fuzzy Logic. Fuzzy reasoning
is a decision-making model that deals with approximate values
rather than exact values. A Fuzzy Inference System (FIS)
provides the mapping from the inputs to the outputs, based on
a set of fuzzy rules and associated fuzzy Membership Func-
tions (MFs). There are two types of FIS, Mamdani-type FIS
and Sugeno-type FIS. Mamdani method is used in this paper
because it offers a smoother output. The input variables of the
fuzzy state model are the total home power demand ðEtotalt Þ,
the electricity price ðPtÞ, the SOC of the EV battery ðSOCtÞ
and the availability of EV (Cv), and the output variable is the
States.

The MFs for the input variable ‘Total household loads’ are
triangular and are labelled as Extremely Low, Low, High and
Extremely High. The universe of discourse of power demand
is chosen as [0 6300] (Watt). The fuzzy sets of electricity price
are defined as Cheap and Expensive. The MFs are Gaussian
and the universe discourse is [0 0.16] (£/kWh). For the SOC,
the universe discourse is defined [0 100]%, and the associated
fuzzy sets are Extremely Empty, Low, High and Extremely
Full The output of the system is the State, and there are 25
States in total.

4.2.2 | Action space

The proposed strategy aims to schedule the charging time of the
EV to be during off-peak hours when electricity prices are lower.
It also aims to manage the energy stored in the EV battery
whether to supply the household appliances during high energy
prices or outage (V2H), or to deliver the energy back to grid
using (V2G) depending on the SOC and availability of the EV.

Therefore, the actions set can be summarised as Charging,
Discharging/Appliances, Discharging/Grid and Do nothing.
Based on the current state, the agent chooses one action from
the action space A that given by -

A¼
h
Charging; Dischargingappliances ; Discharginggrid; Donothing

i

ð14Þ

4.2.3 | Reward function implementation using
fuzzy logic

The agent receives a numerical reward rðst; atÞ after executing
a random action and observing the new state. This reward
value aims to evaluate how good is the action taken by the
agent for a certain state. Fuzzy logic is also used here to
evaluate the action that will be taken for a certain state.

The input variable of the reward function's FIS is the current
state st, which is the output of the FIS system of the state space.
The outputs of the system are the evaluation of the random
action which was defined in Q-learning. For each action taken
(output), the fuzzy sets are determined as Bad Action (BA),
Good Action (GA) and Very Good Action (VGA). The universe
of discourse of MFs is defined as [0 100] to evaluate all possible
actions with values out of 100. The evaluation actions process
works as follows; first, the FIS system of the state-space will
identify the current state, based on the current space, the agent
will take a random action from the action space. The FIS system
of the reward function evaluates all the possible actions with
value out of 100. Then, the agent will receive a numerical value
corresponding to the action taken.

4.3 | EV energy management strategy using
Q-learning

Q-learning is an off-policy RL algorithm that aims to make the
appropriate decision at a current state. Using the off policy,
the agent learns from taking a random action at a certain state
without following a current policy. This means that a policy is
not required during a training process. The Q-matrix with a
dimension of ½states� actions� should be initialised to zero (i.e.
the Q-value of each state-action pair is signed to zero). Then,
the agent will interact with the environment and update each
pair in that matrix after each action taken using Equation (3).
In this paper, a random action called ‘exploring’ is applied. In
this case, an appropriate number of iterations will be required
to explore and update the values of Qðst; atÞ for all state-
action pairs at least once. After convergence of the
Q-matrix, the optimal Q-values will be obtained.

The pseudo-code listed in Table 2 (Algorithm 1) illustrates
the procedure of the main algorithm of the EV energy man-
agement using Q-learning based on MATALB/Script. First, a
certain state and a numerical reward are defined using fuzzy
logic. The parameters γ and α are set to 0.8 and 0.2, respec-
tively, and Q-value matrix entries are initialised to zeros. For
each current state, all possible actions are specified, and then
an action will be selected randomly. After the selected action is
executed, the numerical reward (using fuzzy logic) for that
action and the new state will be observed by the agent. The
maximum Q-value for the next state should also be determined

ALFAVERH ET AL. - 7



and then the Q-value of the state-action pair will be updated
using Equation (13).

Finally, the next state will be used as a current state.
To allow the agent to visit all state-state pairs and learn
new knowledge, the training process is set to 1000
iterations.

5 | RESULTS AND DISCUSSION

5.1 | Implementing the proposed strategy
with single EV in a household

The proposed EV management strategy works based on the
relationships between the household power demand, elec-
tricity price, SOC and availability of EV. The smart meter is
used in the smart house to collect the power data of the
household loads, receive the energy price signal from the
power grid and send them to HEMS. Once the EV arrives
home, HEMS will receive a signal of EV availability with the
percentage of SOC as illustrated in Figure 6. Consequently,
HEMS can make an optimal decision whether to charge the
EV battery from the grid, use it to power the household

appliances or sell the energy stored in the battery back to the
grid. The simulation time is set at one day (24 h) with a 5-
min time step. The price tariff signal that is received form the
power utility is shown in Figure 7. It is assumed that the user
leaves the home by 09:00 and returns at 14:00.

The total power demand of the household appliances is
shown in Figure 8. There are two peak periods, morning peak
hours [7:00 AM–10:00 AM] when the household member wake
up and evening peak period [18:00 PM −21:00 PM] when the
users start cooking, watching TV and other activities. The mid-
peak period occurs after and before these two peak periods.
Off-peak period occurs usually after midnight until morning.

5.1.1 | Case 1: weekdays with 70% of SOC

n this case, the initial SOC of the EV battery is set to 70%,
based on the relationship between the electricity price signal,
the total power demand and the Q-values. Figure 9a show all
actions taken. For example, the total energy demand is low
(3.5 kWh) during the period [5:00–7:00], the energy price is
0.07 £/kWh at 5:00 AM and 0.08 £/kWh at 6:00 AM, the SOC
is high at 70% and the EV is available CEV ¼ 1. Therefore,
the current state is defined as st ¼ ½Low; Cheap; High; 1�.
According to the Q-value, the maximum Q-value for this state
refers to the Charging action. To protect the battery from the
overcharging, the maximum SOC is set to 80%. Therefore,
from Figure 9b, it can be observed that the charging mode is
stopped during the last half an hour because the SOC reached
80%, and the Do-Nothing mode is active. At 7:00 AM, the
system moves to another State because the energy demand is
average (4.3 kW), the price is high (0.11) and the battery is fully
charged with SOC of 80%. Therefore, it is better to sell energy
to the grid using V2G connection during this hour. In the next
hour (8:00 AM), the demand jumps to 4.8 kW (High), the
energy price is 0.14 £/kWh and the SOC remains high at 70%,
then the best decision is to supply the household appliances
using V2H connection during this hour.

The user leaves his house with the EV at 9:00 AM and
returns at 14:00 PM, during this period the EV is not available,
hence Do-Nothing mode is issued. When the EV returns home
at 14:00 PM, the SOC is low, and the energy demand and price

TABLE 2 Algorithm of the EV energy management using Q-learning

Algorithm 1
- Set γ,α parameters and environment rewards.
- Initialise Qðst; atÞ ; ∀s ∈ S; ∀a ∈ A:
For each time step t do:

- Choose a random initial state.
While hour = 1:24

- Determine all available actions.
- Select random action from all possible

actions for the current state.
- Execute the selected action at , and

observe the new state stþ1 and
numerical reward rðst; atÞ.

- Determine the maximum Q-value for
next state in Q-matrix.

- Update the Qðst; atÞ using Equation (13).
- Set the next state as current state.

End while
End for
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are also low (3.8 kW and 0.08 £/kWh, respectively). Therefore,
the EV battery is charged for two hours from 14:00 PM−16:00
PM till the SOC reached 60%. During the next two hours
(16:00–18:00 PM), the action taken is Do-Nothing because the
SOC is high, the energy price is low, and the energy demand is
average. Therefore, there is no need to charge or discharge the
battery. During the evening peak period from 18:00 PM to
21:00 PM, the energy demand and price are quite high, the EV
battery has 60% of SOC. Discharging/Appliances mode is
triggered to supply energy to the appliances and reduce the
electricity cost as shown in Figure 9c. Finally, during the period
from 21:00 PM to 23:00 PM, Discharging/Selling mode is
activated to sell energy back to the grid since the SOC is at
50%. This period leads to maximise the user's revenue and
reduce the stress on the power utility. The SOC drops to 30%
at 24:00, hence Do-Nothing mode occurs. The Charging mode
is activated at 24:00 PM till 5:00 AM, and the SOC reaches
60% to be ready for the next day.

5.1.2 | Case 2: weekdays with 50% of SOC

In this case, the initial SOC of the EV battery is set to 50%,
because the SOC is reduced by 20% from case 1, the amount
of energy sold to the grid is also reduced. Figure 10a shows all
the actions taken. The EV starts the day with a SOC of 50% as
shown in Figure 10b. During the first two hours [5:00 AM–
7:00 AM], the Charging mode is active until the SOC reaches

60%. During the morning peak hours [7:00 AM–9:00 AM], the
EV battery is used to inject power to the grid at 7:00 AM and
supply the household appliances with different states and ac-
tions at 9:00 AM as shown in Figure 10c. When the EV returns
home at 14:00 PM, the mode Charging is activated for hours
[14:00 PM–16:00 PM] to charge the EV battery with lower
price and to have it available for the evening peak period. The
V2H model is active during [18:00 PM–21:00 PM] to deliver
energy to the household appliances using Dis-
charging/Appliances action. From 24:00 PM to 5:00 AM (off-
peak period), the EV starts charging to be ready for travelling
purposes in the next day, the SOC reaches 60%.

5.1.3 | Case 3: weekdays with 30% of SOC

The initial SOC of the EV is 30% in this case. All actions taken
during this scenario are shown in Figure 11a. The charging
action is active during [5:00 AM–7:00 AM] as shown in
Figure 11b till the SOC reaches 40%. Although the SOC is
lower, the battery is used as much as possible to supply the
home appliances and sell power to the grid. This minimises the
electricity bills and reduces the burden on the grid. Therefore,
the EV exports energy to the grid only for one hour [7:00 AM–
8:00 AM] in this case, The EV also supplies energy to the
appliances for one hour during the morning peak period [8:00
AM–9:00 AM] as shown in Figure 11c. After midnight, the EV
starts charging and the SOC reaches 50%.

5.1.4 | Case 4: Weekend days

Figure 12 illustrates the hourly power demand during week-
ends and weekdays. Hourly power consumption patterns of
weekdays and weekends are quite different. The weekend
pattern has a clear morning peak start at 10:00 AM and lags
weekday pattern. The different features are quite understand-
able because people usually start later during weekend morn-
ings and generally spend more hours at home during the time
slot from 10:00 AM to 14:00 PM while they spend more time
at work or on outdoor activities at the same time slot during
weekdays. In this scenario, it is assumed that the EV leaves the
home twice [13:00–15:00] and [20:00–22:00], the EV starts the
day with 50% of SOC.

During the time interval [5:00 AM–7:00 AM], Charging
mode is detected as shown in Figure 13a as the power demand
(3 kWh) and electricity price are lower. The SOC increases
from 50% to 70% as shown in Figure 13b. Because it is the
weekend day, EV owner is staying at home, the SOC is quite
high and power demand is low, it is better to sell energy to grid.
Therefore, Discharging/Selling mode is active from 7:00 AM–
10:00 AM and the SOC decreases to 60%. The next three
hours [10:00 AM–13:00 PM], the power demand is high as it is
morning peak demand. Discharging/Appliances mode is
detected to supply power to the home appliances. The EV
leaves the home at 13:00 PM and comes back at 15:00 PM with
low SOC (38%). Hence, Charging mode is detected for three

F I GURE 8 Total power demand of the smart home

F I GURE 7 Real-time price (blue) and average price (green) signals
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hours [15:00 AM–18:00 PM] and the SOC increases to 65%.
During [18:00 PM–20:00 PM], the SOC is quite high, and the
electricity price is high, the demand is average, hence Dis-
charging/Selling mode is active to feed energy back to the grid.
The EV leaves the home at 20:00 PM and come back at 22:00
PM. In that time, the evening peak demand begins.

Therefore, the EV starts supply the household appliances
for two hours till SOC drops to 41%. At 24:00 PM, the off-
peakdemand is detected with low energy price. The EV
starts charging until it reaches 80% at 04:00 AM and then Do-
Nothing mode is active.

Figure 14 shows the cumulative daily household energy cost
for the base case and different cases (SOC = 30, 50% and 80%).
It can be observed from the figure that the proposed method
reduces the cost by 12% when the EV starts the day with low
SOC (30%), 21% of the cost reduction when the SOC is 50%.
When SOC is higher (80%), the energy cost reduces by 27%.

5.2 | Implementing the proposed strategy
on a fleet of EVs connected to the distribution
network

A fleet of EVs with bidirectional power capability represents a
considerable energy storage resource and has the potential to

F I GURE 9 Initial SOC = 70% (a) Actions, (b) SOC changes,
(c) Power consumption. SOC, state of charge

F I GURE 1 0 Initial SOC = 50% (a) Actions, (b) SOC changes,
(c) Power consumption. SOC, state of charge
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provide ancillary services to the utility grid. To evaluate the
effectiveness of the proposed schedulin g scheme, the low-
voltage (LV) distribution network connected to a residential
area is used. The residential area consists of 100 houses with 50
households owning an individual EV. There are different EVs
with different battery capacity in the market, therefore
different EVs are selected randomly among [20, 30, 40 and
50 kWh] as presented in Figure 15a. The random initial SOC
for each EV is chosen. Figure 15b shows the number of EVs
with different SOCs.

In this model, three variables are defined for each EV
which are the departure time, arrival time and energy con-
sumption during a trip. In addition, for simplicity, it is assumed

that each EV performs only one trip during a day. However,
the model can be easily extended to accommodate multi-
ple trips for each EV. These three variables are modelled with a
probability density function having a normal distribution. The
intervals for departure and arrival times are [7 AM–10 AM]
and [16 PM–22 PM], respectively, as shown in Figure 15c. The
energy consumed by each EV during a trip is between
[0–10 kWh].

The energy consumption in the residential area in real time
is presented as follows:

EMGðtÞ ¼ EhsðtÞ þ ΔENchch ðtÞ − ΔENdisdis ðtÞ ð15Þ

where EMGðtÞ is the consumed energy in the residential area.
EhsðtÞ refers to the energy consumption by households’ ap-
pliances. ΔENchch ðtÞ and ΔENdisdis ðtÞ are the charging and dis-
charging energy by EVs, respectively.

EhsðtÞ ¼
XNh

n¼1
ETh ð16Þ

ΔENchch ðtÞ ¼
XNch

n¼1
PchðtÞ ð17Þ

ΔENdisdis ðtÞ ¼
XNdis

n¼1
PdisðtÞ ð18Þ

Figure 16 shows the power consumption profile of the
residential area in a typical weekday without EVs charging load.
The peak hours occur during morning [7:00 AM–11:00 AM]
and evening [18:00 PM–21:00 PM].

Figure 17 shows the power profile curve of the residential
area after implementing the proposed strategy for each EV in
the network. Some of the users start charging their EVs during
off peak [12 AM–7 AM] based on the SOC, departure time of
each EV, this results in filling the valley. It can be observed that

F I GURE 1 1 Initial SOC = 30% (a) Actions, (b) SOC changes,
(c) Power consumption. EV, electric vehicle; SOC, state of charge

F I GURE 1 2 Hourly household electrical demand of weekend and
weekday
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the morning peak and evening peak periods have been reduced
by 23% and 15%, respectively. This is the result of EVs feeding
power back to the grid via V2G and supplying energy to the
household to power the appliances via V2H which reduced the
energy consumed from the grid.

Table 3 summarises the results of this simulation. The total
peak reduction during morning hours is 23% (15% using V2H
and 8% using V2G) and a reduction of 15% occurred at
evening (10.49% using V2H and 4.51% using V2G). It can be
observed that EVs with higher initial SOC have the highest
probability to feed energy back to the grid and supply the
household appliances. Therefore, the number of EVs that start

the day with 70% is 15. These EVs have the highest contri-
bution in reducing the morning peak period by 7.20% and
6.0% during evening peak hours. However, the EVs with
lowest of initial SOC (30%) could not sell energy during both
peak periods (morning and evening), but these are still able to
supply energy to the household appliances and contribute to
load reduction (1.61% at morning and 1.05% at evening).

F I GURE 1 3 Weekend days with Initial SOC = 50% (a) Actions,
(b) SOC changes, (c) Power consumption. SOC, state of charge

F I GURE 1 4 Cumulative electricity cost. SOC, State of charge

F I GURE 1 5 Number of EVs with different (a) capacity (b) initial SoC
(c) departure and arrival times. EV, electric vehicle; SOC, state of charge
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These simulations have been performed using a laptop
computer with an Intel(R) Core (TM) i5-3320M CPU @
2.60 GHz and 16 GB of RAM. The average computational
time required to determine the optimal policy of the
Q-learning is 250 milliseconds with 10,000 iterations.

6 | CONCLUSION

This paper proposed a demand response strategy for charging/
discharging energy management of Electrical Vehicles (EV)
equipped with bidirectional V2G and V2H functionalities. The
proposed strategy aims to minimise the household energy
consumption and EV charging costs by charging the battery
during off-peak hours when energy prices are lower or dis-
charging (supplying) the home appliances during peak periods
or support the electricity grid during peak demands which also
generates revenue to the EV owner. In this study, an effective
EV energy management system is developed using Q-learning
to coordinate the charging/discharging modes considering the
travel needs of the EV owner. The Reinforcement Learning
(RL)-based scheme is employed, where the EV is defined as an
agent and utilises a signal agent to make an optimal decision. A
signal agent approach is used to reduce the number of state-
action pairs, which simplifies the implementation, leads to a

better performance, and lower time consumption as compared
with other techniques. Fuzzy reasoning is introduced to define
the current state based on the input variables and evaluate the
random action that the agent could take as a reward function.
Fuzzy logic-based implementation of the state and reward
function overcomes the limitation of rules-based technique
(crisp values) and leads to a better performance. The proposed
strategy was also successfully applied to a fleet of EVs in a
residential area. The simulation results show that the scheduled
charging load can contribute to reducing peak loads by 23% at
morning and 15% at evening hours. Also, the number of EVs,
the initial SOC and battery capacity of EVs, with the smart
scheduled charging and V2H and V2G technologies, was
found to be proportionally related to the percentage of peak
load reduction.

In the context of this simulation study, it was assumed
that the EVs are connected only to the owners’ houses;
whereas in practice, the EVs could be connected the grid at
any other location such as the destination of the trip,
others’ houses, etc. As future work, the proposed approach
can be expanded and assessed while considering the
mobility of the EV.

ORCID
Mouloud Denaï https://orcid.org/0000-0001-8290-6743

F I GURE 1 6 Load profile of the residential area. V2G, vehicle to grid;
V2H, vehicle to home

F I GURE 1 7 Network power profile after implementing the proposed
strategy

TABLE 3 Contribution of EVs to
energy reduction during morning and evening
peak periods

SOC No. of EVs

EVs Capacity (kWh)

Reduction of peak loads

Morning Evening

20 30 40 50 By V2H By V2G By V2H By V2G

70% 15 7 1 5 2 5.20% 4.00% 3.90% 2.10%

60% 12 2 6 1 3 4.5% 2.40% 2.35% 2.15%

50% 2 0 1 1 0 0.59% 0.10% 0.28% 0.17%

40% 11 6 1 2 2 3.10% 1.50% 2.91% 0.09%

30% 10 4 2 4 0 1.61% 0.00% 1.05% 0.00%

Total 50 19 11 13 7
15.00% 8.00% 10.49% 4.51%

23% 15%

Note: The bold is only to emphasize the totals.
Abbreviations: EV, electric vehicles: V2G, Vehicle to grid; V2H, vehicle to home.
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