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Affine opers and conformal affine Toda

Charles A. S. Young

Abstract

For g a Kac–Moody algebra of affine type, we show that there is an AutO-equivariant
identification between FunOpg(D), the algebra of functions on the space of g-opers on the disc,
and W ⊂ π0, the intersection of kernels of screenings inside a vacuum Fock module π0. This
kernel W is generated by two states: a conformal vector and a state δ−1|0 >. We show that the

latter endows π0 with a canonical notion of translation T (aff), and use it to define the densities
in π0 of integrals of motion of classical Conformal Affine Toda field theory.

The AutO-action defines a bundle Π over P
1 with fibre π0. We show that the product bundles

Π ⊗ Ωj , where Ωj are tensor powers of the canonical bundle, come endowed with a one-parameter
family of holomorphic connections, ∇(aff) − αT (aff), α ∈ C. The integrals of motion of Conformal
Affine Toda define global sections [vjdt

j+1] ∈ H1(P1,Π ⊗ Ωj ,∇(aff)) of the de Rham cohomology

of ∇(aff).
Any choice of g-Miura oper χ gives a connection ∇(aff)

χ on Ωj . Using coinvariants, we define a

map Fχ from sections of Π ⊗ Ωj to sections of Ωj . We show that Fχ∇(aff) = ∇(aff)
χ Fχ, so that Fχ

descends to a well-defined map of cohomologies. Under this map, the classes [vjdt
j+1] are sent

to the classes in H1(P1,Ωj ,∇(aff)
χ ) defined by the g-oper underlying χ.
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1. Introduction and overview

In this paper we generalize certain results about classical integrable systems associated to a
finite-dimensional simple Lie algebra g, to the case in which g is an affine algebra. These results
concern the interplay of global and local pictures: here global means associated to a copy of
the Riemann sphere P

1 with some collection of marked points x = {x1, . . . , xN}, while local
means associated to the formal disc D, which one should think of as a small disc about some
point in P

1 \ x.
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1.1

To set the scene, let us begin with an overview of the situation when g is of finite type. The
starting point is the free-field realization of the classical W-algebra associated to g:

W ↪→ π0. (1)

Here π0 is the vacuum Fock module for a system of rank(g) free bosons and its subspace
W is defined to be the intersection of the kernels of certain screening operators associated
to the simple roots of g. (Details are in Section 2.) It turns out that W is a Poisson vertex
algebra generated by rank(g) generators. In the language of integrable systems, these generators
correspond to the fields of the classical g-KdV hierarchy, and the embedding (1) describes how
the latter are expressed in terms of the fields of the classical g-mKdV hierarchy. Equivalently,
the generators of W can be seen as the integrals of motion of the classical Toda field theory
associated to g, whose Hamiltonian H in the light-cone formalism is nothing but the sum of
the screening operators [17].

The first of the generators of W is a conformal vector ω ∈ W ⊂ π0. Such a vector defines a
preferred action, on W and π0, of the group AutO of changes of local holomorphic coordinate
on the disc. Moreover, one has the following commutative diagram, which identifies W and π0

with geometricallydefined objects associated to the disc [27, Theorems 11.2, 11.3]:

(2)

Namely, Fun Opg(D) is the algebra of functions on the space of g-opers on the disc [12], and it
embeds into Fun MOpg(D), the algebra of functions on the space of g-Miura opers on the disc.
We recall the definitions below: for the moment the important point is that the group AutO
acts naturally on both these algebras, and the diagram (2) is then AutO-equivariant.

Now let us recall the passage from this local picture to the global picture. An oper is a certain
gauge equivalence class of connections [4] (see Section 9.4). It turns out that, for g of finite
type, to give an g-oper on an open subset U of the Riemann sphere is the same thing as giving,
on U , sections of certain tensor powers Ωj+1 of the canonical bundle Ω (that is, the bundle
of holomorphic one-forms), together with a projective connection†. (The relevant powers are
given by the exponents of g.) So opers form a sheaf, and one has the restriction map to the
stalk of this sheaf at any point x ∈ U . This restriction map is an embedding. Indeed, relative to
a choice of local holomorphic coordinate t : U → C, a meromorphic section fj(t)dtj+1 of Ωj+1

is given by a meromorphic function fj(t), and the germ of this section at a regular point x is
given by the Taylor expansion of this function at x. And, as usual, a meromorphic function
can always be recovered from its Taylor series. (The resulting germs of sections correspond to
the rank(g) generators of W mentioned above.) The upshot is that, for g of finite type, there
is an embedding, global into local,

Opg(P
1)x ↪→ Opg(D) (3)

of the space of meromorphic opers on P
1 holomorphic away from the marked points, into the

space of opers on the formal disc about any point x ∈ P
1 \ x.

One can also understand the global picture in terms of the objects on the left of the diagram
(2), the Poisson vertex algebras W and π0. Indeed, the AutO action defined by the conformal
vector ω allows one to attach copies of π0 to points in P

1 (or any Riemann surface) in a
coordinate-independent fashion, giving rise to a vector bundle over P

1 with fibre π0 [14].

†For the meaning of projective connection, see, for example, [28, § 3.5.7], but it is not crucial here.
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Global Miura opers then correspond to certain global sections of the dual bundle, as we shall
recall in Sections 7 and 9.

The main point to take away is that, for g of finite type, one has the surjection of the algebras
of functions,

Fun Opg(D) � Fun Opg(P
1)x, (4)

coming from the embedding (3). The algebra Fun Opg(P1)x of functions on the space of global
opers is of great interest, for a reason we return to in Section 1.4 below, and this surjection
guarantees that we get all such functions starting from states in W ∼= Fun Opg(D).

1.2

Now, and for the rest of the paper, let us suppose that g is a Kac–Moody algebra of affine
type. Our goal is to give the natural analogues, in this case, of the statements above.

Let us begin with the local situation on the disc. The first observation is that the definitions
of all the objects appearing in the diagram (2) still make perfect sense. (They are given in
Sections 6 and 9 below.) In particular, one still has π0, the Fock space for the loop algebra
h⊗ C((t)) over the Cartan subalgebra h ⊂ g. Importantly, we mean the full Cartan subalgebra,
including the central element k and derivation element d. For convenience, we shall identify h
and h∗ by means of the standard non-degenerate bilinear form. Then k gets identified with the
imaginary root δ.

The first result of the paper is the following.

Theorem 1. For g of affine type one (still) has the commutative diagram (2) and it is (still)
AutO-equivariant.

However, whereas in finite types W was generated by rank(g) generators, in affine types we
shall see that it is generated by just two states,

δ−1|0〉 and ω.

The state ω ∈ W ⊂ π0 is again a conformal vector, and it defines the action of the group of
coordinate transformations AutO on π0, exactly as above†.

By contrast, the state δ−1|0 > = k−1|0 > ∈ W ⊂ π0 is a new feature of the affine case. It too
plays a vital role, as follows. We shall introduce the canonical translation operator T (aff). It is
given by

T (aff) :=
∞∑

m=0

(−1)m

(h)mm!

∑
n1,...,nm�1

1
n1 . . . nm

δ−n1 . . . δ−nm
Ln1+···+nm−1

= L−1 − δ−1

h
L0 +

(
1
2
δ−1

h

δ−1

h
− δ−2

2h

)
L1 + . . . ,

where the Lj are the generators of DerO. Here h is the Coxeter number of g. T (aff) is to be
seen as a modification of the usual vertex algebra translation operator T = L−1. It is canonical
in the sense that for all j � 1, [Lj , T

(aff)] = 0 (Lemma 25), which means that it provides a
notion of translation independent of our choice of local holomorphic coordinate on the disc (in
contrast to T ).

The negative modes of any state X = X−1|0 > in a vertex algebra can always be obtained
by repeated application of the translation operator: X−2 = [T,X−1], X−3 = 1

2 [T, [T,X−1]], . . .

†Though note that in the affine case the central charge is zero and the field corresponding to ω transforms
like a germ of a section of Ω2 rather than the germ of a projective connection.
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and so on. In our setting is natural to define canonical modes of states using the canonical
translation operator: we set

X[−2] := [T (aff), X−1], X[−3] := 1
2 [T (aff), [T (aff), X−1]], . . .

and so on. States constructed from the action of such canonical modes on the Fock vacuum
|0 > will be conformal primaries.

Armed with this canonical notion of translation, we establish the following. (For details see
Section 6.4.)

Theorem 2. We have the following AutO-equivariant double complex:

Here H is the sum of the screening operators corresponding to the simple roots of the
affine algebra g, H :=

⊕
i∈I Sαi

, and by definition W := kerH. In physics terminology, H
is the Hamiltonian of classical Conformal Affine Toda field theory [1, 2, 8, 43, 44] in the
light-cone formalism.

The double complex above is an AutO-equivariant analogue of a double complex from [17],
which dealt with Affine Toda field theory. In Affine Toda field theory one works with the
Fock module corresponding to the Cartan subalgebra of the underlying finite-type algebra,
(fin)h := (

⊕
i∈I Cαi)/Cδ in our conventions; we shall denote this Fock module by (fin)π0.

We introduce a subspace (aff)π0 ⊂ π0 (Section 6.8). It is defined using the canonical modes
and so it is spanned by conformal primaries. We show that it is isomorphic to the Fock module
(fin)π0 as a vector space:

(fin)π0
∼−→C

(aff)π0.

One can think that this isomorphism takes monomials in (fin)π0 and ‘decorates’ them with
appropriate terms involving negative modes of δ. For example, it turns out that for any i, j ∈ I,

[αi]−2[αj ]−1|0〉 �→
(
αi,−2 − 1

h
δ−1αi,−1

)(
αj,−1 − 1

h
δ−1

)
|0〉.

The classical screening operators obey the Serre relations of g and stabilize (aff)π0 ⊂ π0. This
makes (aff)π0 into a module over n+, the subalgebra of g generated by the positive simple root
vectors ei, i ∈ I. We shall establish the following (Theorem 32).

Theorem 3. As n+-modules, (aff)π0 and (fin)π0 are isomorphic:

(aff)π0
∼=n+

(fin)π0.

This is very useful because it allows us to import results from [17] wholesale. We get the
densities vj of integrals of motion of Conformal Affine Toda field theory. They are nothing
but the images of the usual densities of integrals of motion of Affine Toda field theory (or
equivalently, the densities of the g-mKdV Hamiltonians) under the ‘decoration’ map above.



AFFINE OPERS AND CONFORMAL AFFINE TODA 5

See Theorem 37 and Theorem 37 in Section 6.8. For each exponent j ∈ E, vj is a conformal
primary in π0 of conformal weight j + 1.

1.3

Now let us describe the passage from the local to the global picture in the affine case. Roughly
speaking, the main idea is that rather than merely attaching copies of π0 and its subspace
W = kerH to points in the Riemann sphere, we should now attach copies of the whole AutO-
equivariant double complex from Theorem 2.

To explain why that is so, let us consider opers in affine types. While the definition of opers
in affine types is itself in very close analogy to the definition in finite types, the data needed to
specify such an oper turn out to be of a different character. Recall that an affine connection ∇
is by definition a connection on the canonical bundle Ω. It allows one to differentiate sections
of Ω, and in fact sections of Ωj for any integer j. When g is of affine type, to give an g-oper on
U is the same as giving the following on U : firstly, an affine connection ∇; secondly, a section
of Ω2 and thirdly, sections of the de Rham cohomologies

H1(Ωj ,∇) := Γ(Ω ⊗ Ωj)/∇Γ(Ωj) (5)

for the connection ∇ with coefficients in Ωj , as j ranges over the (now, countably infinite) set
E�2 of exponents of g. So ‘most’ of the information in the oper now comes in the form of these
cohomology classes. An important consequence is that the restriction map

Opg(P
1)x → Opg(Dx)

to opers on the disc at x ∈ P
1 \ x, is now very far from being an embedding, in contrast to the

situation in (3) above. Indeed, on the (unpunctured) disc all the cohomologies are trivial. All
that survives are the germs at x of the affine connection and of the section of Ω2 (and these
correspond to the states δ−1|0 > and ω).

Thus, in contrast the case of finite types, in affine types we certainly cannot expect to
construct all functions on the space of global opers starting from states in W ∼= Fun Opg(D).
Instead we must work in an appropriate de Rham cohomology, as follows.

Using the action of AutO on π0 defined by ω, we define a vector bundle Π over P
1 with

fibre π0, following [14]. Such vertex-algebra bundles always carry a canonical flat holomorphic
connection (∇T )∂t

:= ∂t + T , defined by the translation operator T = L−1 relative to any local
holomorphic coordinate t. In our setting though we get more: we show that there is a flat
holomorphic connection on Π ⊗ Ωj for any integer j, given by

(∇(aff))∂t
= ∂t + L−1 − j

δ−1

h
,

and, moreover, that this connection belongs to a one-parameter family of connections, as
follows. (See Section 8.2.)

Theorem 4. Let α ∈ C. For each j � 0 there is a flat holomorphic connection on Π ⊗ Ωj

given by

(∇(aff))∂t
+ αT (aff).

Associated to any conformal primary state v ∈ π0 of conformal weight j, one gets a global
section of Π ⊗ Ωj , given locally, in any holomorphic coordinate t, by vdtj . It is constant with
respect to the connection ∇(aff) − T (aff)dt, that is, it obeys

∇(aff)vdtj = (T (aff)v)dtj+1.

In particular, this applies to the densities vj ∈ π0. These densities vj defined classes in the
cohomology for the vertical complex in theorem 2, that is, they were defined only up to the



6 CHARLES A. S. YOUNG

addition of canonical translates T (aff)fj with fj ∈ π0 primary of weight j. It will follow that
the corresponding global sections vjdt

j+1 define classes

[vjdt
j+1] ∈ H1(P1,Π ⊗ Ωj ,∇(aff)) (6)

in the de Rham cohomology of the flat holomorphic connection ∇(aff) with coefficients in
Π ⊗ Ωj . These classes are to be seen as ‘universal’ versions of the classes in (5) defined by any
one particular oper on P

1 — in a sense we now make precise.
To connect back to opers on P

1, we introduce spaces of coinvariants on P
1. To each marked

point xi ∈ x we attach a one-dimensional module Cvχi
. Roughly speaking, it is a module over

the loop algebra h⊗ C((t)) and it is specified by an element χi ∈ h∗ ⊗ C(t)). (For the precise
statement see Section 7.11.) The space of coinvariants is non-trivial (and of dimension one)
if and only if these χi are the germs of a global meromorphic section χ of a certain sheaf of
connections, −ρ̌Conn. These statements are all exactly as in the case of g of finite type (for
which see [28]). The only difference is that in affine types ρ̌ is a derivation element, that is, it
does not lie in the span of the simple roots. One upshot of that is that we get a preferred map

−ρ̌Conn(P1)x � Conn(P1,Ω)x; χ �→ ∇(aff)
χ ,

which takes our global section χ of −ρ̌Conn(P1)x and produces an affine connection which
we denote by ∇(aff)

χ . The connection χ ∈ −ρ̌Conn(P1)x is equivalent to a global Miura oper
∇ ∈ MOpg(P1)x. To such a Miura oper corresponds an underlying oper [∇] ∈ Opg(P1)x (see
Section 9). The affine connection ∇(aff)

χ is nothing but the affine connection associated to
that oper.

By considering a modified space of coinvariants in which we insert an additional module,
isomorphic to π0, at a point x ∈ P

1 \ x, we then obtain, for each χ, a map

Fχ : Γ(U,Π ⊗ Ωj)x → Γ(U,Ωj)x,

which takes meromorphic sections of Π ⊗ Ωj to meromorphic sections of Ωj . We show that this
map Fχ is functorial in the following sense (see Theorem 56 and Corollary 58)

Theorem 5. We have

Fχ∇(aff) = ∇(aff)
χ Fχ,

and therefore we get a well-defined map of cohomologies

[Fχ] : H1(U,Π ⊗ Ωj ,∇(aff))x → H1(U,Ωj ,∇(aff)
χ )x.

Finally, we are in a position to apply the map of cohomologies [Fχ] to the global sections
[vjdt

j+1] ∈ H1(P1,Π ⊗ Ωj ,∇(aff)), (6), coming from the Conformal Affine Toda integrals of
motion. Their images under [Fχ] are indeed the cohomology classes for that particular oper
[∇], as in (5).

1.4

To conclude this introduction, let us mention one of the main motivations for this paper. We
do so purely for context — nothing else in the paper depends on the contents of this section.

For Kac–Moody algebras g of finite type, there is a remarkable correspondence between the
Gaudin/Bethe algebra associated to g and the algebra of functions on the space of opers on
P

1 for the Langlands dual Lie algebra Lg [24, 26], and cf. [28, 39, 40, 47].
It was conjectured in [18] that such statements should generalize to affine types: namely,

in that paper the authors introduced a notion of affine opers and affine Miura opers and
conjectured that they encode the spectra of affine Gaudin models for the Landlands dual
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Kac–Moody algebra. Proving such a conjecture is an interesting but difficult open problem:
interesting because there are close links between quantum Gaudin models in affine types and the
ODE/IM correspondence [5–7, 9, 13, 22, 23, 35–38] and integrable quantum field theories
[10, 11, 18, 31, 32, 50, 51]; but difficult because it is not even clear what one should be
diagonalizing. Indeed, while the quadratic Hamiltonians which define the Gaudin model can be
written down for all symmetrizable Kac–Moody algebras, and are known to be diagonalizable
by Bethe ansatz, [45, 48], [33, Appendix A], it is expected, but not known, in general, that
they belong to some large commutative algebra of integrals of motion.

The conjecture of [18] was eludicated somewhat in [33, 34]: namely, the eigenvalues of
the (local) higher Gaudin Hamiltonians should again be given by functions on a space of Lg-
opers on P

1, but these functions now take the form of certain integrals of hypergeometric type
(prompting the further conjecture that the Hamiltonians are also of this form).

One approach to constructing the Hamiltonians is to work grade-by-grade in the principal
gradation. Indeed, one is interested in the diagonalization problem in tensor products of highest
weight irreducible g-modules. That problem breaks up into a sequence of finite-dimensional
diagonalization problems, labelled by the depth in the principal gradation (or equivalently by
the number of Bethe roots). The starting point in that programme, and setting of the present
paper, is the vacuum case, that is, the case of no Bethe roots. So one can think that the content
of this paper is to describe, in this vacuum case, how global objects arise from local ones in
affine types.

To explain that statement, let us recall some facts about the relationship between local and
global objects for Gaudin models in finite types. For g of finite type, one has commutative
diagrams of the following sort: [26, Theorem 2.7]†

(7)

Here, in the top line, the algebra Fun OpLg(D) of opers on the disc is identified in an AutO-
equivariant fashion with zFF(ĝ) ⊂ V

−h∨
0 (g), the space of singular vectors of the vacuum Verma

module at critical level [16]. On the bottom line Fun OpLg(P1)x, the algebra of functions
on the space OpLg(P1)x of meromorphic opers on P

1 holomorphic away from the marked
points, is identified with Z (g)x ⊂ U(g)⊗N , the Gaudin/Bethe algebra. The surjection on
the right is the one from (4). The surjection zFF(ĝ) � Z (g)x is defined using coinvariants
[19]. Thus, in finite types, zFF(ĝ) plays the role of a sort of ‘universal object’ from which
all the Gaudin Hamiltonians can be constructed after supplying the extra data of the
marked points x1, . . . , xN .‡ The proof of the existence of the AutO-equivariant isomorphism
zFF(ĝ) ∼−→ Fun OpLg(D) in finite types uses the Wakimoto realization [15, 57]: an embedding
of vertex algebras V

−h∨
0 (g) ↪→ M ⊗ π0, where the vertex algebras on the right are Fock spaces

for certain systems of free fields. Under this embedding, the space of singular vectors zFF(ĝ)
is mapped into π0, and its image in π0 is precisely the subspace W = kerH ⊂ π0 from (2).
One can go on to find joint eigenvectors for the Gaudin Hamiltonians by considering spaces
of coinvariants of ĝ-modules on P

1. One assigns Wakimoto modules M ⊗ Cvχi
to each of the

marked points xi and also to certain other points, the Bethe roots, and one assigns a copy of

†We are skirting over subtleties about singularities at ∞ ∈ P1 here. Note that, in the present paper,
x = {x1, . . . , xN} will be the only allowed singularities; ∞ will have no special status (cf. the constraint in
Proposition 50).

‡It also allows one to construct generalizations of Gaudin models including cyclotomic Gaudin models [54]
and Gaudin models with irregular singularities [20, 21, 46, 55].
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M ⊗ π0 to an additional point x, distinct from these. For details on this perspective on the
Bethe ansatz, see [19].

If one is merely interested in vacuum eigenvalues, there are no Bethe roots, and one arrives
at a much simpler space of coinvariants — namely of ĥ-modules on P

1, where h is the Cartan
subalgebra — in which one assigns one-dimensional modules Cvχi

to the marked points xi, and
the Fock module π0 to some additional point x. It is this simpler space of coinvariants which
we study, in the case of g of affine type, in the present paper (see Section 7).

1.5

This paper is structured as follows.
In Sections 2 and 3 we recall standard facts about the vertex algebra πε

0 and its classical
(ε → 0) limit π0. In particular, we recall the definition of the screening charges and their classical
limits. In Section 4 we give the definitions of the group AutO of coordinate transformations
and its action on π0. Conventions about Cartan matrices, roots, coroots, etc., are fixed in
Section 5.

In Section 6 we introduce the canonical translation operator T (aff) and canonical modes,
and use them to define the subspace (aff)π0. We establish the isomorphism of n+-modules
(fin)π0

∼= (aff)π0 and arrive at the densities of integrals of motion vj ∈ π0.
In Section 7 we move from local to global objects. We define the vertex algebra bundle ξΠε

with fibre πε
0 and a sheaf of Lie algebras ξHε associated to this bundle. We define ξConn and

spaces of coinvariants and the map Fχ. Then in Section 8 we specialize back to our specific
case and go on to define the connection ∇(aff) and show that Fχ∇(aff) = ∇(aff)

χ Fχ.
Finally in Section 9 we recall the definitions of opers and Miura opers. We can then

establish the AutO-equivariant identifications π0
∼= FunMOpg(D) and W ∼= Fun Opg(D), and

the identification of [Fχ(vjdt
j)] with the cohomology classes for the oper underlying χ.

2. Free fields and screening operators

Our first objective is to recall the definitions of the objects in the embedding (1): the vacuum
Fock module π0 and the screening operators which act on it. The Fock module π0 is a ε → 0
limit of a one-parameter family of vertex algebras πε

0. It is useful to start with this whole family,
because doing so provides a natural way of understanding the semi-classical structures on π0,
as we shall see in the next section.

2.1. Free fields

Let h be a finite-dimensional vector space over C, equipped with a non-degenerate symmetric
bilinear form κ(·|·). We pick a basis {bi}dim h

i=1 of h and let {bi}dim h
i=1 ⊂ h be its dual basis with

respect to the form κ(·|·):

κ
(
bi|bj

)
= δji .

We shall regard h as a commutative Lie algebra. Let ε be a parameter and denote by ĥε the
central extension of the loop algebra h((t)), by a one-dimensional centre C1, defined by the
cocycle ε res κ(f |dg). That is, ĥε has commutation relations

[bim, bjn] = ε1mδn+m,0 κ
(
bi|bj), (8)

where the generators are bim := bi ⊗ tm for i = 1, . . . ,dim h and m ∈ Z.
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2.2. Fock modules

For any λ ∈ h, define the ĥε-module

πε
λ := U(ĥε) ⊗U(h[[t]]⊕C1) C |λ〉

induced from the one-dimensional (h[[t]] ⊕ C1)-module C |λ > spanned by a vector |λ >
obeying

bi0|λ〉 = εκ
(
λ|bi)|λ〉 , bin|λ〉 = 0, n > 0, (9)

and 1 |λ > = |λ >. These are called Fock modules. As a special case we have the vacuum
Verma module, πε

0. For every λ, we have the isomorphism

πε
λ
∼= C[bi,n]i=1,...,dim h;n<0,

of vector spaces, and of modules over U(t−1h[t−1]) ∼= C[bi,n]i=1,...,dim h;n<0.

2.3. Algebra of fields Ũ1(ĥε)

Let U1(ĥε) denote quotient of the enveloping algebra of ĥε by the two-sided ideal generated by
1 − 1. For each n ∈ Z�0 define the left ideal Jn := U1(ĥε) · (h⊗ tnC[t]). That is, Jn is the linear
span of monomials of the form bip . . . b

j
qb

k
r with r � n. The quotients by these ideals U1(ĥε)/Jn

form an inverse system, whose inverse limit we shall denote by Ũ1(ĥε):

Ũ1(ĥε) := lim←−
n

U1(ĥε)
/
Jn.

It is a complete topological algebra. We call it the algebra of fields, or the local completion
of U1(ĥε). By definition, elements of Ũ1(ĥε) are possibly infinite sums

∑
m�0 Xm of elements

Xm ∈ U1(ĥε) which truncate to finite sums when one works modulo any Jn, that is, for every
n, Xm ∈ Jn for all sufficiently large m.

A module M over ĥε is smooth if for all a ∈ h and all v ∈ M, anv = 0 for all sufficiently
large n. For example the Fock modules πε

λ are smooth. Any smooth module over ĥε on which
1 acts as the identity is also a module over Ũ1(ĥε).

2.4. Vertex algebra

For every n ∈ Z, there is a linear map

πε
0 → Ũ1(ĥε); A �→ A(n)

sending any given state A to its nth formal mode, A(n). One can arrange these modes into a
formal series called the formal state-field map,

Y [A, x] :=
∑
n∈Z

A(n)x
−n−1, (10)

and they are defined recursively as follows. First, for all a ∈ h,

Y [a−1|0〉, u] :=
∑
n∈Z

anu
−n−1.

Next, let [T, ·] be the derivation on U1(ĥε) given by [T, an] := −nan−1 and [T, 1] := 0; then
by setting T (X|0 >) := [T,X]|0 > for any X ∈ U1(ĥε), one can regard T also as a linear map
πε

0 → πε
0, the translation operator. For any A,B ∈ πε

0, one sets

Y [TA, u] := ∂uY [A, u] and Y [A(−1)B, u] := :Y [A, u]Y [B, u]: ,
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where the normal ordered product :Y [A, u]Y [B, u]: is given by

:Y [A, u]Y [B, u]: :=

(∑
m<0

A(m)u
−m−1

)
Y [B, u] + Y [B, u]

⎛⎝∑
m�0

A(m)u
−m−1

⎞⎠. (11)

Recall that πε
λ are modules over Ũ1(ĥε). By sending each formal mode A(n) to its image in

End(πε
λ), we get the module maps

Yπε
λ
(·, x) : πε

0 → Hom(πε
λ, π

ε
λ((x)))

and as a special case the state-field map

Y (·, x) : πε
0 → Hom(πε

0, π
ε
0((x))).

These maps Y (·, x) and Yπε
λ
(·, x) make πε

0 into a vertex algebra and the πε
λ into modules over

this vertex algebra. The reader is referred to [14, § 4–5] for the definitions (see especially § 4.3.1
and § 5.1.5).

2.5. The Lie algebras Fε, Fε
0 , Fε

�0

The algebra of fields Ũ1(ĥε) is in particular a Lie algebra, with the Lie bracket given by the
commutator

[A,B] := AB −BA.

It has ĥε as a Lie subalgebra. It also has a larger Lie subalgebra of interest. Let

Fε ≡ Lie(πε
0) := spanC

{
A(n) : A ∈ πε

0, n ∈ Z
} ⊂ Ũ1(ĥε)

denote the linear subspace of Ũ1(ĥε) spanned by all formal modes of all states in πε
0. This is a

Lie subalgebra because one has the commutator formula,[
A(m), B(n)

]
=

∑
k�0

[
m

k

](
A(k)B

)
(m+n−k)

. (12)

Here
[
m
k

]
is defined for all m ∈ Z and k � 0 as follows:[

m

k

]
:=

m(m− 1) . . . (m− k + 1)
k!

, k 
= 0,
[
m

0

]
:= 0.

The Lie algebra Fε has Lie subalgebras Fε
0 and Fε

�0 spanned by the formal zero modes and
all formal non-negative modes, respectively, of all states in πε

0.

Remark 6. Fε can be defined abstractly, but we regard it as a subalgebra of Ũ1(ĥε). There
is no loss in this, cf. [14, Lemma 4.3.2].

2.6. Conformal vectors

For any ξ ∈ h depending polynomially on ε, define the vector ωξ ∈ πε
0 by

ωξ :=
1
ε

(
1
2
bi−1bi,−1 + ξ−2

)
|0〉.

Here and henceforth we employ summation convention on the index i.
The vector ωξ is a conformal vector and defines on πε

0 the structure of a conformal vertex
algebra (or vertex operator algebra) with central charge

c = ε dim h− 12κ(ξ|ξ).
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That is to say, the vector ωξ obeys (ωξ)(0)ωξ = Tωξ, (ωξ)(1)ωξ = 2ωξ, (ωξ)(2)ωξ = 0,

(ωξ)(3)ωξ =
1
ε

(
1
2
bj1bj,1 + bj0bj,2 + · · · − 3ξ2

)(
1
2
bi−1bi,−1 + ξ−2

)
|0〉

=
1
ε

(
1
2
ε2 dim h− 6εκ(ξ|ξ)

)
|0〉 =

c

2
|0〉,

and (ωξ)(n)ωξ = 0 for n � 4.
The corresponding generators Ln ∈ Ũ1(ĥε) of the Virasoro algebra are defined by Y (ωξ, x) =∑
n∈Z

Lnx
−n−2, that is,

Ln := (ωξ)(n+1) =
1
2ε

⎛⎝∑
m<0

bimbi,n−m +
∑
m�0

bi,n−mbim

⎞⎠− n + 1
ε

ξn,

and they obey

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn,−mc.

For any a ∈ h, the state a := a−1|0 > ∈ πε
0 obeys (ωξ)(0)a = Ta, (ωξ)(1)a = a, and

(ωξ)(2)a =
1
ε

(
bj0bj,1 + bj−1bj,2 + · · · − 2ξ1

)
a−1|0〉 = −2κ(ξ|a)|0〉.

Thus, the state a = a−1|0 > ∈ πε
0 is primary precisely if κ(ξ|a) = 0.

2.7. Actions of L0 and L−1 = T

The Virasoro zero mode L0 = (ωξ)(1) obeys

[L0, b
j
−m] = mbjm, L0 |λ〉 = |λ〉Δλ,

where

Δλ := −κ(ξ|λ) + εκ(λ|λ). (13)

The space πε
λ is Z-graded, with the vacuum |λ > of grade 0 and the generator bj−n contributing

+n to the grade. For any vector v ∈ πε
λ of grade m we see that

L0v = v(m + Δλ).

For any state A ∈ πε
0, we have, irrespective of the value of ξ,

L−1A = (ωξ)(0)A = TA. (14)

Indeed, L−1 = 1
ε

∑
n�0 b

i
−n−1bi,n and hence [L−1, b

j
m] = −mbjm−1, and L−1|0 > = 0. More

generally

L−1|λ〉 = (ωξ)(0)|λ〉 = ε−1bi−1bi,0|λ〉 = bi−1|λ〉 κ(λ|bi) = λ−1|λ〉 . (15)

2.8. Intertwiners and screenings

In addition to the state-field map Y and module maps Yπε
λ
, there is also another structure, a

linear map

Vλ(·, x) : πε
λ → Hom(πε

0, π
ε
λ((x))) (16)

called the intertwining map,

Vλ(m,x) =
∑
n

m(n)x
−n−1.
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We can take as its definition the following: for any m ∈ πε
λ and B ∈ πε

0,

Vλ(m,x)B := exL−1Yπε
λ
(B,−x)m.

In view of (14), this expression can be motivated by comparison with the usual skew-symmetry
property of the state-field map Y : for any A,B ∈ πε

0,

Y (A, x)B = exTY (B,−x)A,

or equivalently

A(n)B = −
∑
k�0

(−1)n+k

k!
T k

(
B(n+k)A

)
, n ∈ Z. (17)

Just as the state-field map obeys the equation ∂xY (A, x) = Y (TA, x), the intertwiner map
obeys an analogous equation, namely,

∂xVλ(m,x) = Vλ(L−1m,x).

We are particularly interested in the intertwining maps defined by the vacuum states |λ >∈πε
λ,

and for those there is the following explicit expression, which, formally, can be obtained by
solving the equation above:

Vλ(|λ〉 , x) = Vλ(x) := Tλ exp

(
−κ(λ|bi)

∑
n<0

binx
−n

n

)
exp

(
−κ(λ|bi)

∑
n>0

binx
−n

n

)

= Tλ exp

(
−

∑
n<0

λnx
−n

n

)
exp

(
−

∑
n>0

λnx
−n

n

)
, (18)

where Tλ : π0 → πλ is the shift operator which sends |0 > �→ |λ > and commutes with bin,
n 
= 0.

Now define the screening operator

Sλ : π0 → πλ

to be the linear map given by the zero mode of the vacuum state |λ > ∈ πε
λ,

SλA := |λ〉 (0)A.

The interwiner maps obey natural analogues of Borcherds identity and its corollaries. (See,
for example, [28, § 7.2.1] and [14, § 5.2].) The property we shall need is the following.

Lemma 7. For all m ∈ πε
λ, all A,B ∈ πε

0 and all k ∈ Z,

m(0)(A(k)B) = A(k)(m(0)B) + (m(0)A)(k)B.

Corollary 8. For all λ ∈ h, the kernel

kerSλ ⊂ πε
0

of the screening Sλ is a vertex subalgebra of πε
0.

Proof. Lemma 7 implies that kerSλ is closed for all the nth products. From (18) it is clear
that |0 > ∈ kerSλ. For any A ∈ πε

0 we have TA = A(−2)|0 > (this is true in any vertex algebra).
Hence if ( |λ > )(0)A = 0, then ( |λ > )(0)TA = ( |λ > )(0)(A(−2)|0 >) = 0, again by Lemma 7.
So kerSλ is closed under the action of the translation operator T . �
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Corollary 9. If X ∈ kerSλ ⊂ πε
0, then the diagram

commutes for all n ∈ Z, λ ∈ h.

Proof. By Lemma 7 we have

[Sλ, X(n)] = [|λ〉 (0), X(n)] =
(
λ(0)X

)
(n)

= (SλX)(n) = 0.

�

2.9. Action of Sλ on ωξ

We shall need the action of the screening Sλ on the conformal vector ωξ ∈ πε
0.

Lemma 10.

Sλωξ = λ−1|λ〉
(
−1 − κ(λ|ξ) +

1
2
εκ(λ|λ)

)
.

Proof. Consider the formula (18) for the intertwiner Vλ(x). We have

exp

(
−

∑
n>0

λnx
−n

n

)
= 1 − λ1x

−1 +
1
2
(−λ2 + λ1λ1)x−2 + . . . ,

where . . . are terms of higher order in x−1 all of which kill ωξ on grading grounds, and

exp

(
−

∑
n<0

λnx
−n

n

)
= 1 + λ−1x + . . . ,

where . . . are terms of higher order in x. Recall that T−1
λ Sλ is the residue of T−1

λ Vλ(x). Thus,
acting on πε

0,

T−1
λ Sλ = −λ1 +

1
2
λ−1(−λ2 + λ1λ1) + . . . ,

where . . . are terms that kill ωξ, and so we obtain

T−1
λ Sλωξ = −κ(λ|bk)bk−1|0〉 + λ−1|0〉

(
−κ(λ|ξ) +

1
2
εκ(λ|bk)κ

(
λ|bk))

and hence the result. �

3. Classical limit

Having introduced the vertex algebra πε
0 in the previous section, we now consider the limit

ε → 0 to recover the Fock module π0 which actually appears in (1).

3.1. Classical limits π0 and Ũ1(Lh)

Let us write Ũ1(Lh) for the ε → 0 limit of the algebra of fields Ũ1(ĥε). It is a Poisson
algebra, that is, a unital commutative associative algebra which is also a Lie algebra, with
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the compatibility condition that the Lie product (that is, the Poisson bracket) is a derivation
in both slots for the commutative product. The Poisson bracket on F is given by

{·, ·} := lim
ε→0

1
ε
[·, ·].

Equivalently it is defined by its action on the generators,{
bim, bjn

}
= 1mδm+n,0 κ

(
bi|bj),

cf. (8), together with the derivation condition.
The limit ε → 0 of the one-parameter family πε

0 of vertex algebras is a commutative vertex
algebra, which means one in which all non-negative products vanish. We shall denote it by
π0. A commutative vertex algebra is equivalent to a differential algebra; that is, a unital
commutative associative algebra equipped with a derivation. Indeed, when all non-negative
products vanish, then the product defined by A ·B := A(−1)B is commutative by (17) and
associative by Borcherds identity. The map ∂ := T is a derivation and 1 := |0 > is the unit
element. In the present case we have

π0
∼= C[bi,n]i=1,...,dim h;n∈Z<0 , (19)

as differential algebras, the latter equipped with the derivation ∂ defined by ∂bi,n = −nbi,n−1.
From its origin as the limit ε → 0 of a one-parameter family of vertex algebras, π0 comes
endowed with the structure of a vertex Poisson algebra. A vertex Poisson algebra P is
differential algebra (P, ·, ∂, 1) which is also a vertex Lie algebra (P, T, {{n}}n∈Z�0), with the
compatibility conditions that T = ∂ and that the non-negative products are all derivations of
the commutative product:

A{n}(B · C) = (A{n}B) · C + B · (A{n}C)

for all n � 0 and all A,B,C ∈ P [3, 14, 58]. We get this vertex Lie algebra structure, that
is, these non-negative products, by taking the order-ε term in the limits of the non-negative
products on πε

0:

A{n}B := lim
ε→0

1
ε
A(n)B,

for all n � 0 and all A,B ∈ π0.

Remark 11. Here and below we identify π0 and all πε
0 as vector spaces in the obvious way,

that is, by the vector space isomorphisms πε
0
∼= C[bi,n]i=1,...,dim h,n<0.

There is a classical analogue of the formal state-field map (10): for every n ∈ Z there is a
linear map π0 → Ũ1(Lh);A �→ A(n) sending A ∈ π0 to its nth classical formal mode A(n). These
modes can be arranged into a formal power series

Y [A, x] :=
∑
n∈Z

A(n)x
−n−1 (20)

and are defined by Y [a−1, x] =
∑

n∈Z
anx

−n−1, Y [A ·B, x] = Y [A, x]Y [B, x] and Y [TA, x] =
∂xY [A, x]. By analogy with the big Lie algebra Fε = Lie(πε

0) ⊂ Ũ1(ĥε) of § 2.5, we have the
linear subspace

F ≡ Lie(π0) := spanC

{
A(n) : A ∈ π0, n ∈ Z

} ⊂ Ũ1(Lh)

spanned by all classical formal modes of all elements of π0. It is a Lie subalgebra of Ũ1(Lh)
with respect to the Poisson bracket. Indeed, notice that the commutator formula (12) depends
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only on the vertex Lie algebra structure of πε
0, that is, on the non-negative products. Here we

have {
A(m), B(n)

}
=

∑
k�0

[
m

k

](
A{k}B

)
(m+n−k)

. (21)

Define also the Lie subalgebras F0 and F�0 of zero and of non-negative modes respectively,
cf. § 2.5.

Remark 12. What we call F is called F̂0 in [17]. It is the space of local functionals (on
h∗1).

Finally recall that πε
λ (and in particular πε

0) is a module over Ũ1(ĥε). One can ask what
structures result from this in the ε → 0 limit. Firstly, πλ is a module over Ũ1(Lh), the latter
regarded as a commutative algebra. For this action, all non-negative modes simply act as zero
on all of πλ. But πε

λ is also a module over the Lie algebra Fε ⊂ Ũ1(ĥε) and in particular over
its Lie subalgebra Fε

�0. In the limit we get an action, call it �, of the Lie algebra F�0 on πλ:

A(n) � v = lim
ε→0

1
ε
A(n)v.

We can write any state in πλ as X |λ > for some X ∈ Ũ1(Lh). One then has

A(n) � X|λ〉 =
{
A(n), X

}|λ〉 + X (A(n) � |λ〉 ). (22)

On the highest weight vector |λ >, one has

a0 � |λ〉 = |λ〉 κ(a|λ), an � |λ〉 = 0, n � 1, a ∈ h.

(We should stress that this is the Lie algebra action of a0 ∈ F�0. As an element of the
commutative algebra Ũ1(Lh), a0 |λ > = limε→0 εκ(a|λ) |λ > = 0.)

3.2. π0 as a conformal algebra

The conformal vector ωξ ∈ πε
0 is divergent in the limit ε → 0. However, εωξ has a well-defined

limit (assuming s ∈ h[ε]) which we shall denote by ωξ:

ωξ = lim
ε→0

εωξ.

It obeys (ωξ){0}ωξ = ∂ωξ, (ωξ){1}ωξ = 2ωξ, (ωξ){2}ωξ = 0,

(ωξ){3}ωξ = lim
ε→0

1
ε
(εωξ)(3)εωξ

= lim
ε→0

1
ε

(
1
2
bj1bj,1 + bj0bj,2 + · · · − 3ξ2

)(
1
2
bi−1bi,−1 + ξ−2

)
|0〉

= lim
ε→0

1
ε

(
1
2
ε2 dim h− 6εκ(ξ|ξ)

)
|0〉

= 6κ(ξ|ξ)|0〉,
and (ωξ){n}ωξ = 0 for n � 4. These relations say that, as a vertex Lie algebra, π0 contains a
subalgebra isomorphic to the Virasoro vertex Lie algebra with central charge

c = 12κ(ξ|ξ). (23)
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Such a vertex Lie algebra is called a conformal algebra with central charge c (cf. [14, 16.1.14]).
Note that the dim h term does not survive in the limit, which is as expected since it arises from
a double contraction, that is, from two uses of the commutator (8).

3.3. Classical screenings Sλ

Recall the screenings Sλ : π0 → πλ from § 2.8. Now we consider their classical limits. By
definition, the classical screening operator [17]

Sλ : π0 → πλ

is the map given by

Sλ = lim
ε→0

1
ε
Sλ.

Recall the explicit form (18) of the intertwiner map:

Vλ(x) := exp

(
−

∑
n<0

λnx
−n

n

)
exp

(
−

∑
n>0

λnx
−n

n

)
. (24)

Consider the left exponential factor here. It contains lowering modes, λn, n < 0. Such modes
just act by multiplication on πε

0
∼= C[bi,n]i=1,...,dim h,n<0. Define polynomials Vλ[n] in the

elements λm, m � 0, by ∑
n�0

Vλ[n]x−n = exp

(
−

∑
n<0

λnx
−n

n

)
, (25)

so that left exponential factor is
∑

n�0 Vλ[n]x−n.
Now consider the action of the right exponential factor on πε

0. The action of bin, n � 0, on
πε

0 is given by εn ∂
∂bi,−n

, for indeed[
εn

∂

∂bi,−n
, bj,m

]
= εnδijδn+m,0 =

[
bin, bj,m

]
.

Thus, on πε
0,

exp

(
−

∑
n>0

λnx
−n

n

)
= 1 − ε

∑
n>0

x−n κ
(
λ|bi) ∂

∂bi,−n
+ O(ε2).

Hence, on πε
0, the polar part in x of Vλ(x) is given by

−ε
∑
m�0

∑
n>m

x−nVλ[m]κ(λ|bi) ∂

∂bk,−n+m
+ O(ε2).

In particular, the leading term of the residue is εT−1
λ Sλ where

Sλ : π0 → πλ

are the linear maps defined by

Sλ := −Tλ

∑
m�0

Vλ[m]κ(λ|bk) ∂

∂bk,−1+m
. (26)

Call these classical screening operators. By construction, we have the following.

Lemma 13. If m ∈ πε
0 lies in the kernel of Sλ for all ε, then m ∈ π0 lies in the kernel of Sλ.
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Lemma 14. Take any λ ∈ h. The kernel

kerSλ ⊂ π0

of the classical screening Sλ is a vertex Poisson subalgebra of π0.

Proof. Suppose A,B ∈ kerSλ and consider A{n}B for n � 0. By definition A{n}B is the
order ε term in the product A(n)B of A and B regarded as elements of πε

0; and hence
−Sλ(A{n}B) is the order ε2 term in ( |λ > )(0)(A(n)B). Now, by lemma 7 we have

(|λ〉)(0)(A(n)B) =
(
((|λ〉)(0)A)

(n)
B + A(n)((|λ〉)(0)B)

)
.

But since A,B ∈ kerSλ we know that (|λ >)(0)A and (vλ)(0)B are both O(ε2), and hence both
terms on the right here are O(ε3). So we have Sλ(A{n}B) = 0, that is, kerSλ is closed under
the vertex Lie algebra products:

A{n}B ∈ kerSλ.

It is clear |0 > ∈ kerSλ. And ( |λ > )(0)TA = ( |λ > )(0)(A(−2)|0 >) = (( |λ > )(0)A)(−2)|0 > is
O(ε2) whenever ( |λ > )(0)A is O(ε2). That is, A ∈ kerSλ implies TA ∈ kerSλ. A similar
argument shows that kerSλ is closed with respect to the commutative product, that is,
A ·B ∈ kerSλ. �

The proof of the following, starting from Corollary 9, is similar.

Lemma 15. Let λ, μ ∈ h. If X ∈ kerSλ ⊂ π0, then the following diagram commutes:

where the vertical arrows can be either the action of the classical mode X(n) for any n ∈ Z

(which is non-trivial only for n � −1) or the Lie algebra action X(n)� for any n � 0.

4. Coordinate transformations on π0

Having defined π0 and the classical screening operators, we now want to recall the definitions
of the group AutO, the Lie algebra DerO, and how they act on π0.

4.1. Functions on the formal disc

Let O denote the complete topological C-algebra of formal power series in a variable t,

O := C[[t]].

One should think of O as the algebra of functions on a ‘formal pointed disc’ D. It is a ‘formal’
disc because we do not impose any convergence requirements on the functions beyond the
demand that they be well-defined elements of C[[t]] := lim←−n

C[t]/tnC[t], that is, that they
converge in the t-adic topology. And it is ‘pointed’ because O has a unique maximal ideal
m := tC[[t]], which one thinks of as consisting of the functions that vanish at the ‘point’ with
coordinate t = 0.

Remark 16. We work in the formal setting, but one could also work in the analytic setting,
with O replaced by the algebra of germs of analytic functions at a point p on a Riemann surface.
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This amounts to imposing the additional requirement that each power series f is convergent
in the analytic topology on some sufficiently small (depending on f) neighbourhood of p.

Let AutO be the group of continuous automorphisms of O. Elements μ ∈ AutO are changes
of coordinate of the form

t = μ(s) = c1s + c2s
2 + . . . (27)

with c1 ∈ C
× and cn ∈ C for all n � 2, and the group operation is

(μ1 ∗ μ2)(s) = μ2(μ1(s)). (28)

(Note the order here.)
The derivative

μ′(s) = c1 + 2c2s + . . .

of μ ∈ AutO belongs to the group of units (that is, invertible elements) of the ring O. Denote
the latter by U (O). (It is the complement of the maximal ideal m in the local ring O.)

Let DerO denote the Lie algebra of continuous derivations of O = C[[t]],

DerO = C[[t]]∂t.

It has topological basis Ln := −tn+1∂t, n � −1.

4.2. Quasi-conformal structure on π0

A commutative vertex algebra is called quasi-conformal if it carries an action of DerO such
that the generator L−1 = −∂t acts as the translation operator T , the generator L0 = −t∂t acts
semisimply with integer eigenvalues and the Lie subalgebra Der+ O := t2C[[t]]∂t acts locally
nilpotently†.

Recall the conformal algebra structure on π0 from § 3.2. This structure makes π0 into a
quasi-conformal commutative vertex algebra. Indeed, one has generators Ln ∈ F ⊂ Ũ1(Lh) of
a copy of the Virasoro algebra at central charge c, defined by Y [ωξ, x] =

∑
n∈Z

Lnx
−n−2, that

is, in our case

Ln =
1
2

∑
m∈Z

bimbi,n−m − (n + 1)ξn.

Their Poisson brackets with the generators bim are given by{
Ln, b

j
p

}
= −pbjn+p − n(n + 1)δn+p,0 κ

(
ξ|bj). (29a)

We get an action of DerO on πλ given by

Ln.m := Ln � m ≡ (ω)(n+1) � m (29b)

for all n � −1 and m ∈ πλ. Explicitly, Ln. |λ > = 0 for n � 1,

L0.|λ〉 = −κ(ξ|λ)|λ〉 , L−1.|λ〉 = λ−1|λ〉
together with, for all m ∈ π0 and n � −1,

Ln.
(
bjpm

)
=

{
Ln, b

j
p

}
m + bjp(Ln.m) (29c)

(cf. § 2.7 and (22)).

†For general vertex algebras, there is one extra condition, but this condition follows automatically from those
listed in the case of commutative vertex algebras. See [14, § 6.3.5].
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In particular, we get an action of DerO on π0, given by the formulas

Ln.b
j
p =

⎧⎪⎨⎪⎩
−pbjn+p n < −p

−n(n + 1)κ
(
ξ|bj) n = −p

0 n > −p

(29d)

for p � −1 and n � −1. This action obeys the remaining conditions to make π0 into a quasi-
conformal vertex algebra. (In particular, every eigenvalue of L0 is an integer because it is
nothing but the grade in the Z-gradation introduced above; and on grading grounds, for every
m ∈ π0, Ln.m = 0 for all sufficiently large n.)

Consider the Lie subalgebra of DerO,

Der0 O := tC[[t]]∂t,

consisting of those derivations which preserve the maximal ideal m = tC[[t]] of O. It is the
Lie algebra of AutO. The defining conditions of a quasi-conformal vertex algebra ensure in
particular that the action of Der0 O ⊂ DerO can be exponentiated up to give an action of
AutO. Later we will need explicit expressions for this action of AutO on π0. To write them,
let μ ∈ AutO be the element in (27),

μ(s) = c1s + c2s
2 + . . . .

It can be written in the form

μ(s) = exp

(∑
n>0

vns
n+1∂s

)
vs∂s
0 .s

for certain vn ∈ C, n > 0, uniquely defined by the coefficients cn, n � 1. (One has c1 = v0,
c2 = v0v1, . . . .). If one lets

R(μ) := exp

(
−

∑
n>0

vnLn

)
v−L0
0 , (30)

then the map μ �→ R(μ) defines (see, for example, [14, Lemma 6.3.2]) an action of AutO on
π0. We shall need the following in Section 7.4 below: for all a ∈ h,

R(μ).a−1|0〉 = (1 − v1L1)v−1
0 a−1|0〉

= v−1
0 a−1|0〉 + 2v1v

−1
0 κ(ξ|a)|0〉

=
1

μ′(0)

(
a−1|0〉 + κ(ξ|a)μ

′′(0)
μ′(0)

|0〉
)
. (31)

5. Cartan data

Until this point h was merely a finite-dimensional vector space equipped with a symmetric
non-degenerate bilinear form κ(·|·). But our interest is in the case in which h is a Cartan
subalgebra of a Kac–Moody algebra g of affine type, and κ(·|·) is the restriction to h of an
invariant symmetric bilinear form on g. Let us recall the definitions from [30].

5.1

Suppose that A is an indecomposable Cartan matrix of affine type.
Let g = g(A) be the corresponding Kac–Moody algebra and h ⊂ g a Cartan subalgebra. Let

{αi}i∈I ⊂ h∗ and {α̌i}i∈I ⊂ h be sets of simple roots and coroots of g, respectively, where I is
an index set of cardinality the number of rows/columns of A. By definition,

〈αi, α̌j〉 = Aji,
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where 〈·, ·〉 : h∗ × h → C is the canonical pairing. Let Lg = g(tA) be the Langlands dual Lie
algebra, that is, the Kac–Moody Lie algebra with the transposed Cartan matrix tA. The Cartan
subalgebra Lh ⊂ Lg is naturally identified with the dual h∗ of h, Lh = h∗ and {αi}i∈I ⊂ h∗ = Lh
and {α̌i}i∈I ⊂ h = Lh∗ are, respectively, sets of simple coroots and roots of Lg. The centres of
g and Lg are both of dimension one and are spanned by the elements

k =
∑
i∈I

ǎiα̌i ∈ h, δ =
∑
i∈I

aiαi ∈ Lh, (32)

respectively, where {ǎi}i∈I and {ai}i∈I are the unique collections of relatively prime positive
integers such that

∑
j∈I Aijaj = 0 and

∑
j∈I ǎiAij = 0. The dual Coxeter and Coxeter numbers

of g are given, respectively, by

h∨ =
∑
i∈I

ǎi, h =
∑
i∈I

ai.

We set

ε−1
i = ǎia

−1
i (33)

and define D−1 = diag(ε−1
i )i∈I . Then D−1A is symmetric. We fix the symmetric non-

degenerate bilinear form κ(·|·) on h defined by

κ(α̌i|x) := 〈αi, x〉εi (34)

for i ∈ I and x ∈ h, together with the condition that

κ(y|z) = 0

for all y, z belonging to a choice of complementary subspace h′′ in h to the subspace

h′ :=
∑
i∈I

Cα̌i ⊂ h

spanned by the simple coroots. It is the restriction of the standard invariant symmetric bilinear
form on g [30]. Since we assume that g is of affine type, A is of rank |I| − 1 and h′′ has dimension
one. We pick and fix some choice of h′′; the freedom here is not important because it is absorbed
by the way we fix a derivation element in (35) below. Let ρ ∈ Lh be the Weyl vector of g, which
is defined by the property that

〈ρ, α̌i〉 = 1

for each simple coroot α̌i of g. It is unique up to the addition of an arbitrary multiple of δ. Let
ρ̌ ∈ h be the Weyl vector of Lg, which is defined by the property that

〈αi, ρ̌〉 = 1

for each simple coroot αi of Lg. It is unique up to the addition of an arbitrary multiple of k.
We fix these freedoms in ρ and ρ̌ by demanding that

κ(ρ̌|ρ̌) = 0 and κ∨(ρ|ρ) = 0, (35)

where κ∨(·|·) is the induced non-degenerate bilinear form on h∗.† We note also that κ(ρ̌|k) = h
and κ∨(ρ|δ) = h∨, and κ(k|k) = 0 = κ∨(δ|δ).

Let {Λ̌i}
i=0 ⊂ h and {Λi}
i=0 ⊂ Lh be the unique elements such that

〈ρ, Λ̌i〉 = 0, 〈Λi, ρ̌〉 = 0

†One may check that κ∨(αi|x) = 〈α̌i, x〉ε−1
i . Thus κ∨(·|·) is the restriction to Lh = h∗ of the standard bilinear

form on the Langlands dual algebra Lg, for which ai and ǎi are interchanged.
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and
〈Λi, α̌j〉 = δij , 〈αj , Λ̌i〉 = δij , i, j ∈ I. (36)

They are a choice† of fundamental coweights of g and Lg, respectively.

5.1. Principal gradation of g

Let us introduce a Cartan decomposition

g = n− ⊕ h⊕ n+

of g and Chevalley–Serre generators ei ∈ Ln+, fi ∈ Ln−, i ∈ I. These latter obey

[x, ei] = 〈αi, x〉ei, [x, fi] = −〈αi, x〉fi, (37a)

[x, x′] = 0, [ei, fj ] = α̌iδij , (37b)

for any x, x′ ∈ Lh, together with the Serre relations

(ad ei)1−Aijej = 0, (ad fi)1−Aijfj = 0. (37c)

They generate the derived subalgebra g′ ⊂ g.
We have the principal gradation of g, namely the Z-gradation defined by the adjoint action

of ρ̌, or equivalently the unique Z-gradation in which ei has grade +1 and fi has grade −1 for
each i ∈ I. Let gj denote the subspace of grade j ∈ Z, so we have

g =
⊕
j∈Z

gj

with
X ∈ gj ⇐⇒ [ρ̌, X] = jX.

5.2. Exponents

Define
p−1 :=

∑
i∈I

fi ∈ n−. (38)

The linear map
gj+1 → gj ; X �→ [p−1, X]

is injective for all j � 1. If it fails to be surjective for a given j � 1, then j is called an
exponent of the Lie algebra g. Let E ⊂ Z�1 be the set of exponents of g. In almost all cases,
the codimension of [p−1, gj+1] in gj is one for every exponent j,‡ and we may pick a vector
pj ∈ gj such that

gj = [p−1, gj+1] ⊕ Cpj , j ∈ E.

We make the following choice of these complementary subspaces Cpj . Firstly, there is a unique
element p1 ∈ g1 such that

[p1, p−1] = δ.

Then we may choose non-zero pj ∈ gj , j ∈ E, such that

[p1, pj ] = 0. (39)

†The choice is in the demand that 〈Λi, ρ̌〉 = 0 rather than, for example, 〈Λi, d〉 = 0 with d the derivation
element corresponding to the homogeneous gradation.

‡The exceptions are in types 1D2k. In type 1D2k the codimension of [p−1, g2k+(4k−2)n] is two for every n � 0.

In such cases one must pick two vectors to span a complementary subspace (and we say that the exponent has
multiplicity two).
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Let a+ denote the span of the generators pj ∈ n+, j ∈ E:

a+ :=
⊕
j∈E

Cpj ⊂ n+.

It is an abelian Lie subalgebra of n+.

5.3. Identification of h and h∗

From now on we shall simply identify h with its dual h∗ by means of the linear isomorphism
induced by the standard non-degenerate bilinear form κ(·|·):

h
∼−→ h∗; x �→ κ(x|·).

For each i ∈ I one then has, from (34),

α̌i = εiαi, and εi =
κ(α̌i|α̌i)

2
=

2
κ(αi|αi)

. (40)

Note also that then

k =
∑
i∈I

ǎiα̌i =
∑
i∈I

ǎiεiαi =
∑
i∈I

aiαi = δ.

6. Conformal affine Toda

Having got these conventions about Cartan matrices in place, in this section we describe the
intersection of the kernels of the screening operators. We shall find, as we claimed in the
introduction, that in affine types it is generated by the conformal vector and the state δ−1|0 >.

We will then be in a position to state and prove the main local results of the paper, that is,
the main results associated to the disc. They are Theorem 26 and Theorem 37 (the latter by
way of Theorem 32).

6.1. The algebras W ε and W

Define W ε ⊂ πε
0 to be the intersection of the kernels of the screening operators Sαi

: πε
0 → πε

αi

corresponding to the simple roots of g:

W ε :=
⋂
i∈I

kerSαi
⊂ πε

0.

Define W ⊂ π0 to be the intersection of the kernels of the classical screening operators Sαi
:

π0 → παi
corresponding to the simple roots of g:

W :=
⋂
i∈I

kerSαi
⊂ π0.

By Corollary 8 and Lemma 14 we have the following.

Proposition 17. (i) W ε is a vertex subalgebra of πε
0.

(ii) W is a vertex Poisson subalgebra of π0.

6.2. Conformal algebra structure on π0 and W

As in § 2.6 we have a conformal vector ωξ ∈ πε
0 associated to each element ξ of h[ε]. We can

consider in particular setting ξ = −ρ̌ + ερ. Let us write ω for the resulting conformal vector:
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ω :=
1
ε

(
1
2
bj−1bj,−1|0〉 − ρ̌−2 + ερ−2

)
|0〉.

Lemma 18. ω ∈ W ε.

Proof. We must show that ω ∈ kerSαi
for each simple root αi. According to Lemma 10 we

are to evaluate

−1 + κ(αi|ρ̌− ερ) +
ε

2
κ(αi|αi).

This indeed vanishes, because κ(αi|ρ̌) = 〈ρ̌, αi〉 = 1 and, in view of (40)

1 = 〈α̌i, ρ〉 = κ(α̌i|ρ) =
2

κ(αi|αi)
κ(ρ|αi) ⇒ κ(αi|ρ) =

κ(αi|αi)
2

. �

Define the classical conformal vector ω ∈ π0 as in § 3.2,

ω = lim
ε→0

εω =
(

1
2
bi−1bi,−1 − ρ̌−2

)
|0〉 ∈ π0.

Corollary 19. ω ∈ W .

Proof. We must show that ω ∈ kerSαi
for each simple root αi. But in view of Lemma 13,

it is enough to check that εω ∈ kerSαi
, as we just did. �

Recall § 3.2. We have established the following.

Proposition 20. The vertex Poisson algebra W ⊂ π0 is a conformal algebra with central
charge

c = κ(ρ̌|ρ̌),
and is therefore quasi-conformal as a commutative vertex algebra, with the action of DerO
given by the modes Ln, n � −1, of the vector ω.

This proposition actually holds as stated regardless of whether g is of finite or affine type.
However, in our setting with g of affine type we have

c = κ(ρ̌|ρ̌) = 0, (41)

as in (35). (In finite types c = κ(ρ̌|ρ̌) 
= 0.) This is one important distinction between finite and
affine types. There is another, to which we turn now.

6.3. Affine connection component δ−1|0 >

Consider the subspace of πε
0, or of its classical limit π0, of grade +1. It is isomorphic to h as a

vector space, and is spanned by the states a−1|0 > with a ∈ h.

Lemma 21. The subspace of W ε of grade +1 has dimension one, and is spanned by the
state δ−1|0 >.

Proof. In πε
0 we have Sλa−1|0 > = −εκ(λ|a)|0 > for all a, λ ∈ h. (Compare § 2.9.) Thus

a−1|0 > ∈ W ε if and only if κ(αi|a) = 0 for every simple root of g. Hence a is proportional to
δ. �
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By Lemma 13, we have the classical corollary.

Corollary 22. The subspace of W of grade +1 has dimension one, and is spanned by the
state δ−1|0 >.

Remark 23. (i) In finite types, the subspace of W of grade +1 has dimension zero.
(ii) In finite types, W is the usual classical W -algebra associated to g. It is gener-

ated, as a differential algebra, by rank(g) states S1, S2, . . . , Srankg, the first of which is
S1 = ω [17].

(iii) In affine types, by contrast, W is generated as a differential algebra by the states δ−1|0 >
and ω only, irrespective of the rank of g. This will follow from an identification of the differential
algebra π0 with the space of g-Miura opers on the disc. (See Proposition 65 and Theorem 69
below.)

6.4. Canonical translation operator T (aff)

Let T (aff) be the endomorphism of πλ (for any λ ∈ h) given by

T (aff) :=
∞∑

m=0

(−1)m

(h)mm!

∑
n1,...,nm�1

1
n1 . . . nm

δ−n1 . . . δ−nm
Ln1+···+nm−1 (42)

= L−1 − δ−1

h
L0 +

(
1
2
δ−1

h

δ−1

h
− δ−2

2h

)
L1 + . . . .

Remark 24. Recall the formula (18) for the intertwining operator Vλ(x), λ ∈ h and the
shift operator Tλ. Define L(�−1)(x) =

∑
n�−1 Lnx

−n−2. On inspecting the expression above
for T (aff), one sees that

T−δ/h ◦ T (aff) = resx V−δ/h(x)L(�−1)(x)

as an equality of linear maps π0 → π−δ/h.

Lemma 25. We have vL0T (aff)v−L0 = vT (aff) for any v ∈ C
×, while for all j � 1,[

Lj , T
(aff)

]
= 0

as an equality of endomorphisms of πλ, for any λ such that κ(δ|λ) = 0.

Proof. That vL0T (aff)v−L0 = v−1T (aff) is clear. Consider [Lj , T
(aff)]. We have the commu-

tation relations (cf. Section 29)

[Lj , Ln] = (j − n)Lj+n, [Lj , δp] = −pδj+p + j(j + 1)δj+p,0h

for all j � 1, n � −1, p ∈ Z. (Recall that κ(−ρ̌|δ) = −ρ̌(δ) = −h). Thus for all m � 1,⎡⎣Lj ,
∑

n1,...,nm�1

1
n1 . . . nm

δ−n1 . . . δ−nm
Ln1+···+nm−1

⎤⎦ (43)

= mh(j + 1)
∑

n1,...,nm−1�1

1
n1 . . . nm−1

δ−n1 . . . δ−nm−1Ln1+···+nm−1+j−1
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+
m∑

p=1

∑
n1,...,nm�1

np

n1 . . . nm
δ−n1 . . . δ−np+j . . . δ−nm

Ln1+···+nm−1

−
∑

n1,...,nm�1

(n1 + · · · + nm − 1 − j)
n1 . . . nm

δ−n1 . . . δ−nm
Ln1+···+nm+j−1.

In the penultimate line here, δ−np+j acts as zero on πλ unless −np + j < 0 (as does a−np+j for
any a ∈ h such that κ(a|λ) = 0; here we use the assumption that κ(δ|λ) = 0). So we can drop
the first several terms in the sum on np and relabel:

∑
n1,...,nm�1

np

n1 . . . nm
δ−n1 . . . δ−np+j . . . δ−nm

Ln1+···+nm−1

=
∑

n1,...,nm�1

np

n1 . . . nm
δ−n1 . . . δ−nm

Ln1+···+nm+j−1.

(The coefficient ∼ np/np is independent of np). Therefore the final two lines in (43) above
actually give

∑
n1,...,nm�1

n1 + · · · + nm

n1 . . . nm
δ−n1 . . . δ−nm

Ln1+···+nm+j−1

−
∑

n1,...,nm�1

(n1 + · · · + nm − 1 − j)
n1 . . . nm

δ−n1 . . . δ−nm
Ln1+···+nm+j−1

= (j + 1)
∑

n1,...,nm�1

1
n1 . . . nm

δ−n1 . . . δ−nm
Ln1+···+nm+j−1.

Comparing this with the first line in (43), one sees that the sum on m in [Lj , T
(aff)] telescopes,

and we have [Lj , T
(aff)] = 0 as required. �

AutO has a subgroup consisting of the rescalings, generated by L0. Let Cdt be the one-
dimensional representation of AutO spanned by a vector dt obeying

vL0dt = v−1dt, v ∈ C
× and Ljdt = 0 for all j � 1.

Let < 0| ∈ π∗
0 be the linear map π0 → C which yields 1 on |0 > and pairs as zero with all

states of non-zero depth.
Define

H :=
⊕
i∈I

Sαi
.
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Theorem 26. We have the following AutO-equivariant double complex:

Proof. Firstly, let us establish that the horizontal maps are AutO-equivariant. By
Lemma 15, the map Sαi

: π0 → παi
commutes with the Lie algebra action of the non-negative

modes of ω ∈ π0. That is, it commutes with the action of DerO. Recall from § 4.2 the definition
of this action of DerO on the modules πλ. In the present case, in which ξ = −ρ̌, we have, for
any α in the root lattice,

L0. |α〉 = 〈ρ̌, α〉 |α〉 ∈ Z |α〉 ,
and thus L0 acts semisimply on πα with integer eigenvalues. That means that the action of
Der0 O on πα can be exponentiated up to give an action of AutO, just as can the action on
π0. So the horizontal maps are indeed AutO-equivariant.

By inspection, the image of each vertical map is contained in the kernel of the next, so we
have a complex in the vertical direction.
H commutes with T (aff) by Lemma 15 (in view of Corollary 19, Corollary 22 and the definition

of T (aff)). So H(−T (aff)) + T (aff)H = 0, making the diagram into a double complex. Lemma 25
together with the definition of dt ensures that the vertical maps are AutO-equivariant. �

6.5. Canonical modes

It is a standard observation that the negative modes a−n, n > 1, of any a ∈ h can be obtained
by repeated application of the translation operator T = L−1 on a−1:

a−2 = [T, a−1], a−3 =
1
2
[T, [T, a−1]], . . . ,

and in general ∑
n<0

anx
−n−1 = exp(xadT )a−1.

We now have a modified translation operator, T (aff), which commutes with the action of
Der+ O, that is, with the generators Lj , j � 1, as in Lemma 25. We can use it to define a
notion of negative modes of states which shares this property. Define the formal power series

∑
n<0

a[n]x
−n−1 = exp(xadT (aff))a−1. (44)

Lemma 27. For all j � 1 and all n > 0,

[Lj , a[−n]] = 0

as endomorphisms of πλ, for any a ∈ h and λ ∈ h such that κ(λ|a) = 0.
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Proof. For all j � 1, [Lj , a−1] = a−1+j acts as zero on πλ (using the assumption that
κ(λ|a) = 0, when j = 1). The result follows using Lemma 25. �

Remark 28. It follows that for all i1, . . . , im ∈ I and n1, . . . , nm ∈ Z>0, the state

bi1,[−n1] . . . bim,[−nm]|0〉 ∈ π0

is a conformal primary of conformal weight n1 + · · · + nm, that is, it is in the kernel of Lj for
all j � 1 and an eigenstate of L0 with eigenvalue n1 + · · · + nm.

Lemma 29. T (aff)δ−1|0 > = 0, and thus δ[−n] = 0 for all n � 2.

Proof. We have

T (aff)δ−1|0〉 =
(
L−1 − 1

h

δ−1

1
L0 − 1

h

δ−2

2
L1 +

1
2h2

δ−1

1
δ−1

1
L1

)
δ−1|0〉

=
(
δ−2 − 1

h

δ−1

1
δ−1 − 1

h

δ−2

2
2h +

1
2h2

δ−1

1
δ−1

1
2h

)
|0〉 = 0.

�

Lemma 30. If v ∈ π0 is a conformal primary of conformal weight Δ ∈ C, then

T (aff)v = L−1v − Δ
h
δ−1v.

6.6. Subquotients of h and π0

Recall that, for us, after identifying h ∼= h∗ as in Section 5.4,

h = Cρ⊕
⊕
i∈I

Cαi.

Let (no der)h ⊂ h denote the subspace spanned by the simple roots, and (fin)h the quotient of
(no der)h by the span of δ:

(no der)h :=
⊕
i∈I

Cαi
(fin)h := (no der)h/Cδ.

Recall that π0 is the vacuum Verma module over the loop algebra h((t)) of h (and it arose as
the ε → 0 limit of the vacuum Verma modules πε

0 over the centrally extended loop algebras
ĥε). As a vector space

π0 = C[ρn]n<0 ⊗ C[αi,n]i∈I,n<0|0〉.
Define the subspace (no der)π0 and its quotient (fin)π0 as follows:

(no der)π0 := C[αi,n]i∈I,n<0|0〉 (fin)π0 := (no der)π0

/⊕
n<0

δn
(no der)π0. (45)

These are, respectively, the vacuum Verma modules over the loop algebras (no der)h((t)) and
(fin)h((t)).

6.7. The action of n+ on π0,
(no der)π0 and (fin)π0

The classical screenings obey the Serre relations of g, in the following sense. (Recall the shift
operator Tλ from (18).)
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Lemma 31. The map

ei �→ Qi := −ε−1
i T−αi

Sαi
, i ∈ I,

defines an action of the Lie algebra n+ on π0.

Proof. These differential operators Qi are given by

Qi = −
∑
m�0

ε−1
i Vαi

[m]κ(αi|bk) ∂

∂bk,−1+m

= −
∑
m�0

Vαi
[m]〈α̌i, bk〉 ∂

∂bk,−1+m

= −
∑
m�0

Vαi
[m]

∂

∂ρ−1+m
−

∑
j∈I
j �=0

∑
m�0

Vαi
[m]〈α̌i, αj〉 ∂

∂αj,−1+m
, (46)

where, for convenience, we go to the basis {bk}k=1,...,dim h = {ρ, δ} ∪ {αi}i∈I of h. (The
∂/∂δ−1+m, m � 0, do not appear in this differential operator, since 〈α̌i, δ〉 = 0; we also used the
fact that 〈α̌i, ρ〉 = 1.) Notice that the coefficients, Vαi

[m], are polynomials in the modes αi,−j ,
j � 1, only, and do not contain factors ρ−j . Therefore the derivatives ∂/∂ρ−1+m, m � 0 in (46)
never contribute in commutators [Qi, Qj ]. It is enough to consider the differential operators

−
∑
j∈I
j �=0

∑
m�0

Vαi
[m]〈α̌i, αj〉 ∂

∂αj,−1+m
. (47)

The proof is then as in Proposition (2.2.8) of [17] which — cf. Remark (2.2.9) therein — applies
for any symmetrizable Kac–Moody algebra. �

Thus, π0 is a module over n+. From the argument above we see also that the subspace
(no der)π0 of (45) is a submodule for the action of n+, and the generator ei acts on (no der)π0 by
the differential operator in (47). Since 〈α̌i, δ〉 = 0 for all i ∈ I, this action of n+ on (no der)π0

in turn descends to a well-defined action on the quotient (fin)π0. Let us write (fin)Qi for the
differential operator realizing ei on (fin)π0. It is given by the same formula, (47), but with
αi ∈ (no der)h replaced by the equivalence class

[αi] := αi + Cδ ∈ (fin)h.

Now, these screening operators (fin)Qi were studied in [17]. We can ‘lift’ results from that
setting to ours in the following fashion.

6.8. The subspace (aff)π0

Let us set

α̃i := αi − δ

h
, i ∈ I. (48)

Let (aff)h ⊂ (no der)h denote their span inside (no der)h. Define a vector subspace (aff)π0 ⊂
(no der)π0 ⊂ π0 by

(aff)π0 := C[α̃i,[n]]i∈I\{0},n<0|0〉.
Let us stress that the modes [n] here are those defined in Section 6.5.

In the remainder of this subsection, we shall prove the following key result.
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Theorem 32. The action of n+ stabilizes the subspace (aff)π0 ⊂ π0. Furthermore, as n+-
modules, (aff)π0 and (fin)π0 are isomorphic:

(aff)π0
∼=n+

(fin)π0.

Proof. Firstly, observe that the canonical map (aff)π0 → (fin)π0 is actually a vector-space
isomorphism, because the α̃i are chosen to obey the linear relation∑

i∈I

ǎiα̃i =
∑
i∈I

ǎiαi − 1
h

∑
i∈I

ǎiδ = δ− δ = 0. (49)

So we have a vector-space isomorphism
(fin)π0

∼−→C
(aff)π0. (50)

One can think that this isomorphism takes monomials in (fin)π0 and ‘decorates’ them with
appropriate terms involving negative modes of δ. For example

[αi]−2[αj ]−1|0〉 �→ α̃i,[−2]α̃j,[−1]|0〉 =
(
αi,[−2] − 1

h
δ[−2]

)(
αj,[−1] − 1

h
δ[−1]

)
|0〉

= αi,[−2]

(
αj,−1 − 1

h
δ−1

)
|0〉 =

(
αi,−2 − 1

h
δ−1αi,−1

)(
αj,−1 − 1

h
δ−1

)
|0〉.

�

Lemma 33. For each i ∈ I,

[T (aff), Qi] = −α̃i,−1Qi

and (hence)

[L−1,
(fin)Qi] = −[αi]−1

(fin)Qi,

as endomorphisms of (aff)π0 and (fin)π0, respectively.

Proof. From the definition, (42), of T (aff), together with Corollary 19, Corollary 22 and
Lemma 15, we have the commutativity of the diagram

(We used this already in Theorem 26.) Now by definition, Qi = −ε−1
i T−αi

Sαi
, so we need also

to consider the commutator of T (aff) with the shift operator Tαi
. On taking the classical limit

of (13), one has

L0|αi〉 = κ(ρ̌|αi)|αi〉 = 〈ρ̌, αi〉|αi〉 = 1|αi〉 .
In this way we see that [L0,Tαi

] = Tαi
. It is clear that [Lj ,Tαi

] = 0 for all j > 0. By definition
[δ−m,Tαi

] = 0 for all m > 0. Hence, using (15), we have that

[T (aff),Tαi
] = [L−1 − 1

h
δ−1L0,Tαi

] =
(
αi − 1

h
δ−1

)
Tαi

= α̃iTαi
.

Thus [T (aff), Qi] = −α̃iQi as claimed. The statement that [L−1,
(fin)Qi] = −[αi]−1

(fin)Qi follows
(or can be checked directly in a similar fashion). �
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Proposition 34. The screening operators Qi, i ∈ I, stabilize the subspace (aff)π0. Moreover
the following diagram commutes for each i ∈ I:

Proof. Qi acts a derivation, so to show that it stabilizes (aff)π0, it is enough to show that
it sends any mode α̃j,[−1−n], j ∈ I \ {0}, n � 0, to some element of C[α̃k,[m]]k∈I\{0},m<0. That
follows by an induction on n, making use of Lemma 33. Explicitly, we have[

Qi, α̃j,[−1]

]
= [Qi, α̃j,−1] = Vαi

[0]〈α̌i, α̃j,−1〉1 = 〈α̌i, α̃j,−1〉1. (51)

and then for the inductive step[
Qi, α̃j,[−1−n]

]
=

1
n

[
Qi,

[
T (aff), α̃j,[−n]

]]
=

1
n

[[
Qi, T

(aff)
]
, α̃j,[−n]

]
+

1
n

[
T (aff),

[
Qi, α̃j,[−n]

]]
= − 1

n
α̃i,−1

[
Qi, α̃j,[−n]

]
+

1
n

[
T (aff),

[
Qi, α̃j,[−n]

]]
= − 1

n
α̃i,[−1]

[
Qi, α̃j,[−n]

]
+

1
n

[
T (aff),

[
Qi, α̃j,[−n]

]]
.

This induction amounts to giving a recursive definition of Qi on α̃j,[−1−n]. One sees that there a
recursive definition of (fin)Qi on [αj ]−1−n with exactly the same structure, with T (aff) replaced
by L−1 and α̃i by [αi]. It follows that the diagram given in the statement of the proposition
indeed commutes. �

This completes the proof of Theorem 32.

6.9. Structure of (aff)π0 and integrals of motion

The following result about the structure of (fin)π0 as an n+ module was established in [17]. By
Theorem 32 it applies also to (aff)π0.

Theorem 35 [17].

(i) As an n+-module, (fin)π0 is isomorphic to the module coinduced from the trivial one-
dimensional module over U(a+):

(fin)π0
∼= Homres

a+
(U(n+),C).

(ii) Consequently (by Shapiro’s lemma) the cohomologies of the Lie algebra n+ with
coefficients in (fin)π0 are given by exterior powers of a∗+:

H•(n+,
(fin)π0) ∼= H•(a+,C) ∼= ∧•(a∗+).

The first of these cohomologies, H1(n+,
(fin)π0) (∼= H1(n+,

(aff)π0)) plays a vital role in
theorem 37 below. To state the theorem, we first note the following analogue of theorem 26 for
the subspace (aff)π0. Here we define (aff)πλ ⊂ πλ for any λ ∈ h:

(aff)πλ := C[α̃i,[n]]i∈I\{0},n<0 |λ〉 .
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Corollary 36. We have the following AutO-equivariant double complex:

Proof. Given Theorem 26 and Theorem 32, what has to be checked is that the subspace
(aff)π0 is stabilized by the actions of AutO and T (aff). But this is immediate from, respectively,
Lemma 27 and the definition, (44), of the modes [n]. �

Let (aff)F0 denote the quotient of the kernel of < 0| ⊗ id in (aff)π0 ⊗ Cdt by the image of
T (aff). We get the quotient linear map

H : (aff)F0 −→
⊕
i∈I

(aff)Fαi
.

Define (aff)I to be the kernel of this map,

(aff)I := kerH ⊂ (aff)F0.

By construction, (aff)F0 admits an action of AutO, and (aff)I is an AutO-submodule.
The diagram in Corollary 36 respects the Z-gradations (that is, the eigenspaces of L0). So

we get Z-gradations on (aff)F0 and (aff)I. Note that dt has grade −1 by definition.

Theorem 37. We have the following isomorphisms of Z-graded vector spaces:

(aff)I ∼=C H1(n+,
(aff)π0) ∼=C a∗+.

Proof. The second isomorphism is a special case of Theorem 35(ii). Given Theorem 32 and
Proposition 34, the proof of the first isomorphism is the same as in the paper [17]. �

It is helpful to restate the theorem in more concrete language.

Theorem 37. For each exponent j ∈ E there exists a non-zero conformal primary state of
conformal weight j + 1,

vj ∈ (aff)π0 ⊂ π0,

such that (aff)I is the span of the classes [vj ⊗ Cdt]:

(aff)I =
⊕
j∈E

C[vj ⊗ Cdt].

(Each vj is, of course, unique only up to the addition of the canonical translate T (aff)fj of
any state fj ∈ (aff)π0 of grade j.)

We have the obvious analogues F0, H and I for π0. In view of Corollary 36 we have (aff)F0 ⊂
F0 and (aff)I ⊂ I.
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7. Coinvariants on the Riemann sphere

So far all the objects we considered were associated with the algebra of functions O = C[[t]] on
the disc. Now we want to think that they are local objects, attached to a point of the Riemann
sphere. Then we shall define global objects on the Riemann sphere, namely certain spaces of
coinvariants/conformal blocks.

In order to separate concerns, in this section we return to the setting of Section 2 in which h
was a just a finite-dimensional vector space equipped with a non-degenerate symmetric bilinear
form. Later, in Section 8, we reintroduce the extra structure coming from the Cartan matrix.

7.1. Germs of functions

Let P
1 denote a copy of the Riemann sphere. Given a point p ∈ P

1, recall that a germ of a
holomorphic function at p is just a holomorphic function on some (sufficiently small) open
neighbourhood of p, with two germs considered equal if they are equal on some (sufficiently
small) open neighbourhood of p. We shall write:

• Op — the local ring of germs of holomorphic functions at p,
• mp — the maximal ideal in Op, that is, germs of holomorphic functions vanishing at p,
• Kp — the field of germs of meromorphic functions at p, that is, the field of fractions of

Op.

For any open subset U ⊂ P
1, we shall write K(U) for the field of meromorphic functions on U

and O(U) for the ring of holomorphic functions on U . Recall that U �→ K(U) is a sheaf, whose
stalk at p is Kp, and likewise for O.

7.2. Local copies πε
0,p

Roughly speaking, our goal is now to attach copies of the vacuum Verma module πε
0 of

Section 2.2 to points in P
1. There is one very natural way of doing so. It will turn out to

have a limitation for our purposes, but it is nonetheless instructive to consider it first.
Let h and κ(·|·) be as in § 2.1. Associated to a point p ∈ P

1, we have the loop algebra h⊗Kp.
The centrally extended loop algebra ĥεp is by definition the vector space

ĥεp := h⊗Kp ⊕ C1p,

where 1p is central, equipped with the Lie bracket given by

[a⊗ f, b⊗ g] = [a, b] ⊗ fg + ε1p κ(a|b) resp fdg,

for a, b ∈ h, f, g ∈ Kp. For any λ ∈ h, we can define the ĥεp-module

πε
λ,p := U(ĥε) ⊗U(h[[t]]⊕C1) C |λ〉

induced from the one-dimensional (h⊗Op ⊕ C1)-module C |λ > spanned by a vector
|λ > obeying

(a⊗ 1)|λ〉 = εκ(λ|a)|λ〉 , (a⊗mp)|λ〉 = 0 (52)

for all a ∈ h, and 1 |λ > = |λ >. As a special case we have the vacuum Verma module, πε
0,p.

These definitions are intrinsic, that is, they involve no choice of coordinate or other data on
P

1. Now suppose that we choose a coordinate patch U ⊂ P
1 and a holomorphic coordinate

t : U → C.

For each p ∈ U let tp := t− t(p) be the local coordinate at p. The choice of coordinate gives
rise to an isomorphism

Kp
∼= C{{tp}} ∼= C{{t}}, (53)
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where C{{t}} is the field of Laurent series in t (with non-zero radius of convergence). The latter
embeds in the field C((t)) of formal Laurent series. This gives an embedding of ĥεp into the
abstract algebra ĥε from § 2.1 and hence a vector-space isomorphism

ιtp : πε
0,p

∼−→ πε
0

between πε
0,p and the abstract vacuum Verma module πε

0 from § 2.2.†

The choice of local coordinate tp gives in particular an embedding of Op into O of Section 4
(cf. remark 16) and hence AutOp ↪→ AutO. By considering the coordinate transformation to
a new local holomorphic coordinate sp at p, with tp = μp(sp) for some μp ∈ AutOp, we get a
vector-space isomorphism

0R(μp) := ιsp ◦ ι−1
tp : πε

0
∼−→ πε

0.

By construction, the map μ �→ 0R(μ) is a homomorphism AutOp → GL(πε
0), that is, an action

of AutOp on πε
0.

‡

The problem is that it is not the action we want. Indeed, recall that each choice of conformal
vector ωξ, ξ ∈ h, defines an action ξR of AutO on πε

0, § 2.6 and § 4. It is straightforward to
check that the action defined above indeed corresponds to the choice ξ = 0 — whereas we are
interested in the case ξ = −ρ̌ + ερ and its ε → 0 limit, as in § 6.2.

For that reason, we need a somewhat more general construction; we follow [14, § 6 and
especially § 8].

7.3. The bundle ξΠε

Firstly, we define a vector bundle ξΠε over P
1 with fibre isomorphic to πε

0.
We define it by giving the transition functions between a class of local trivializations. Let

U ⊂ P
1 be any coordinate patch. To each choice of holomorphic coordinate t : U → C, we

associate a local trivialization

ϕU,t : ξΠε
U

∼−→ U × πε
0. (54)

Let s : U → C be another choice of holomorphic coordinate on U . To define the bundle it is
enough to define suitable transition functions

ϕU,s ◦ ϕ−1
U,t : U × πε

0 → U × πε
0

between the corresponding trivializations. (One can think that U is really the overlap of two
coordinate patches.)

At each point p ∈ U we have the local coordinates tp = t− t(p) and sp = s− s(p), and they
are related by tp = μp(sp) for some μp ∈ AutOp. After embedding Op ↪→ O using our initial
local coordinate tp, we get an element μp ∈ AutO for each p ∈ U . Let

ξR : AutO → GL(πε
0)

(or, in the ε → 0 limit, AutO → GL(π0)) be the homomorphism defined as in (30) in terms of
the modes Ln of the conformal vector associated to ξ ∈ h. We define the transition function
ϕU,s ◦ ϕ−1

U,t between the trivializations ϕU,t and ϕU,s to be(
ϕU,s ◦ ϕ−1

U,t

)
(p, v) = (p, ξR(μp).v). (55)

†Recall that these latter objects have a Z-gradation, coming from the Z-gradation of C{{t}} as C-algebra by

powers of t. So we get a Z-gradation of ĥεp and of πε
0,ε. It is coordinate dependent, but its underlying filtration

is not.
‡Indeed, suppose t = μ1(s) and s = μ2(r) so that t = μ1(μ2(r)) = (μ2 ∗ μ1)(r); then 0R(μ2) ◦ 0R(μ1) = (ιr ◦

ι−1
s ) ◦ (ιs ◦ ι−1

t ) = ιr ◦ ι−1
t = 0R(μ2 ∗ μ1) as required.
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7.4. Sub-bundle ξΠε
�1

The action ξR of AutO respects the depth filtration of πε
0. Consequently, the bundle ξΠε has

a sub-bundle, which we denote by ξΠε
�1, with fibre isomorphic to

(πε
0)�1

∼= C|0〉 ⊕ h.

From (31) we read off the transition functions between trivializations corresponding to different
holomorphic coordinates t and s with t = μ(s). By definition

μp(sp) = tp = t− t(p) = μ(s) − μ(s(p)) = μ(sp + s(p)) − μ(s(p)) (56)

so μ′
p(0) = μ′(s(p)) and μ′′

p(0) = μ′′(s(p)). So in the fibre at the point p,

ξR(μp).a−1|0〉 =
(
a−1|0〉 + κ(ξ|a)μ

′′(s(p))
μ′(s(p))

|0〉
)

1
μ′(s(p))

, a ∈ h

ξR(μp).|0〉 = |0〉. (57)

Let Ω denote the canonical bundle over P
1, that is, the holomorphic cotangent bundle.

Its fibres are copies of C. In the local trivialization defined by a holomorphic coordinate t,
sections of Ω look like f(t)dt, and the transition functions are given by f(t)dt = f̃(s)ds, that
is, f̃(s) = μ′(s)f(μ(s)).

Consider the tensor product bundle
ξΠε

�1 ⊗ Ω.

Its fibres are copies of (πε
0)�1 ⊗ C ∼= (πε

0)�1. As a matter of notation, let us write A(t)dt, for the
image of a meromorphic section of ξΠε

�1 ⊗ Ω in the local trivialization defined by a coordinate
t : U → C. (So the dt will keep track of the choice of trivialization.) We see that the transition
functions are given by

a−1|0〉f(t)dt �→
(
a−1|0〉 + κ(ξ|a)μ

′′(s)
μ′(s)

|0〉
)
f(μ(s))ds

|0〉f(t)dt �→|0〉f(μ(s))μ′(s)ds. (58)

Remark 38. If ξ = 0 then the bundle ξΠε
�1 ⊗ Ω is isomorphic to the direct sum of Ω and

the trivial vector bundle with fibre h.

7.5. Connections on ξΠε

Given any vector bundle V over P
1, let U �→ Γ(U,V) denote the sheaf of meromorphic sections

of V.

Lemma 39. Let A ∈ End(πε
0). There is a well-defined flat holomorphic connection ∇A :

Γ(·, ξΠε) → Γ(·, ξΠε ⊗ Ω) on ξΠε given by

∇Aσ(t) = (σ′(t) + Aσ(t))dt

if and only if, for all μ ∈ AutO,

R(μs)−1(∂sR(μs)) + R(μs)−1AR(μs) = μ′(s)A

as an equality of endomorphisms of πε
0, where μs(x) := μ(x + s) − μ(s).
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Proof. Let s and t = μ(s) be two holomorphic coordinates on a patch U ⊂ P
1. Let

σ : t(U) → πε
0; t �→ σ(t) be the image of a meromorphic section of ξΠε in the trivialization

corresponding to the coordinate t. By definition of ξΠε, the same section is given in
the trivialization corresponding to the coordinate s by s(U) → πε

0; s �→ R(μs).σ(μ(s)) where
μs(x) := μ(x + s) − μ(s) (cf. (56)). In the t-trivialization, the derivative of this section is

∇Aσ(t) = (σ′(t) + Aσ(t))dt,

which is, in the s-trivialization,

R(μs).∇σ(t) = (R(μs).(σ′(μ(s)) + Aσ(μ(s))))μ′(s)ds.

On the other hand, we can take the derivative in the s-trivialization:

∇AR(μs).σ(μ(s)) = (∂sR(μs).σ(μ(s)) + AR(μs).σ(μ(s)))ds

= (R(μs).σ′(μ(s))μ′(s) + (∂sR(μs)).σ(μ(s)) + AR(μs).σ(μ(s)))ds.

These quantities agree if and only if A satisfies the condition given in the statement of the
proposition. �

The following standard result shows that holomorphic connections on ξΠε exist. Recall the
translation operator T of the vertex algebra πε

0, and the fact that T = L−1 ≡ (ωξ)(0) irrespective
of the choice of ξ ∈ h, as in (14).

Lemma 40. There is a well-defined flat holomorphic connection ∇T : Γ(·, ξΠε) → Γ(·, ξΠε ⊗
Ω) on ξΠε given by

∇Tσ(t) = (σ′(t) + Tσ(t))dt.

Proof. For completeness, let us include the following proof, taken from [14, § 6.6]. We need
to check that T = L−1 is one solution to the condition in Lemma 39.

Now, we may let DerO act on functions of an indeterminate x via the realization
Ln �→ −xn+1∂x. By definition of R(μ), in this realization R(μ).f(x) = f(μ(x)). Therefore
R(μs)−1∂sR(μs).x = R(μs)−1∂sμs(x) = (∂sμs(y))|y=μ−1

s (x) = (∂s(μ(s + y) − μ(s)))|y=μ−1
s (x)

= μ′(s + μ−1
s (x)) − μ′(s). And R(μs)−1L−1R(μs).x = R(μs)−1(−∂x)R(μs).x = −R(μs)−1∂x

μs(x) = −R(μs)−1μ′
s(x) = −μ′

s(y)|y=μ−1
s (x) = −μ′(s + μ−1

s (x)). Thus,(
R(μs)−1∂sR(μs) + R(μs)−1L−1R(μs)

)
.x = −μ′(s).

And indeed, μ′(s)L−1.x = μ′(s)(−∂x).x = −μ′(s) also. This is enough to establish the required
equality: both sides are sums of the form

∑
n�−1 cnLn, and one has

∑
n�−1 cn(−xn+1∂x).x = 0

only if cn = 0 for all n. �

However, in our setting this connection will belong a family of such holomorphic connections,
defined using the canonical translation operator T (aff) of Section 6.4. For that reason we shall
need the following corollary of Lemma 39 which describes the (affine space of) holomorphic
connections on ξΠε.

Corollary 41. Suppose

∇Aσ(t) := (σ′(t) + Aσ(t))dt

defines a flat holomorphic connection ΓA(·, ξΠε) → Γ(·, ξΠε ⊗ Ω) on ξΠε. Then

∇A+Bσ(t) := ∇Aσ(t) + Bσ(t)dt
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is another well-defined flat holomorphic connection if and only if the element B ∈ Endπε
0 obeys

R(μ)−1BR(μ) = μ′(0)B

for all μ ∈ AutO.

Proof. Given Lemma 39, certainly a necessary and sufficient condition is that
R(μs)−1BR(μs) = μ′(s)B for all μ ∈ AutO. But, in turn, a necessary and sufficient condition
for that is the same statement with s = 0. �

For the moment, we need only the connection ∇T of Lemma 40. In the local trivialisation
of ξΠε ⊗ Ω defined by a holomorphic coordinate t : U → C, we have, for example,

∇T (a−1|0〉f(t)) = a−1|0〉f ′(t)dt + a−2|0〉f(t)dt,

∇T (|0〉f(t)) = |0〉f ′(t)dt, (59)

for a ∈ h and f(t) ∈ K(U).
We then have the sheaf H1(ξΠε,∇T ) of the first de Rham cohomology of this flat connection,

that is, the sheaf which assigns to each open U ⊂ P
1 the quotient vector space

H1(U, ξΠε,∇T ) := Γ(U, ξΠε ⊗ Ω)
/∇TΓ(U, ξΠε). (60)

It may be shown that this is in fact a sheaf of Lie algebras [14, § 9.2 and § 19.4]. For our
purposes it is enough to consider a certain sub-sheaf, as follows.

7.6. The sheaf of Lie algebras ξHε

For any chart U let
ξHε(U) ↪→ H1(U, ξΠε,∇T )

denote the image in H1(U, ξΠε,∇T ) of Γ(U, ξΠε
�1 ⊗ Ω). Explicitly, in the local trivialisation

of ξΠε
�1 ⊗ Ω defined by a holomorphic coordinate t : U → C, ξHε(U) is the C-linear span of

elements of the form a−1|0 >f(t)dt and |0 >f(t)dt, with a ∈ h, f(t) ∈ K(U), modulo the C-
linear span of elements of the form |0 >f ′(t)dt, cf. (59).

Lemma 42. There is a Lie bracket on ξHε(U) defined by [|0 >f(t)dt, · ] := 0 and

[a−1|0〉f(t)dt, b−1|0〉g(t)dt] := εκ(a|b)|0〉f(t)g′(t)dt,

for a, b ∈ h, f(t), g(t) ∈ K(U).
This makes U �→ ξHε(U) into a sheaf of Lie algebras. There is a short exact sequence of

sheaves of Lie algebras

0 → H1 → ξHε → ξHε/H1 → 0,

where H1 := Γ(Ω)/dK is the sheaf of meromorphic sections of the holomorphic de Rham
cohomology of P

1, regarded as a sheaf of commutative Lie algebras.

Proof. Firstly, recall that there is a well-defined central extension of the (commutative)
Lie algebra h⊗K(U) of h-valued meromorphic functions on U , by a centre H1(U) :=
Γ(U,Ω)/dK(U), defined by

[a⊗ f, b⊗ g] = εκ(a|b)fdg. (61)

In the trivialization defined by the coordinate t, this agrees with our bracket on ξHε(U),
given the obvious identifications, a−1|0 > with a and |0 > with 1. So we have defined a
Lie bracket, in this trivialization. It remains to check that this Lie bracket is intrinsic, that
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is, independent of the choice of trivialization. But this is clear because the modification
to the transition functions is just by central elements with respect to the Lie bracket. (In
the trivialization defined by s with t = μ(s), the sections a−1|0 >f(t)dt and b−1|0 >g(t)dt
are written as (a−1|0 > + κ(ξ|a)μ′′(s)

μ′(s) |0 >)f(μ(s))ds and (b−1|0 > + κ(ξ|b)μ′′(s)
μ′(s) |0 >)g(μ(s))ds,

respectively. The Lie bracket of these is εκ(a|b)|0 >f(μ(s))dg(μ(s)), which, correctly, is the
section εκ(a|b)|0 >f(t)dg(t) in the new coordinate.) �

7.7. Global Lie algebra

Let us now pick a collection

x = {x1, . . . , xN} ⊂ P
1

of N � 1 distinct points in P
1. We call them the marked points. Let U �→ ξHε(U)x denote the

sheaf consisting of those of sections of ξHε that are holomorphic away from the marked points.
We would like to describe the Lie algebra ξHε(P1)x of its global meromorphic sections. Pick a
point ∞ ∈ P

1 \ x. Let U0 := P
1 \∞. Pick a holomorphic coordinate

z : U0
∼−→ C.

Proposition 43. The Lie algebra ξHε(P1)x is (C-linearly) spanned by the elements

a−1|0〉dz −|0〉2κ(ξ|a)dz
z − z(xi)

and
a−1|0〉dz

(z − z(xi))n
, n � 1, (62)

with a ∈ h and 1 � i � N , together with the classes of the elements

|0〉dz
z − z(xi)

− |0〉dz
z − z(xj)

, 1 � i < j � N. (63)

Proof. Consider first the central extension: ξHε(P1)x fits into the short exact sequence, cf.
lemma 42,

0 → H1(P1)x → ξHε(P1)x → ξHε(P1)x/H1(P1)x → 0. (64)

Here H1(P1)x is the space of global meromorphic sections of the de Rham cohomology that
are holomorphic away from the marked points (regarded as a commutative Lie algebra). It is
spanned by the given cohomology classes. (We need to take differences of logarithmic differential
forms as in (63) to ensure that there is no pole at ∞. Note that whenever ξ 
= 0, these differences
are actually in the span of the elements in (62).)

Now, for the remaining elements, fix an a ∈ h and consider the element of ξHε(U0)x defined
by the representative

a−1|0〉f(z)dz + |0〉g(z)dz (65)

in the local trivialization defined by z. We can ask under what conditions it corresponds to the
restriction of a global section of ξHε(·)x. For that it must be regular at ∞. Let U∞ := P

1 \ 0,
where 0 is the point with z(0) = 0. We have the holomorphic coordinate ζ : U∞

∼−→ C on U∞
defined by z = 1/ζ on U0 ∩ U∞. In the trivialization of ξHε(U∞)x defined by this coordinate
ζ, our section is written(

a−1|0〉 − κ(ξ|a)2
ζ

)
f

(
1
ζ

)
dζ +|0〉g

(
1
ζ

)−1
ζ2

dζ.
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For this to be regular at the point ∞, where ζ(∞) = 0, certainly f must be regular at ∞.
(Consider the a−1|0 > term). Moreover

κ(ξ|a)2
ζ
f

(
1
ζ

)
+ g

(
1
ζ

)
1
ζ2

must be regular at ∞, modulo exact derivatives. We can regard this last as a condition on g,
given a and f : we need

g(z) ∼
z→∞ −2κ(ξ|a)f(z)

z
+ h′(z) + O(1/z2),

for some meromorphic function h(z) with poles at most at the marked points.
If −2κ(ξ|a)f is actually zero at ∞, then any such g is itself an exact derivative. If −2κ(ξ|a)f

is not zero at ∞, then (modulo exact derivatives) the solutions for g are as in (62). �

Let ξHε(P1)∞x ⊂ ξHε(P1)x denote the Lie subalgebra consisting of global sections that vanish
at the point ∞.

Let ξh ⊂ ξHε(P1)x denote the Lie subalgebra, isomorphic to h, spanned by the elements

a−1|0〉dz −|0〉2κ(ξ|a)dz
z − z(x1)

,

with a ∈ h. (Here, one could replace x1 with xi for any one fixed i with 1 � i � N .)

Corollary 44. (i) As a Lie algebra, ξHε(P1)x is the direct sum

ξHε(P1)x = ξHε(P1)∞x ⊕ ξh.

(ii) The Lie algebra ξHε(P1)∞x does not depend on ξ ∈ h.
Up to isomorphism, it is the central extension

0 → H1(P1)x → ξHε(P1)∞x → h⊗K(P1)∞x → 0

(defined as in (61)) of the Lie algebra h⊗K(P1)∞x of h-valued meromorphic functions that
vanish at ∞ and have poles at most at the marked points x, by the space H1(P1)x of global
meromorphic sections of the de Rham cohomology with poles at most at the marked points x.

7.8. Local Lie algebras ξHε
xi

For this subsection, let us focus on one of the marked points xi. Let U be a small open disc
containing xi and t : U → C a local holomorphic coordinate at xi.

Let ξHε
xi

denote the stalk of the sheaf ξHε at xi. Explicitly, in the coordinate t, ξHε
xi

is the
C-linear span of elements of the form a−1|0 >f(t)dt and |0 >f(t)dt, with a ∈ h and now with
f(t) ∈ C{{t}} ∼= Kxi

, modulo the C-linear span of elements of the form |0 >f ′(t)dt. The Lie
bracket is given by the same formulas as in Lemma 42: [|0 >f(t)dt, ·] := 0 and

[a−1|0〉f(t)dt, b−1|0〉g(t)dt] := εκ(a|b)|0〉f(t)g′(t)dt.

The Lie algebra ξHε
xi

fits into the short exact sequence

0 → H1
xi

→ ξHε
xi

→ ξHε
xi
/H1

xi
→ 0,

where the central extension H1
xi

= Γxi
(Ω)/dKxi

is of dimension one, with C-basis dt/t. We
can identify H1

xi
with C by taking the residue. In this way we see that there is a Lie algebra

embedding
ξHε

xi
↪→ ĥε (66)
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given by

a−1|0〉f(t)dt �→ a⊗ f(t); |0〉f(t)dt �→ 1 resxi
f(t)dt.

(It is an embedding rather than an isomorphism only because C{{t}} ↪→ C((t)) is an embedding;
cf. Remark 16.)

Let ξHε,+
xi

(respectively, ξHε,++
xi

) denote the Lie subalgebra consisting of the germs at xi

of sections of ξHε that are holomorphic (respectively, vanishing) at xi. There are Lie algebra
embeddings

ξHε,+
xi

↪→ h⊗ C[[t]]hol, ξHε,++
xi

↪→ h⊗ tC[[t]]hol.

These embeddings are relative to our choice of local holomorphic coordinate t. In the special
case ξ = 0 there are are canonical isomorphisms with the Lie algebras introduced in Section 7.2:
0Hε

xi
∼= ĥεxi

, 0Hε,+
xi

∼= h⊗Oxi
and 0Hε,++

xi
∼= h⊗mxi

, cf. Remark 38.

7.9. Embedding of global into local

For each marked point xi, we have the canonical restriction homomorphism of Lie algebras
ξHε(U) → ξHε

xi
, for any open set U containing xi. In this way we get a canonical homomorphism

of Lie algebras ξHε(P1)x → ⊕N
i=1

ξHε
xi

of the Lie algebra ξHε(P1)x of global meromorphic
sections into the direct sum of the ξHε

xi
:

ξHε(P1)x →
N⊕
i=1

ξHε
xi
.

Lemma 45. This is an embedding of Lie algebras.

Proof. We have to check injectivity. Injectivity is immediate for elements of the form in
(62) (since no two distinct meromorphic functions define the same germ at xi, for any one of
the marked points xi). For the central extension H1(P1)x, that is, the span of the elements
in (63), we must be slightly more careful: the logarithmic differential form d log(z − z(xi))
maps to a non-zero cohomology class in the cohomology of the punctured disc at xi, but is
cohomologically trivial in the cohomology of the punctured disc about any other point. But
since we included all the marked points in the direct sum on the right, we do get injectivity. �

Proposition 46. As vector spaces,

N⊕
i=1

ξHε
xi

∼=C

N⊕
i=1

ξHε,+
xi

⊕ ξHε(P1)∞x ⊕ Cc,

where c := |0 >
∑N

j=1 d log(z − z(xj)).

Proof. We must show that every element
⊕N

i=1
ξHε

xi
decomposes uniquely into such

summands. By linearity, it is enough to consider in turn elements of ξHε
xi

, for each i. For
its central extension, clearly d log(z − z(xi)) is in the span of the sum

∑N
j=1 d log(z − z(xj))

together with the differences in (63). It remains to consider the element of ξHε
xi

of the form
a−1|0 >f(z − z(xi))dz for some a ∈ h and Laurent series f(t) ∈ C{{t}}. The latter can be
written uniquely as f = f+ + f− for a series f+ ∈ C[[t]] (with non-zero radius of convergence)
and polynomial f− ∈ t−1

C[t−1]. Then f−(z − z(xi)) defines a meromorphic function on P
1

that vanishes at ∞ and so (in view of Proposition 43) a−1|0 >f−(z − z(xi))dz belongs to
ξHε(P1)∞x . So we get the unique decomposition of a−1|0 >f(z − z(xi))dz ∈ ξHε

xi
into the sum

of a−1|0 >f+(z − z(xi))dz ∈ ξHε,+
xi

and a−1|0 >f−(z − z(xi))dz ∈ ξHε(P1)∞x . �
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Corollary 47. We have

N⊕
i=1

ξHε
xi

/
Cc ∼=C

N⊕
i=1

(ξHε)+xi
+ ξHε(P1)x

and

N⊕
i=1

(ξHε)+xi
∩ ξHε(P1)x = ξh.

Proof. This follows from the proposition above and Corollary 44. �

7.10. The dual bundle (ξΠε
�1)

∗ and ξConn

Consider the sheaf U �→ Γ(U, (ξΠε
�1)

∗) of meromorphic sections of the dual bundle (ξΠε
�1)

∗. In
the local trivialization of (ξΠε

�1)
∗ coming from a holomorphic coordinate t : U → C, its sections

look like (F (t), χ(t)) with F (t) ∈ K(U) and χ(t) ∈ h∗ ⊗K(U), with the canonical pairing

Γ(U,
(
ξΠε

�1

)∗
) × Γ(U,

(
ξΠε

�1

)
) → K(U)

being given by 〈
(F (t), χ(t)), (f(t)|0〉 + g(t)−1|0〉)

〉
:= F (t)f(t) + 〈χ(t), g(t)〉

for f(t) ∈ K(U), g(t) ∈ h⊗K(U). Starting from the transition functions of the bundle ξΠε
�1

from (57), one finds† that in the local trivialization of (ξΠε
�1)

∗ coming from a new holomorphic
coordinate s : U → C with t = μ(s), the same section of (ξΠε

�1)
∗ is written (F̃ (s), χ̃(s)) where

F̃ (s) := F (μ(s)), χ̃(s) := μ′(s)χ(μ(s)) − F (μ(s))
μ′′(s)
μ′(s)

κ(ξ|·).

Since the coefficient function F (t) = F (μ(s)) is the same in all such trivializations, Γ((ξΠε
�1)

∗)
fibres over K. In particular, we have the fibre over the constant function 1 ∈ K, consisting
of sections whose trivializations in any local coordinate t : U → C take the form (1, χ(t)),
χ(t) ∈ h∗ ⊗K(U). Let us write ξConn for the sheaf of such sections. Its transition functions
are given by

χ̃(s) := μ′(s)χ(μ(s)) − μ′′(s)
μ′(s)

κ(ξ|·). (67)

†Using the transition functions (57), we have that the pairing of these sections in the new coordinate is given
by 〈

(F̃ (s), χ̃(s)),
(
f̃(s)|0〉 + g̃(s)−1|0〉

)〉
= F̃ (s)f̃(s) + 〈χ̃(s), g̃(s)〉

= F̃ (s)

(
f(μ(s)) + κ(ξ|g(μ(s)))

μ′′(s)
μ′(s)2

)
+

〈
χ̃(s),

g(μ(s))

μ′(s)

〉

= F̃ (s)f(μ(s)) +

( 〈χ̃(s), ·〉
μ′(s)

+ F̃ (s)
μ′′(s)
μ′(s)2

κ(ξ|·)
)

(g(μ(s))).

This pairing is a function, so it must be the same as the pairing in the old coordinate, that is, it must equal

F (t)f(t) + 〈χ(t), g(t)〉 = F (μ(s))f(μ(s)) + 〈χ(μ(s)), g(μ(s))〉.
Since this must be true for all f and g, we conclude firstly that F̃ (s) = F (μ(s)) and hence that

χ̃(s) = μ′(s)χ(μ(s)) − F (μ(s))
μ′′(s)
μ′(s)

κ(ξ|·).
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7.11. The modules Cvχ

Let xi be any of the marked points on P
1. Let χ be a germ at xi of a meromorphic section

belonging to ξConn ⊂ Γ((ξΠε
�1)

∗). There is a one-dimensional representation Cvχ of the Lie
algebra ξHε

xi
of § 7.8, defined as follows. An element f ∈ ξHε

xi
is represented by a germ at xi of

a meromorphic section of ξΠε
�1 ⊗ Ω. Using the canonical pairing, we obtain a germ 〈χ, f〉 of a

meromorphic section of Ω. It is ambiguous up to the addition of exact derivatives dg, g ∈ Kxi
,

because of the freedom to add terms of the form |0 >dg to f , cf. § 7.8. Nonetheless, the residue
is well defined, and we set

f.vχ := vχ resxi
〈χ, f〉.

(Note that this would not work if χ were a germ of a section of (ξΠε
�1)

∗ belonging to the fibre
over non-constant F ∈ Kxi

, for then 〈χ, f〉 would be defined only up to addition of terms of
the form Fdg, whose residue could be non-zero.)

Suppose that we pick a collection χ := (χi)Ni=1 of such germs, one for each marked point xi.
We obtain the one-dimensional representation

Cvχ :=
N⊗
i=1

Cvχi

of the Lie algebra
⊕N

i=1
ξHε

xi
. On pulling back by the embedding of § 7.9, it is also a one-

dimensional representation of ξHε(P1)x.
Let U �→ ξConn(U)x denote the sheaf consisting of those of sections of ξConn that are

holomorphic away from the marked points x = {x1, . . . , xN}.

Lemma 48. As a module over ξHε(P1)x, Cvχ is trivial (that is, A.vχ = 0 for all
A∈ ξHε(P1)x) if and only if there exists a global section χ ∈ ξConn(P1)x such that χi is the
germ at xi of χ, for 1 � i � N .

Proof. Consider the ‘if’ direction. Suppose that such a global section χ exists. Let
f ∈ ξHε(P1)x. By definition 〈χ, f〉 ∈ ΓP1(Ω), that is, it is a meromorphic one-form on P

1, with
no poles in P

1 \ {x}. So we have

f.vχ = vχ

N∑
i=1

resxi
〈χ, f〉 = 0,

where the second equality holds by the residue theorem. The ‘only if’ direction is the strong
residue theorem (cf. [14, § 9.2.9]) together with the non-degeneracy of the pairing. �

The quotient Cvχ/
ξHε(P1)x := Cvχ/(ξHε(P1)x.Cvχ) is called the space of coinvariants.

Corollary 49.

Cvχ
/
ξHε(P1)x ∼=C

{
C if all χi are the restrictions of one global section χ ∈ ξConn(P1)x
0 otherwise.

Henceforth, we specialize exclusively to the case in which the χi are the restrictions of one
global section χ ∈ ξConn(P1)x.

7.12. Global sections of ξConn(P1)x

Let us describe these global sections χ.
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Proposition 50. The set of global sections ξConn(P1)x is in one-to-one correspondence
with the set of meromorphic h∗-valued functions of the form

χ(z) =
N∑
i=1

Ki∑
k=0

χi,k

(z − z(xi))k+1
, Ki ∈ Z�0, χi,k ∈ h∗, (68)

such that the elements χi,0 ∈ h∗ satisfy the constraint

N∑
i=1

χi,0 = 2κ(ξ|·).

Proof. We have the patches U0 and U∞ and coordinates z : U0
∼−→ C, ζ : U∞

∼−→ C with
z = 1/ζ on U0 ∩ U∞, as above. A section of ξConn(U0)x is given in the trivialization
corresponding to the coordinate z by a meromorphic h∗-valued function χ(z) of the form

χ(z) = f(z) +
N∑
i=1

Ki∑
k=0

χi,k

(z − z(xi))k+1
,

where Ki ∈ Z�0, χi,k ∈ h∗, and where f(z) ∈ h∗[z] is a polynomial. Over U0 ∩ U∞ the same
section is given in the trivialization corresponding to the coordinate ζ by the function

χ̃(ζ) = − 1
ζ2

f

(
1
ζ

)
− 1

ζ2

N∑
i=1

Ki∑
k=0

χi,k

(1/ζ − z(xi))k+1
+

2
ζ
κ(ξ|·),

and this function is regular at ζ = 0 (so that the section was in fact the restriction of a section
in ξConn(P1)x) if and only if the given condition on the χi,0 holds and f(z) = 0. �

7.13. Properties of coinvariants

Let us consider a more general space of coinvariants. Suppose that Mi is a smooth module
over the Lie algebra ξHε

xi
for each marked point xi. As shorthand, we shall write

1x := |0〉d log(z − z(x))

for any x ∈ P
1. Suppose that the central element 1xi

∈ ξHε
xi

acts as 1 on Mi, for each i. That
is, assume that the modules Mi are all of level one. We have the space of coinvariants

H(P1, (xi), (Mi))Ni=1 := M1 ⊗ · · · ⊗MN/ ξHε(P1)x.

As an aside, note that according to Corollary 44, this space is non-trivial only if ΔNa acts on
M1 ⊗ · · · ⊗MN by scalar multiplication by 2κ(ξ|a), for all a ∈ h,† which is consistent with
the constraint in Proposition 50.

Now consider adding an additional marked point, x, in P
1 \ {∞}, distinct from the

x= {x1, . . . , xN}.
The fibre ξΠε

x of ξΠε at x is canonically a module over ξHε
x. Namely, let C|0 >x be the trivial

one-dimensional module over the Lie algebra ξHε,+
x of germs at x of holomorphic sections of

ξHε. We make it into a module over ξHε,+
x ⊕ C1x by declaring that 1x acts as one. Then the

fibre ξΠε
x is the induced module

ξΠε
x
∼= U(ξHε

x) ⊗U(ξHε,+
x ⊕C1x) C|0〉x.

†Here, each Mi is in particular a module over the subalgebra of zero modes, h ↪→ ξHε
xi

; a 	→ a−1|0 >d(z −
z(xi)), and ΔNa denotes the N -fold coproduct.
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We have the (
⊕N

i=1
ξHε

xi
⊕ ξHε

x)-module

M1 ⊗ · · · ⊗MN ⊗ ξΠε
x,

and hence the space of coinvariants(M1 ⊗ · · · ⊗MN ⊗ ξΠε
x

)/
ξHε(P1)x∪{x}.

Proposition 51. There are canonical vector-space isomorphisms(M1 ⊗ · · · ⊗MN ⊗ ξΠε
x

)/
ξHε(P1)x∪{x} ∼=C (M1 ⊗ . . .MN ⊗ C|0〉)/ξHε(P1)x

∼=C M1 ⊗ · · · ⊗MN

/
ξHε(P1)x.

Proof. As vector spaces, ξHε
x
∼=C

ξHε(P1)∞{x} ⊕ (ξHε,+
x ⊕ C1x). Therefore ξΠε

x is free as a
module over ξHε(P1)∞{x}, and hence so too is M1 ⊗ · · · ⊗MN ⊗ ξΠε

x. Thus

M1 ⊗ · · · ⊗MN ⊗ ξΠε
x
∼=C U(ξHε(P1)∞{x}).(M1 ⊗ · · · ⊗MN ⊗ C|0〉x).

Now, observe that
ξHε(P1)∞x∪{x} ∼=C

ξHε(P1)∞x ⊕ ξHε(P1)∞{x} ⊕ C(1x1 − 1x).

Also, ξHε(P1)∞x acts as zero on |0 >x, and (1x1 − 1x) acts as 1 − 1 = 0 on all of ξΠε ⊗M1 ⊗
. . .MN . It follows, as in, for example, the proof of [56, Proposition 3.1], that there are canonical
vector-space isomorphisms(M1 ⊗ · · · ⊗MN ⊗ ξΠε

x

)/
ξHε(P1)∞x∪{x} ∼=C (M1 ⊗ . . .MN ⊗ C|0〉)/ξHε(P1)∞x

∼=C M1 ⊗ · · · ⊗MN

/
ξHε(P1)∞x .

We have ξHε(P1)x = ξHε(P1)∞x ⊕ ξh and ξHε(P1)x∪{x} = ξHε(P1)∞x∪{x} ⊕ ξh, as in corollary 44.
So it remains to consider the action of ξh. Since a−1|0 >dz, a ∈ h, is a zero mode, it acts trivially
on ξΠε

x; and −2κ(ξ|a)1x1 by definition acts only on the tensor factor M1. So ξh does not act
at all on the tensor factor ξΠε

x, and we have the result. �

Therefore we obtain a linear map
ξΠε

x → End
(
H(P1, (xi), (Mi))Ni=1

)
,

which sends X ∈ ξΠε
x to the endomorphism of the space of coinvariants given by

[v] �→ [v ⊗X].

Given a meromorphic section σ of ξΠε over some open set U , we get for each x ∈ U \ x the
linear map [v] �→ [v ⊗ σ|x]. Note that, for a given section σ, this is by construction a well-defined
function of x (for example, it cannot depend on any choice of trivialization).

This linear map depends meromorphically on x with poles at most at the marked points x
(cf. the explicit calculation below).

Corollary 52. There is a well-defined map

Γ(U, ξΠε) → End
(
H(P1, (xi), (Mi))Ni=1

)⊗K(U).

Now we specialize back to the case Mi = Cvχi
as above. The dimension of the space of

coinvariants is then one, and the linear map is just a rescaling by a complex factor. So we get
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a map Γ(U, ξΠε) → C ⊗K(U) = K(U). This map will also depend on our choice of χ ∈ ξConn.
Let us compute this map explicitly, working with the global coordinate

z : U0
∼−→ C

and the corresponding identifications of ξHε
x with ĥε and ξΠε

x with πε
0 for all x ∈ U0 = P

1 \ {∞}.
Since, by definition of coinvariants,

0 =
[(

bj
(z − z(x))n

)
.(v ⊗X)

]
for all n � 1, we have

[v ⊗ bj,−nX] = −[v ⊗X]
N∑
i=1

resxi
〈χi, ιxi

bj
(z − z(x))n

〉

= −[v ⊗X]
1

(n− 1)!

(
∂

∂z(x)

)n−1 N∑
i=1

resxi
〈χi, ιxi

bj
z − z(x)

〉

= [v ⊗X]
1

(n− 1)!

(
∂

∂z(x)

)n−1 N∑
i=1

∞∑
k=0

resxi
〈χi, bj(z − z(xi))k〉

(z(x) − z(xi))k+1
.

Recall that we are assuming that χ = (χi)Ni=1 are the restrictions of a global section in
ξConn(P1)x, given, in the trivialization of ξConn(U0)x defined by the z coordinate, by a
meromorphic h∗-valued function χ(z) as in (68). So resxi

χi(z − z(xi))k = χi,k, and we have
established that

[v ⊗ bj,−nX↑
z

] = [v ⊗X]〈χ(n)(z), bj〉, (69)

where we adopt the shorthand χ(n)(z) := 1
(n−1)! (

∂
∂z )n−1χ(z). Consider now an arbitrary section

of Γ(U0,
ξΠε)x: such a section takes the form, in the trivialization coming from the coordinate

z,

M∑
m=0

f j1,...,jm
n1,...,nm

(z)bj1,−n1 . . . bjm,−nm
|0〉,

where the functions f j1,...,jm
n1,...,nm

(z) are meromorphic (and we continue to employ summation
convention on the indices jk). We get

M∑
m=0

f j1,...,jm
n1,...,nm

(z)[v ⊗ bj1,−n1 . . . bjm,−nm
|0〉
↑
z

]

=[v]
M∑

m=0

f j1,...,jm
n1,...,nm

(z)〈χ(n1)(z), bj1〉 . . . 〈χ(nm)(z), bjm〉.

(Here, to stress the point, both f j1,...,jm
n1,...,nm

(z) and 〈χ(n1)(z), bj1〉 have non-trivial transformation
properties under changes in coordinate, but the expression above is by construction a function.)

We have established the following.

Proposition 53. There is a well-defined map, K(U)-linear in the first slot,

F : Γ(U, ξΠε)x × ξConn(P1)x → K(U)x; (σ, χ) �→ Fχ(σ)
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defined by

[vχ ⊗ σ|x] = [vχ] Fχ(σ)|x,
and given explicitly in the global coordinate z : U0

∼−→ C by

Fχ

(
M∑

m=0

f j1,...,jm
n1,...,nm

(z)bj1,−n1 . . . bjm,−nm
|0〉

)

=
M∑

m=0

f j1,...,jm
n1,...,nm

(z)〈χ(n1)(z), bj1〉 . . . 〈χ(nm)(z), bjm〉.

8. The bundle Π and the sheaf −ρ̌Conn

After the general discussion in the previous section about coinvariants of ĥ-modules on the
Riemann sphere, we can now specialize again to our real case of interest and prove the main
global results, Theorem 4 and Theorem 5, from the introduction.

Namely we suppose that h is the Cartan subalgebra of a Kac–Moody algebra g of affine type;
we go to the ε → 0 classical limit π0 of πε

0; and we choose the conformal structure coming from
the choice ξ = −ρ̌.

To de-clutter the notation, let us write

Π := −ρ̌Π0

for the bundle ξΠε with this choice, ξ = −ρ̌, in the limit ε → 0. We also write, by a slight abuse
of notation,

−ρ̌Conn := −ρ̌Conn

for the sheaf defined in Section 7.10. (In the next section, in Proposition 70, we shall see that
this sheaf is isomorphic to the sheaf of Miura opers.)

We shall show that the bundles Π ⊗ Ωj admit a one-parameter family of flat connections,
defined using our local notion of canonical translation from Section 6 above; then we check
that the map Fχ behaves well with respect to these connections.

8.1. From −ρ̌Conn to affine connections

By definition, (67), −ρ̌Conn is the sheaf of meromorphic sections of the vector bundle with
fibre isomorphic to h∗ ∼= h and transition functions given by

χ(t) �→ χ̃(s) = μ′(s)χ(μ(s)) +
μ′′(s)
μ′(s)

ρ̌ (70)

between the trivializations χ(t) and χ̃(s) coming from local holomorphic coordinates t and s,
respectively, with t = μ(s). We continue to write (no der)h for the subspace of h spanned by the
simple (co)roots:

(no der)h :=
⊕
i∈I

Cα̌i.

Then we have the direct sum decomposition

h ∼= (no der)h⊕ Cρ̌

of h, and the corresponding decomposition of our section χ(t) of ρ̌Conn:

χ(t) =
∑
i∈I

χi(t)α̌i +
ϕ(t)
h

ρ̌,
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where χi(t) := 〈χ(t),Λi〉 and ϕ(t) := 〈χ(t), δ〉. From (70) we see that χi(t) transforms like a
section of Ω for each i, while −ϕ(t)/h transforms as follows:

−ϕ(t)
h

�→ − ϕ̃(s)
h

= −μ′(s)
ϕ(μ(s))

h
− μ′′(s)

μ′(s)
. (71)

This is,† the transformation property of the component of a connection

Γ(U,Ω) → Γ(U,Ω ⊗ Ω), f(t)dt �→
(
f ′(t) − 1

h
ϕ(t)f(t)

)
dt

on the canonical bundle Ω. Let U �→ Conn(U,Ω) denote the sheaf of meromorphic connections
on Ω, that is, of meromorphic affine connections. We have established the following.

Lemma 54. There is an isomorphism

−ρ̌Conn(U) ∼= (no der)h⊗ Γ(U,Ω) ⊕ Conn(U,Ω).

In particular, we have a surjection
−ρ̌Conn(P1)x � Conn(P1,Ω)x; χ �→ ∇(aff)

χ , (72)

which takes a global section χ of −ρ̌Conn(P1)x and produces a meromorphic affine connection
(holomorphic away from the marked points x) which we denote by ∇(aff)

χ . It is easy to check
that if −ϕ(z)/h is the component of a connection on Ω, then −jϕ(z)/h is the component of a
connection on the jth tensor power Ωj := Ω⊗j . In this way, the affine connection ∇(aff)

χ allows
us to differentiate sections of Ωj for all j.

Now we will introduce an ‘operator’ version ∇(aff) of this connection ∇(aff)
χ , which will not

depend on a choice of χ.

8.2. Connections on Π ⊗ Ωj

Recall the canonical translation operator T (aff) of Section 6.4.

Theorem 55. Let α ∈ C.

(i) There is a well-defined flat holomorphic connection Γ(·,Π) → Γ(·,Π ⊗ Ω) on Π given by

σ(t) �→
(
σ′(t) + (L−1 − αT (aff))σ(t)

)
dt.

(ii) More generally, there is a flat holomorphic connection

Γ(·,Π ⊗ Ωj) → Γ(·,Π ⊗ Ωj+1)

on Π ⊗ Ωj for each integer j, given by

σ(t)dtj �→
(
σ′(t) + (L−1 − αT (aff) − j

δ−1

h
)σ(t)

)
dtj+1.

Proof. In Section 8.2 we described the affine space of flat holomorphic connections on ξΠε

and hence on Π. In view of the formula (30) for R(μ), we see that if μ ∈ AutO, then v0 = μ′(0).
So Lemma 25 and Corollary 41 together yield part (i).

†Indeed, consider a section f(t)dt = f̃(s)ds of Ω. Here f̃(s) = f(t)μ′(s). Its derivative should be a section

of Ω ⊗ Ω, so we must have f̃ ′(s) + Ã(s)f̃(s) = (f ′(t)) + A(t)f(t))μ′(s)2, whereas in fact f̃ ′(s) + Ã(s)f̃(s) =

∂s(f(t)μ′(s)) + Ã(s)f(t)μ′(s) = f ′(t)μ′(s)2 + f(t)μ′′(s) + Ã(s)f(t)μ′(s). On comparing the two, we obtain the
transformation rule for the component A(t) of the connection given in (71).
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Consider part (ii). Let σ̃(s) be the section σ(t) in the s coordinate. We know from part (i) that
σ′(t)dt + (L−1 − αT (aff))σ(t)dt is a well-defined section of Π ⊗ Ω given, in the s coordinate, by
σ̃′(s)ds + (L−1 − αT (aff))σ̃(s)ds. Hence the would-be derivative,(

σ′(t) + (L−1 − αT (aff) − j
δ−1

h
)σ(t)

)
dtj+1

=
(
σ′(t)dt + (L−1 − αT (aff))σ(t)dt

)
dtj − j

δ−1

h
σ(t)dtj+1

is given in the s coordinate by(
σ̃′(s)ds + (L−1 − αT (aff))σ̃(s)ds

)
μ′(s)jdsj − j

(
δ−1

hμ′(s)
− μ′′(s)

μ′(s)2

)
σ̃(s)μ′(s)j+1dsj+1.

Here we used the fact that R(μs)δ−1R(μs)−1 = δ−1
hμ′(s) − μ′′(s)

μ′(s)2 + . . . where . . . are terms with
non-negative modes of δ; these act as zero on π0. On the other hand, in the s coordinate,
σ(t)dtj becomes σ̃(s)μ′(s)jdsj and its derivative should therefore be(

σ̃′(s)μ′(s)j + jσ̃(s)μ′(s)j−1μ′′(s) + (L−1 − αT (aff) − j
δ−1

h
)σ̃(s)μ′(s)j

)
dsj+1.

The expressions above agree, which completes the proof of part (ii). �

Define ∇(aff) to be the flat holomorphic connection obtained by taking α = 0 in part (ii) of
the theorem. That is, ∇(aff) is the connection

∇(aff) : Γ(·,Π ⊗ Ωj) → Γ(·,Π ⊗ Ωj+1)

given by

∇(aff)σ(t)dtj :=
(
σ′(t) +

(
L−1 − j

δ−1

h

)
σ(t)

)
dtj+1.

Equivalently ∇(aff)σ = ∇Tσ − j δ−1
h σdt where ∇T is the connection from lemma 40.

8.3. Functoriality

By Proposition 53 we have, for each χ ∈ −ρ̌Conn(P1)x, K(U)-linear maps

Fχ : Γ(U,Π)x → K(U)x

and hence for all j ∈ Z,

Fχ : Γ(U,Π ⊗ Ωj)x → Γ(U,Ωj)x.

Recall the definition of ∇(aff)
χ from (72).

Theorem 56. For any section σ ∈ Γ(U,Π ⊗ Ωj), j ∈ Z, and for any connection
χ∈−ρ̌Conn(P1)x,

Fχ

(
∇(aff)σ

)
= ∇(aff)

χ Fχ(σ).

Proof. It is enough to consider a coordinate patch U such that U ⊂ U0 = P
1 \ {∞} or

U ⊂ U∞ = P
1 \ {0}. Without loss of generality (by our choice of what to call 0 and what ∞),

suppose U ⊂ U0.
Let us work in the restriction to U of the global coordinate z : U0

∼−→ C. From the explicit
expression in Proposition 53, we see that Fχ(∇T

∂z
σ) = ∂zFχ(σ). At the same time, by (69) we
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know that Fχ(δ−1vdt
j) = 〈χ(z), δ〉Fχ(vdtj) = ϕ(z)Fχ(vdzj). Hence indeed

Fχ(∇(aff)
∂z

σ(z)dzj) = Fχ

(
∇T

∂z
σ(z)dzj − j

h
δ−1σ(z)dzj

)

=
(
∂z − j

h
ϕ(z)

)
Fχ(σ(z)dzj) =

(
∇(aff)

χ

)
∂z

Fχ(σ(z)dzj).

�

Remark 57. In the special case j = 0, we recover the statement that, for any section
σ ∈ Γ(U,Π) and for any connection χ ∈ −ρ̌Conn(P1)x,

Fχ(∇Tσ) = dFχ(σ).

Now, for j � 0, let H1(·,Π ⊗ Ωj ,∇(aff)) denote the sheaf of the first de Rham cohomology
of the connection ∇(aff) with coefficients in Π ⊗ Ωj :

H1(U,Π ⊗ Ωj ,∇(aff)) := Γ(U,Π ⊗ Ωj ⊗ Ω)
/
∇(aff)Γ(U,Π ⊗ Ωj);

and let H1(·,Ωj ,∇(aff)
χ ) denote the sheaf of the first de Rham cohomology of the connection

∇(aff)
χ with coefficients in Ωj :

H1(U,Ωj ,∇(aff)) := Γ(U,Ωj ⊗ Ω)
/
∇(aff)

χ Γ(U,Ωj).

Corollary 58. For each χ ∈ −ρ̌Conn(P1)x we have well-defined K(U)-linear map

[Fχ] : H1(U,Π ⊗ Ωj ,∇(aff))x → H1(U,Ωj ,∇(aff)
χ )x.

Remark 59. Recall that we denote by −ϕ(t)/h := −〈χ(t), δ〉/h the component, in a
local holomorphic chart t : U → C, of the affine connection ∇(aff)

χ defined by a global section
χ∈−ρ̌Conn(P1)x, and we write ϕ(n)(t) := 1

(n−1)! (
∂
∂t )

n−1ϕ(t). Theorem 56 implies that

Fχ(δ−1|0〉)(t) = hϕ(t), (73)

and, more generally, we have

Fχ(δ−nv)(t) = hϕ(n)(t)Fχ(v)(t)

for any v ∈ π0 and any n � 1.
Let us check these statements explicitly. We know from (69) that these statements hold

in the restriction to U of the global coordinate z : U0
∼−→ C. Let z = μ(s) where s : U → C is

another local holomorphic coordinate. Let τ = μ−1. So z = μ(τ(z)), 1 = μ′(s)τ ′(z) and hence
0 = μ′′(s)τ ′(z) + μ′(s)2τ ′′(z). Recall the transition functions from (57). The section given by
δ−1|0 > in the coordinate s is written, in the trivialization coming from the coordinate z,

1
τ ′(z)

(
δ−1|0〉 − h

τ ′′(z)
τ ′(z)

|0〉
)

= μ′(s)
(
δ−1|0〉 + h

μ′′(s)
μ′(s)2

|0〉
)
.

After applying Fχ, we get μ′(s)hϕ(z) + hμ′′(s)/μ′(s) and, in view of (71), we recognize this
as hϕ̃(s). This establishes the statement about Fχ(δ−1|0 >)(t) and more generally about
Fχ(δ−1v)(t) for all v ∈ π0, since the correction to the transition functions is by terms with non-
negative modes of δ, which act as zero on all of π0. For the same reason, to obtain the statement
about Fχ(δ−nv)(t) it is enough to consider δ−n|0 >. And the fact that Fχ(δ−n|0 >)(t) =
hϕ(n)(t) follows from (73) and Remark 57.
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8.4. Conformal primaries and global constant sections

Proposition 60. Suppose that v ∈ π0 is a conformal primary of conformal weight j.
Associated to v is a well-defined global section of Π ⊗ Ωj given, in the trivialization defined by
any local holomorphic coordinate t : U → C, by vdtj .

This section vdtj obeys

∇(aff)vdtj =
(
L−1 − j

h
δ−1

)
vdtj+1 = (T (aff)v)dtj+1

(so it is constant with respect to the connection ∇(aff) − T (aff)).

Proof. Consider the section of Π which is given by v in the trivialization coming from a
holomorphic coordinate t : U → C (that is, the section ϕ−1

U,t(U × {v})). In the coordinate s

with t = μ(s) the same section looks like vμ′(s)−j (since v is primary). At the same time,
dsj = μ′(s)jdtj . So indeed, the section of Π ⊗ Ωj given by vdtj in the t coordinate is given
by vdsj in the s coordinate. It is clear that ∇(aff)vdtj = (L−1 − j/hδ−1)vdtj by definition of
∇(aff). The final equality follows by Lemma 30. �

Recall that inside π0 we have the subspace (aff)π0 ⊂ π0 which is stable under the action of
AutO, and is in fact spanned by conformal primaries. We defined

(aff)F0 ⊂
(

(aff)π0 ⊗ Cdt
)/

(T (aff)dt)((aff)π0)

cf. Corollary 36.

Corollary 61. Suppose that v ∈ (aff)π0 is a conformal primary of conformal weight j + 1.
It defines a class [v ⊗ dt] ∈ (aff)F0. Associated to this class [v ⊗ dt] is a well-defined global
section

[vdtj+1] ∈ H1(P1,Π ⊗ Ωj ,∇(aff)).

Now we can apply the results above to the classes from Theorem 37,

[vj ⊗ dt] ∈ (aff)I0 = kerH ⊂ (aff)F0.

Using Corollary 61 we obtain well-defined global holomorphic sections of the cohomology of
∇(aff),

[vjdt
j+1] ∈ H1(P1,Π ⊗ Ωj ,∇(aff)).

Then, for any meromorphic connection χ ∈ −ρ̌Conn(P1)x, we obtain using corollary 58 well-
defined global meromorphic sections of the cohomology of ∇(aff)

χ :

[Fχ(vjdt
j+1)] ∈ H1(P1,Ωj ,∇(aff)

χ )x.

Now we can ask what special properties these cohomology classes possess, by virtue of the
fact that [vj ⊗ dt] lay not only in (aff)F0 but also in the kernel of H; in other words, by virtue
of the fact that these classes are invariant under the screening flows Qi, i ∈ I, on π0.

9. g-Opers and g-Miura Opers

In this final section, we recall the definitions of opers and Miura opers, both local and
global. That will allow us to establish the remaining results of the paper, Theorem 69 and
Proposition 71. We continue to suppose that g is a Kac–Moody algebra of affine type. Opers
were first introduced on the disc in [12] and for a general Riemann surface in [4]. Miura
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opers for simple Lie algebras were introduced in [27]; affine opers and affine Miura opers were
introduced in [18]. We follow the conventions from [33, § 6].

It is convenient to treat in parallel the cases of opers on the disc, and meromorphic opers
on a coordinate patch U ⊂ P

1. Thus, let A denote either the ring C[[t]] of formal power series
in t, or the field K(t(U)) of meromorphic functions on the image t(U) ⊂ C of a holomorphic
coordinate t : U → C. In either case we have a notion of coordinate transformations. On the
disc, these form the group AutO defined in (27) and (28). In the meromorphic setting, we
have the changes of holomorphic coordinate μ(s) between any pair of holomorphic coordinates
t, s : U → C on U , which we think of as sending f(t) ∈ K(t(U)) to f(μ(s)) ∈ K(s(U)). (Since
s(U) and t(U) need not coincide as subsets of C, the latter do not form a group, but only a
groupoid.)

Let U (A) denote the group of units of A. We saw U (O), the multiplicative group of invertible
formal power series, already above. Since K(t(U)) is a field, U (K(t(U))) = K(t(U)) \ {0}.

9.1. Completion of n+(A)

For any Lie algebra p, we have the Lie algebra

p(A) := p⊗C A
(of p-valued functions on the disc, or p-valued meromorphic functions on t(U)).

Let nk denote the Lie ideal in n+ spanned by elements of grade n � k. We get a descending
Z>0-filtration of n+(A) by the Lie ideals nk(A) such that the quotient Lie algebras n+(A)/nk(A)
are nilpotent. The inverse limit is a Lie algebra we shall write as

n̂+(A) := lim←−
k

n+(A)
/
nk(A),

whose elements are by definition infinite sums
∑

n>0 un, with un ∈ gn(A) for each n, which
truncate to finite sums when working in any given quotient n+(A)/nk(A), k ∈ Z>0.

Define also

b̂+(A) := h(A) ⊕ n̂+(A)

ĝ(A) := n−(A) ⊕ b̂+(A) = n−(A) ⊕ h(A) ⊕ n̂+(A).

These are Lie algebras.

9.2. The group N̂+(A)

Let exp(n+(A)/nk(A)) denote a copy of the vector space n+(A)/nk(A) and let m �→ exp(m)
be the map into this copy, for each k > 0. As the notation is supposed to suggest,
exp(n+(A)/nk(A)) gets a group structure, given by

exp(x) exp(y) := exp
(
x + y +

1
2
[x, y] + . . .

)
,

where the expression on the right is the usual Baker–Campbell–Hausdorff formula, from
which we need only finitely many terms since each n+(A)/nk(A) is nilpotent. We have the
commutative diagram
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where the vertical maps are the formal exponential maps, which are by definition bijections,
and the horizontal maps are the canonical projections for all m � k. The group N̂+(A) is then
the inverse limit

N̂+(A) := lim←−
k

exp (n+(A)/nk(A)).

and the diagram above defines an exponential map exp : n̂+(A) → N̂+(A).

9.3. The group B̂+(A)

Recall the fundamental coweights {Λ̌i}i∈I from (36). Let P :=
⊕


i=0 ZΛ̌i ⊂ h and define H(A)
to be the abelian group generated by elements of the form φλ with φ ∈ U (A) and λ ∈ P ,
subject to the relations φλψλ = (φψ)λ and φλ+μ = φλφμ for all φ, ψ ∈ U (A) and λ, μ ∈ P . We
have the adjoint action of H(A) on the Lie algebra n̂+(A), defined weight space by weight
space, with

φλnφ−λ := φ〈λ,α〉n, (74)

for all n in the subspace of n̂(A) of weight α ∈ ⊕
i∈I Zαi. (Note that 〈λ, α〉 is an integer

and hence φ〈λ,α〉 ∈ U (A).) The adjoint action of H(A) on the group N̂+(A) is then given by
φλ exp(n)φ−λ := exp(φλnφ−λ). Finally, we define B̂+(A) to be the semi-direct product

B̂+(A) := N̂+(A) � H(A),

so elements of B̂+(A) are of the form exp(n)φλ, n ∈ n̂+(A), φ ∈ U (A) and λ ∈ P , and the
product is given by

(exp(n)φλ)(exp(m)ψμ) :=
(
exp(n) exp

(
φλmφ−λ

))(
φλψμ

)
.

9.4. Definition of g-opers

Let õpg be the set of all connections of the form

∇ = d +

(

∑

i=0

ψi(t)fi + b(t)

)
dt (75)

with ψi(t) ∈ U (A) for each i ∈ I, and b(t) ∈ b̂+(A) := h(A) ⊕ n̂+(A).
In calling these connections, we mean that there is an action of the group B̂+(A) on õpg

(by gauge transformations) and that the set õpg transforms in a well-defined manner under
changes in coordinate. Let us describe these transformation properties.

The action of the coordinate transformation t = μ(s) on ∇ is given by

μ.∇ := d +

(

∑

i=0

ψi(μ(s))fi + b(μ(s))

)
μ′(s)ds. (76)

(Here we choose to think of μ as a passive coordinate transformation, that is, to think that
μ.∇ is the same connection ∇ in the new coordinate s given by t = μ(s).)

The action of an element g = emφλ ∈ B̂+(A) on ∇ is defined as follows. Firstly, (74) defines
the adjoint action of φλ ∈ H(A) on the Lie algebra ĝ(A) := n−(A) ⊕ b̂+(A), weight space by
weight space, while the adjoint action of em ∈ N̂+(A) on an element u ∈ ĝ(A) is given by

u �→ emue−m :=
∑
k�0

1
k!

adk
mu,
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where admu := [m,u]. In this way we get the adjoint action of B̂+(A) = N̂+(A) � H(A) on
ĝ(A). For any g = emφλ ∈ B̂+(A), define

(∂tg)g−1 := λφ−1∂tφ +
∑
k�1

1
k!

adk−1
m ∂tm,

an element of b̂+(A). One can then check that there is a well-defined action of B̂+(A) on the
affine space (over ĝ(A)) of connections valued in ĝ(A), given by

d + vdt �→ d +
(
gvg−1 − (∂tg)g−1

)
dt, v ∈ ĝ(A).

This action stabilizes the set õpg. We shall write g∇g−1 ∈ õpg for the image under the action
of g of the connection ∇ ∈ õpg. We call this the gauge action of B̂+(A) on õpg.

The space of g-opers is by definition the quotient of the set of connections õpg by the gauge
action of B̂+(A):

Opg := õpg

/
B̂+(A). (77)

Recall the definition of the element p−1 ∈ n− from (38): p−1 :=
∑

i∈I fi. Let opg ⊂ õpg denote
the set of connections of the form (75) with ψi = 1 for each i ∈ I, that is, the set of connections
of the form

∇ = d + (p−1 + b)dt, b ∈ b̂+(A).

(It is an affine space over b̂+(A).)

Lemma 62. Each H(A)-orbit in õpg contains a representative in opg. This representative

is unique, and the stabilizer of opg in õpg is N̂+(A). Hence

Opg
∼= opg

/
N̂+(A).

9.5. The (quasi-)canonical form

Recall from Section 5.3 the definition of the exponents j ∈ E of g and of the generators pj ∈ a+.
The following result was established in [33], following [12, 29]. (The proof in [33] is in the
meromorphic setting, but the same proof goes through the case of the disc.)

Theorem 63 [33]. Suppose that g is of affine type. Fix a formal coordinate t on D
(respectiveely, a holomorphic coordinate t on U).

Every oper [∇] ∈ Opg has a quasicanonical representative of the form

∇ = d +

⎛⎝p−1 − ϕ(t)
h

ρ̌ +
∑

j∈E�1

vj(t)pj

⎞⎠dt, (78)

where ϕ(t) and vj(t), for each positive exponent j ∈ E, are formal series in t (respectively,
meromorphic functions on t(U) ⊂ C).

The gauge transformations preserving quasi-canonical form are those of the form
exp(

∑
j∈E�2

fjpj) for formal series (respectively, meromorphic functions) fj(t). The effect of

such gauge transformations is to send

vj(t) �−→ vj(t) − f ′
j(t) +

jϕ(t)
h

fj(t) (79)

for all j ∈ E�2, and to leave ϕ and v1 invariant.
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9.6. Coordinate transformations

One can now study the behaviour under coordinate transformations of the functions vj and ϕ
appearing in the quasi-canonical form of the oper. That is, one can start with a connection ∇ of
quasi-canonical form with respect to the coordinate t and then transform to a new coordinate
given by t = μ(s) 
= s, as in (76). The resulting connection will not be in quasi-canonical form
in the new coordinate — but it can necessarily be brought to this form by means of a gauge
transformation. One interprets the resulting power series ṽj and ϕ̃ as the images of vj and ϕ
under the coordinate transformation. One finds the following. (For details, see, for example,
[33, § 6], or the proof of Proposition 67 below where an example of this sort of calculation
occurs.)

− 1
h
ϕ̃(s) = − 1

h
ϕ(μ(s))μ′(s) − μ′′(s)

μ′(s)
, (80)

ṽj(s) = vj(μ(s))μ′(s)j+1, j ∈ E. (81)

In the meromorphic setting, we know from Section 7 above how to interpret (79) to (81), and
we recover the following.

Theorem 64 [33]. Opg(U) fibres over the affine space Conn(U,Ω) of meromorphic
connections on the canonical bundle and we have the isomorphism

Opg(U)∇ ∼= Γ(U,Ω2) ×
∏

j∈E�2

H1(U,Ωj ,∇)

for the fibre over any connection ∇ ∈ Conn(U,Ω).

To state the analogous result on the disc, we need some notations. A j-differential (on
D) is an object of the form f(t)dtj , specified by a series f(t) ∈ C[[t]], its component in the
coordinate t. By definition (and as the notation suggests), this component must transform as
f(t) �→ f(μ(s))μ′(s)j under the coordinate transformation t = μ(s), μ ∈ AutO. Let us write
Ωj for the O-module of j-differentials.

For each j ∈ Z�1, we write Conn(Ωj) for the space of connections on j-differentials. It is an
affine space over Ω. That is to say, as an abelian group under addition, Ω acts freely transitively
on Conn(Ωj) (and this action is AutO equivariant). Just as in the meromorphic case, cf. (71)
and the discussion following, Conn(Ω) ∼= Conn(Ωj) for all j � 1.

On comparing (80) with (71) we see that − 1
hϕ(t) transforms as the component of an affine

connection, call it ∇ϕ. For each j ∈ E, the power series vj(t) transforms as a (j + 1)-differential.
As in the meromorphic case, we can now interpret (79) as saying that the vj(t) define classes
in the cohomology H1(Ωj ,∇ϕ) := Ωj+1/∇ϕΩj of the connection ∇ϕ. But these cohomologies
on the disc are all trivial†.

We have arrived at the following description of the space Opg(D) of opers on the disc.

†Indeed, let F (t) =
∑

n<0 Fnt−n−1 ∈ C[[t]] be the component of a (j + 1)-differential F (t)dtj ∈ Ωj+1. We

must show that there exists G(t) =
∑

n�0 Gnt−n ∈ C[[t]] such that F (t) = G′(t) − j
h
ϕ(t)G(t). That is,

F−1 = G−1 − j

h
ϕ−1G0,

F−2 = 2G−2 − j

h
(ϕ−2G0 + ϕ−1G−1),

.

.

.



54 CHARLES A. S. YOUNG

Proposition 65. We have the following (AutO-equivariant) isomorphism:

Opg(D) ∼= Conn(Ω) × Ω2.

9.7. Miura opers

An g-Muira oper is a connection ∇ ∈ opg ⊂ õpg of the special form

∇ = d + (p−1 + u(t))dt, u(t) ∈ h(A). (82)

Let MOpg denote the set of such connections. It is an affine space over h(A).
We have the canonical map

MOpg → Opg, (83)

which associates to each Miura oper ∇ the underlying oper [∇], that is, its B̂+(A)-gauge
equivalence class in õpg.

Remark 66. For us (and also for [42, 52, 53]) a Miura oper is thus not an oper, strictly
speaking — but one can think of a Miura oper ∇ as consisting of its underlying oper [∇] ∈ Opg

together with the extra data of a representative ∇ of the special form (82). That is the right
intuition, because in the original, more geometric, definition of opers [4] and Miura opers [27]
on Riemann surfaces, a Miura oper is by definition an oper together with extra data. (See
[25, § 5]. Note also that, for compatibility with that definition, what we call Miura opers here
should really be called generic Miura opers.)

9.8. Identification of π0 with Fun MOpg(D)

We write MOpg(D) for the space of Miura opers on the disc, that is, in the case A = C[[t]]. In
the coordinate t we can write the series expansion of the element u ∈ h(A) in (82) as

u =
∑
n<0

unt
−n−1,

with un ∈ h for each n. Recall that {bi}i=1,...,dim h and {bi}i=1,...,dim h are dual bases of h with
respect to the form κ(·|·). Define

ui
n := 〈un, b

i〉, ui,n := 〈un, bi〉.
Let ui,n ∈ MOpg(D)∗ be the linear map which sends ∇ to ui,n. We can regard ui,n as coordinate
functions on the space MOpg(D). They generate the C-algebra

Fun MOpg(D) := C[ui,n]i=1,...,dim h,n<0

of polynomial functions on MOpg(D). In view of (19), by identifying uk,n with bk,n, we get an
isomorphism differential algebras

Fun MOpg(D) ∼= π0.

We endow π0 with the structure of a conformal algebra as in § 6.2.

Proposition 67. This isomorphism

Fun MOpg(D) ∼= π0. (84)

F−n = nG−n − j

h

−1∑
k=−n

ϕkG−n−k.

where ϕ(t) =
∑

n<0 ϕnt−n−1 is the component of the connection. We can pick G0 = 0 and then solve the nth
equation above by choice of G−n, for each n � 1.
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of differential algebras is AutO- and DerO-equivariant.

Proof. Firstly, just as in the calculation sketched in § 9.6 above, one can find the behaviour
of the power series

ui := 〈u, bi〉 =
∑
n<0

ui,nt
−n−1

under the coordinate transformation t �→ s with t = μ(s), μ ∈ AutO. Indeed, in the new
coordinate s the connection in (82) becomes

∇ = d + p−1μ
′(s)ds + u(μ(s))μ′(s)ds. (85)

This can be brought back into the Miura form by performing a gauge transformation by
μ′(s)ρ̌ ∈ H(O):

μ′(s)ρ̌ ∇μ′(s)−ρ̌ = d + (p−1 + ũ(s))ds,

where

ũ(s) = u(μ(s))μ′(s) − ρ̌
μ′′(s)
μ′(s)

. (86)

Let us adopt the viewpoint that this is an active transformation, transforming the Miura oper
∇ = d + (p−1 + u(t))dt to the new Miura oper μ.∇ = d + (p−1 + ũ(t))dt. This gives the action
of AutO on MOpg(D). The action of AutO on FunMOpg(D) is then given by (μ.ui,n)(∇) :=
ui,n(μ−1.∇) (so that the pairing ui,n(∇) ∈ C is, correctly, AutO-invariant).

Consider an infinitesimal transformation, μ(s) = (1 + εLk)s = (1 − εsk+1∂s)s = s− εsk+1,
so that μ′(s) = 1 − ε(k + 1)sk. We have

ũ(s) =
(
u(s) − εsk+1u′(s)

)(
1 − ε(k + 1)sk

)− εk(k + 1)sk−1ρ̌ + . . .

= u(s) − ε
(
sk+1u′(s) + (k + 1)sku(s) + k(k + 1)sk−1ρ̌

)
+ . . . .

Let us arrange the coordinate functions ui,n into power series in the same way as ui,n, that is,
u(s) :=

∑
n<0 unt

−n−1 with un := ui,nb
i. By definition

ũ(s) = (μ−1.u)(∇) = ((1 − εLk + . . . ).u)(∇).

On comparing coefficients, we see that

Lkun = res dssn
(
sk+1u′(s) + (k + 1)sku(s) + k(k + 1)sk−1ρ̌

)
.

That is

Lkun =

⎧⎪⎨⎪⎩
−nun+k k � −n,

k(k + 1)ρ̌ k = −n,

0 k > −n.

In view of Section 29, and recalling that ξ = −μ−1(ρ̌), this establishes the AutO-equivariance
of the isomorphism (84). The Lie algebra DerO is slightly larger than the Lie algebra Der0 O =
tC[[t]]∂t of AutO, because it contains also the generator L−1 = −∂t. But the calculation above
still goes through for k = −1, that is, for this generator L−1. �

9.9. Identification of W with FunOpg(D)

Now we shall show that the action of the screening operators on π0 coincides with the action of
infinitesimal gauge transformations by simple root vectors on Fun MOpg. Let us start with a
Miura g-oper ∇ as in (82). We shall consider the effect of a gauge transformation by the element
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exp(aei) ∈ N̂+(O). We have (noting in the second line that [ei, [ei, u]] = 0 since [ei, u] ∝ ei),

eaei∇e−aei = d− a′eidt + eaadei)(p−1 + u)dt

= d− a′eidt +
(
p−1 + aαi +

1
2
a2[ei, αi] + u + a[ei, u]

)
dt

= d +
(
p−1 + u + aαi + ei

(
a2 − a′ − a〈αi, u〉

))
dt. (87)

Note [ei, u] = −〈u, αi〉ei. Therefore, this gauge transformation preserves the Miura form if and
only if a obeys the (‘Ricatti-type’) equation

a2 − a′ − a〈αi, u〉 = 0. (88)

(In the meromorphic setting on P
1, solutions of this equation give rise to the reproduction

procedure which generates families of new solutions to the Bethe equations starting from a
given solution; see [41, 42, 49].)

In our setting of the formal disc, u and a are power series. We can choose to write them as

u =
∑
n<0

unt
−n−1, a =

∑
n�0

ant
−n,

with un, an ∈ h for each n. Given a power series f =
∑

n�0 fnt
n, set

∫
f :=

∑
n�0 fnt

n+1/(n +
1). For any value of a parameter c ∈ C, there is a solution to (88) given by

a = − g

c−1 +
∫
g
, where g = exp

∫
(−〈u, αi〉),

for then indeed

a2 − a′ =
g2(

c−1 +
∫
g
)2 −

(
− g′

c−1 +
∫
g

+
g2(

c−1 +
∫
g
)2

)

=
g′

c−1 +
∫
g

=
g

c−1 +
∫
g

g′

g
= a〈u, αi〉;

moreover, this is the unique solution with leading behaviour a = −c + . . . .
Thus the solutions to (88) form a one-parameter family containing the trivial solution (a =

−c = 0).†

Consequently, it is enough to consider infinitesimal gauge transformations exp(εaei) ∼ 1 +
εaei. In that case a solves the equation

a′ = −〈αi, u〉a, (89)

whose solution, unique up to scale, is

a = exp
∫

(−〈u, αi〉) = exp

(
−

∑
n<0

〈un, αi〉t−n

n

)
= exp

(
−κ(αi|bj)

∑
n<0

uj
nt

−n

n

)
. (90)

In view of (18), (24) and (25), if we identify uk,n with bk,n, then we have

a =
∑
n�0

Vαi
[n]t−n.

†One can ask about the point at infinity, c−1 = 0. Generically there is no corresponding solution because
0 +

∫
g is not invertible in O. But there is a special case when 〈u, αi〉 is non-zero and constant. Then

g= exp(−〈u, αi〉t) and we have the constant non-zero solution a = −g/
∫
g = 〈u, αi〉. That is important because

it gives rise to the action of the (discrete) Weyl group on ‘finite Miura opers’, that is, elements of g of the form
p−1 + u.
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From (87) we see that δu = εaαi. That is, δuk,n := ε〈δun, bk〉 = εan+1〈αi, bk〉. Thus this
infinitesimal gauge transformation acts on polynomials in the uk,n, by the derivation∑

m<0

am+1〈αi, bk〉 ∂

∂uk,m
=

∑
m�0

Vαi
[m]〈αi, bk〉 ∂

∂uk,−1+m
. (91)

Recall from (34) that 〈αi, ·〉 = ε−1
i κ(αi|·). We have established the following.

Proposition 68. After identifying uk,n with bk,n, the action of the flow generated by ei
on MOpg(D) ∼= π0 is given by

Qi = −ε−1
i T−1

αi
Sαi

.

Let us write Fun Opg(D) for the space of polynomial functions on Opg(D):

Fun Opg(D) ∼= C[ϕn, v1,n]n<0,

cf. Theorem 63 and Proposition 65.
By construction, a polynomial in the ui,n, that is, an element of FunMOpg(D), is an element

of Fun Opg(D) if and only if it is in the kernel of the Qi.
After identifying uk,n with bk,n, one finds ϕn = δn and v1,n = ωn, cf. Sections 6.2 and 6.3.
In view of the definition of W as the kernel of the screenings, we have arrived at the following

statement. (For the analogous statement in finite types, see [28, § 8.2.5].)

Theorem 69. We have the commutative diagram:

These maps are equivariant with respect to DerO and AutO.

9.10. Global identifications

Proposition 70. We have an isomorphism of sheaves on P
1,

−ρ̌Conn(U) ∼= MOpg(U),

given by

χ(t) �→ d + (p−1 − χ(t))dt.

Proof. This follows from (67) and (86). �

In particular,
−ρ̌Conn(P1)x ∼= MOpg(P

1)x.

Thus, given χ ∈ −ρ̌Conn(P1)x, we have the corresponding Miura oper ∇ = d + (p−1 −
χ(z))dz and its underlying oper [∇] ∈ Opg(P1)x. The affine connection ∇(aff)

χ is manifestly
the affine connection defined by [∇], cf. Section 8.1 and Theorem 63.

Proposition 71. The cohomology classes [Fχ(vjdt
j+1)] ∈ H1(P1,Ωj ,∇(aff)

χ )x are the
classes of the functions appearing in (any) quasi-canonical form of the oper [∇]:

[Fχ(vjdt
j)] = [vj(t)dtj ].
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Proof. The affine connection ∇(aff)
χ gives an affine structure on P

1 \ x, that is, an atlas of
local charts t : U → C where each local holomorphic coordinate t is such that dt is constant
for ∇(aff)

χ . It is enough to show that the statement holds in such a chart. But in such a chart
the statement reduces to a standard statement about densities of g-mKdV Hamiltonians.

Indeed, in such a chart the component of the connection ∇(aff)
χ is vanishing: ϕ(t) = 0.

Hence, given Remark 59, Fχ(δ−nv) vanishes too, for all v ∈ π0. But that means Fχ descends
to a well-defined map from the quotient by such modes, and this quotient is what we called
(fin)π0 above, cf. (34). So in this coordinate the Fχ(vj) are precisely the densities of integrals
of motion of Affine Toda field theory or equivalently (see [17]) the densities of integrals of
motion of g-mKdV. On the oper side, the fact that ϕ(t) = 0 means we are effectively working
with opers for the derived subalgebra g′ = [g, g]. This is the setting of [12, Section 6]. It is
shown there (in Proposition 6.11) that the functions in the quasi-canonical form of such opers
are these same densities. (In [12], what we are calling the quasi-canonical form of the affine
oper appears in Proposition 6.2, and the Miura form appears in Lemma 6.7.) �
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