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Abstract: The identification of printed materials is a critical and challenging issue for security
purposes, especially when it comes to documents such as banknotes, tickets, or rare collectable
cards: eligible targets for ad hoc forgery. State-of-the-art methods require expensive and specific
industrial equipment, while a low-cost, fast, and reliable solution for document identification is
increasingly needed in many contexts. This paper presents a method to generate a robust fingerprint,
by the extraction of translucent patterns from paper sheets, and exploiting the peculiarities of binary
pattern descriptors. A final descriptor is generated by employing a block-based solution followed
by principal component analysis (PCA), to reduce the overall data to be processed. To validate the
robustness of the proposed method, a novel dataset was created and recognition tests were performed
under both ideal and noisy conditions.

Keywords: document identification; binary pattern; texture fingerprint

1. Introduction and Related Works

The manufacturing process needed to produce common paper sheets involves the use
of wood particles with subsequent application of other compounds. The intrinsic random
imperfections generated make the sheet almost unique, and under certain conditions it
is possible to extract a proper fingerprint. The massive demand of robust identification
methods in many contexts [1–6], makes fingerprint extraction from a sheet of paper an
attractive and challenging research topic. Investigative scenarios in the forensic field [7,8],
could gain several advantages from the availability of such a fingerprint.

Although several techniques have been proposed, most of them require expensive
industrial devices [9,10], which are not commonly affordable. Taking inspiration from the
use of wood fiber patterns for fingerprint extraction [11], the main objective of this work
is the design of a cheaper solution able to extract a robust fingerprint. Please note that in
contrast with a biometric system [12] the main interest is in finding a robust strategy to
recognize a specific paper sheet by matching it with a previously acquired version of itself.
Local Binary Pattern (LBP) [13] and its variants [14] have been employed under different
conditions and global experimental settings, clearly outperforming the results obtained
by Guarnera et al. [15] in terms of efficiency and effectiveness. It is worth noting that
since in ideal conditions the paper texture is unique, any sufficiently descriptive image-
processing approach should perform with good results in terms of accuracy. This led us to
further investigate the problem by performing tests on papers where some degradation
was synthetically applied (e.g., stain, crop, etc.) simulating real case scenarios where part
of the original information is totally or partially missing.
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However, the identification of a document for legal purposes, employed to detect
counterfeiting and piracy, is usually done through the use of different techniques [7]. The
interest in anti-counterfeiting measures, based on the fingerprints left on the surface of
the paper without any specific embedding requirement, is the core of the present study.
Other techniques are based on security patterns or on properly generated features that are
hidden in the substrate material or masked by special ink properties. Such identification
strategies are widely used, but typically require an additional pattern to be added, and
are also expensive and hard to generalize for all cases (e.g., legal documents, banknotes,
etc.). By contrast, strategies that directly analyze the physical properties of the material by
not adding any signal, as in the case of common active methods (e.g., watermarking) are
highlighted in this paper. The underlying hypothesis for the development of a fingerprint
extraction technique is the existence of low-cost physically unclonable functions (PUFs) to
generate an intrinsic random physical feature for paper identification with the following
two properties:

• fast and deterministic processing to obtain a response;
• the return of a unique response for the same request.

The response must be unpredictable, even for an attacker with physical access to the
object, by operating as a sort of random function. The paper surface presents an inherently
unique structure, as it consists of overlapping and inter-twisted wood fibers. Hence, the
imperfections of a paper sheet caused by the manufacturing process can be exploited to
uniquely identify such sheet. The use of a fingerprinting technique for document identifi-
cation was proposed for the first time by Buchanan et al. [16]. It has been proven that is
extremely unlikely that two document surfaces created with the same raw materials will
be identical, although they will present some similarities. This fingerprint makes forgery
unfeasible, given that it is unique and virtually impossible to modify. To extract a finger-
print from the paper structure, the authors in [16] employed laser irradiation from four
different angles and acquired the reflected energy. Inspired by Buchanan et al., the authors
in [17] proposed an improvement based on correlation metrics between the acquired energy
signals. Cowburn introduced the use of laser speckle for product identification ([18,19]).
Clarkson et al. [20] proposed the extraction of 3D paper structure by scanning different
orientations and employing a Voronoi distribution to build the fingerprint. Samsul et al. [9]
proposed a fingerprint extraction method, which exploits CCD sensors and laser speckle,
to employ the visible pattern of bright and dark spots generated by interference of two or
more light beams with different phases. A similar approach has been proposed by Sharma
et al. [10]. In contrast to [9], they employed a microscope to acquire the speckle pattern. In
recent years, CNN-based methods have achieved great performance in image recognition
and classification, but have high complexity and require GPUs to perform training.

The aforementioned approaches work well for paper fingerprint extraction, but they
require industrial and specific equipment. Recently, this limitation was overcome by the
works of Toreini et al. [11] and Wong et al. [21]. In [21] the authors proposed a strategy
to extract paper surface imperfections by exploiting multiple shots taken by a mobile
camera under semi-controlled light conditions; subsequently, they investigated selected
candidates through ad hoc mathematical models for each camera-captured image [22].
Unlike previous works, Toreini et al. [11] did not detect surface imperfections, but captured
the random arrangement of the wood fibers within the paper sheet. To extract the paper
pattern, they exploited a consumer camera and a backlit surface. However, they printed a
bounding box on the analyzed paper to simplify the automatic texture registration. Since in
real scenarios this registration strategy is not applicable, a different acquisition framework
is needed. Based on the same filter of [11], Chen et al. in [23] exploited the microscopic
features of wood fibers to obtain similar patterns, using expensive equipment based on
double cameras. As already demonstrated in [24], the random disposition of wood fibers on
paper sheets makes possible the construction of a fingerprint virtually impossible to tamper
with; hence, given the limits of the previous works in terms of costs, acquisition constraints,
and robustness, in [15] the authors presented a novel fingerprint extraction strategy using
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specific low-cost image-acquisition equipment and a simpler and faster method based
on local binary patterns. In this paper, further experiments on LBP variants are carried
out, such as Local Ternary Pattern (LTP) [25], Statistical Binary Pattern (SBP) [26] and
Complete modeling of Local Binary Pattern (CLBP) [27] to find the most descriptive binary
pattern for fingerprint identification and tampering to achieve a more robust solution.
In contrast to [9,10,16–20,23], the present work proposes a fingerprint extraction method
that does not require expensive industrial equipment (e.g., laser, microscopes), but solely
cheaper devices such as an RGB camera, as it is based on wood fiber translucent patterns.
Additionally, the proposed approach overcomes a method based on translucent patterns
such as the one by [11]; in fact, LBP descriptors used in [15] have already been proved to
outperform Gabor filters employed in [11] in terms of effectiveness and efficiency. Since
the intrinsic advantages of [15] over [11] were confirmed in previous research, we compare
the proposed approach only with [15] and not with [11].

The main contributions of this paper can be summarized as follows:

1. a new fingerprint extraction method, based on LBP variants, which outperforms
existing approaches in the field;

2. an optimization of a BP-based fingerprint that employs block subdivision and Princi-
pal Component Analysis (PCA);

3. a new public dataset that includes images acquired with both low-cost and high-
end devices, showing wood fiber patterns, which is the one available to the best of
our knowledge;

The remainder of this paper is organized as follows. The next section is devoted
to briefly summarizing the state of the art in the field. Section 2 details the proposed
fingerprinting extraction strategy; Section 3 describes the acquisition procedure of image
data and the overall organization of the employed dataset; in Section 4, experimental
results are reported together with a deep analysis on the results obtained by the proposed
approach. Conclusions are reported in Section 6.

2. Fingerprint Extraction Process

Illuminating the surface to highlight the wood fibers is mandatory to properly extract
the pseudo-random pattern which is unique for each sheet of paper. However, such
patterns must be digitalized and properly modeled mathematically to implement a robust
document identification system, which is the goal of this paper. Given a certain physical
paper document di, the aim of this work is to obtain a digital fingerprint Fi, namely a
sequence of K ordered values { f (1)i , f (2)i , ..., f (K)i }, which is solely determined by correctly
processing the digital image si, which is the acquisition of the document di. The overall
proposed pipeline is summarized in Figure 1.

𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖 𝑠𝑠𝑖𝑖

𝑥𝑥𝑖𝑖 𝑃𝑃𝑗𝑗(xi)

.. .. .. .. ..

ℎ𝑗𝑗,𝑖𝑖

ℎ1,𝑖𝑖 ℎ2,𝑖𝑖 ℎ𝑗𝑗,𝑖𝑖

𝐹𝐹𝑖𝑖

Image acquisition and registration

Fingerprint extraction

Figure 1. Overall pipeline of the proposed framework. First row describes the process to acquire
documents; second row shows the fingerprint extraction process.
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2.1. Document Digitization and Image Registration Considerations

The physical set of N documents D = {d1, d2, ...dN} was acquired using devices that
are able to capture the wood fiber pattern by exploiting the translucent properties of the
paper. In this work, two different acquisition environments were employed to compare
the performance of low-end and high-end equipment. Details about devices and related
settings are provided in Section 3. The acquisition of a physical document di was carried out
in a semi-constrained environment; specifically, the documents must be roughly aligned
regarding the capturing device to guarantee an effective consequent registration. For the
sake of readability, the set of the digitized versions of the documents D = {d1, d2, ...dN}
can be defined as S = {s1, s2, ...sN} .

To successfully analyze the wood fiber pattern of a document di, the related digital
image si must be registered. This step is critical as the paper fingerprint strongly depends on
spatial information; hence, one must ensure that if a given document is acquired multiple
times under the same setup, the system will process exactly the same region of the paper
surface. To this aim, reference points were exploited (e.g., black bands in the acquired
image) to rotate and properly crop si (see Section 2.2 for more details). After registration,
a W × H sample from each document si was obtained, defined ad xi, and the related set
X = {x1, x2, ..., xN} was employed to build the fingerprint.

2.2. Extracting a Unique Fingerprint

The extraction of a unique fingerprint from a sample xi is the process that encodes the
texture information in such a way as to satisfy the following properties: (i) low complexity;
(ii) encoding capabilities; (iii) robustness with respect to the missing parts. To this aim,
the LBP descriptor and its variants [14] are employed, which are demonstrated to satisfy
all the aforementioned requirements. These descriptors guarantee high capabilities in
terms of discriminative power by maintaining low computational complexity and working
almost perfectly even in the presence of slight variations on textures. In particular, LBP is
a local descriptor that compares a pixel, called a pivot, to its n neighbors along the circle
defined by a certain radius r [13]. In recent years the use of LBP for texture classification
has grown, and a wide set of LBP variants has been proposed [14]. Hence, the so-called
f -BP variant has the goal to improve the accuracy and the robustness for a specific task.
The well-known local property makes the f -BP a flexible descriptor even in the presence
of small perturbations, which is the fundamental requirement of the fingerprint we are
looking for. Regardless of the f -BP, after pattern extractions the final descriptor is obtained
by counting the times each pattern occurs, namely by computing a histogram.

Histograms are compact and effective descriptors for a various number of tasks;
nevertheless, they heavily discard spatial information. To face this issue, xi is first divided
in M non-overlapping p× p patches and the histogram is separately calculated for each
patch Pj(xi) with j = {1, 2, ....., M}; hence the histogram hi,j represents the histogram of the
j patch of the sample xi. The importance of spatiality is easily guessed: if the document
presents some types of fault (e.g., missing parts, tears, holes, noise) it is important they
do not affect the whole fingerprint, but just a portion. For this reason, the choice of the
patch size p and the hyperparameters θ f of the employed f -BP variant (e.g., the number of
neighbors n and the radius r) have consequences on the performance. The size T of the
histogram depends on the number of possible patterns the f -BP variant led. For example,
if one employs classical LBP with n = 8 and r = 1 the number of possible patterns, and
the histogram size T, is 256. As far as the patch size p is concerned, large patches decrease
spatial information while small patches make the BP excessively local and increase the
complexity of the obtained fingerprint.

The final fingerprint Fi for document di can be obtained by concatenating all the
histograms hj,i for j = 1, 2, ..., M:

Fi =
M⊕

j=1

hj,i (1)
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The size K of Fi is K = M× T, as M patches are obtained from M histograms of size
T. The goal of this study is to test different f -BP variants and look for the parameters
{W, H, p, θ f } which led to the most robust fingerprint.

3. Datasets for Document Identification and Fingerprint Testing

To evaluate the proposed approach and provide a great contribution to this research
field, a new dataset is introduced, which is composed by 200 A4 paper sheets arranged
in groups of 40 and divided into 5 non-overlapping classes. Each class is defined by two
attributes: the manufacturer of the paper b ∈ {b1, b2, b3, b4} and the weight or grammage
(measured in g/m2) g ∈ {80, 160, 200}. Thus, the obtained classes are the following:
(b1, 80), (b2, 80), (b3, 80), (b4, 160), (b4, 200).

All the 200 documents in D were then acquired multiple times using two different
devices as described in Figure 2 and detailed in the next subsections. The dataset will be
made available online after this paper is accepted and a download link will be placed in
this section.

(a) Video Spectral Comparator 6000 (b) Backlight Imaging Tool

Figure 2. Devices employed for acquisitions.

3.1. Devices

To compare the performances obtainable with high-end and low-end equipment, each
document is digitized using two different devices. For the high-end case the Video Spectral
Comparator 6000 (VSC) was employed while for the low-end one we used the Backlight
Imaging Tool (BIT): a cheap overhead projector combined with a digital camera that we
accurately designed.

The VSC consists of a main unit (Figure 2b) connected to a standard workstation. It
provides several functionalities and a set of different light sources to highlight paper details
normally not visible in standard conditions. Table 1 shows VSC acquisition settings.

The BIT consists of an overhead projector which serves as source light and a consumer
RGB camera hung on the projector arm. The employed camera is a Nikon D3300 equipped
with a Nikon DX VR 15 mm–55 mm 1: 3.5–5.6 GII lens. Settings details are listed in Table 2.

Table 1. VSC Settings.

Light Longpass Mag Exposure Brightness

Transmitted VIS 2.18 Auto 60
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Table 2. BIT Settings.

Acquisition
Exposure

Opening/ISO/VR
Exposure White

Time Compensation Balance

RAW + JPEG 1/25 F29/100/ON −5.0 Incandescence

3.2. Dataset Acquisition

For the sake of clarity, the terms SVSC and SBIT will be employed for referring to
the digital acquisitions made by the VSC and the BIT respectively. The overall dataset
acquisition pipeline is depicted in Figure 1. As expected, SVSC and SBIT show different
contrast and sharpness.

SVSC consists of 200 documents acquired twice, for a total of 400 acquisitions (Table 3).
The result of a single acquisition is a bitmap image of 1292× 978 pixels and 300 dot per
inch (dpi), as reported in Figure 3a. SBIT consists of 200 documents acquired 8 times.
However, the insufficient power of light in the BIT does not allow the extraction of the
translucent pattern from paper with grammage 160 or 200. Thus, only the 120 documents
with grammage 80 were considered for a total of 960 acquisitions with a resolution of
6000× 4000 pixels and 300 dpi (Table 3). Figure 4a shows a raw acquisition, where the
black bands, used for image registration, are visible.

(a) Before registration (b) After registration

Figure 3. Document acquisition with VSC before registration (a) and after registration (b).

(a) Before registration (b) After registration

Figure 4. Document acquisition with BIT before (a) and after registration (b).

3.3. Image Registration

The acquisition of the black bands outside the paper area surface was voluntarily
performed to distinguish selectively the pixels from the external area and easily obtain
a registered set of images. All the raw images in SVSC and SBIT were converted into
grayscale. First, a luminance threshold is used to find the top-left corner (y0, y1) of the
sheet of paper. Secondly, the image anchored in position (y0 + u, y1 + u) is cropped,
where u is the minimum offset to perform a cropping by excluding the external area.
The value of u is variable: the larger the external area acquired is, the greater will be its
value. Images acquired by means of the VSC are cropped into patches of 400× 400, while
the ones acquired with the BIT are cropped into patches of 5000× 1000 pixels. Finally,
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one obtained XVSC, the set of 400 registered samples from VSC and XBIT , the set of 960
registered samples from BIT. Source examples are shown in Figures 3b and 4b.

Table 3. Dataset Table.

VSC BIT

CLASS ACQUISITIONS ACQUISITIONS

{e,80} 2 8

{f,80} 2 8

{u,80} 2 8

{m,160} 2 -

{m,200} 2 -

DEVICE IMG 10× 40 = 400 24× 40 = 960

4. Experiments and Discussion

To evaluate the proposed fingerprint extraction approach in depth, analysis of the
datasets described in Section 3 were performed in terms of recognition tests. Since each
document was acquired multiple times (i.e., twice for the VSC and 8 times for the BIT), a
fingerprint reference dataset was built to face the recognition task; such reference datasets
consist of only one sample per document while the rest of the samples were used for
querying it. A certain document d with extracted fingerprint Fa will have a correct match
with the closest element in the reference dataset Fb, if both Fa and Fb “belong” to the
document d; in other words, a correct match occurs if sa and sb are different acquisitions
of the same document. The recognition test performances are measured using the well-
known accuracy metric defined as the rate of queries, which obtain a correct match. The
adopted similarity measure for fingerprints was the Bhattacharyya distance [28], which is
typically and effectively employed for problems where probability distribution must be
compared. However, to better assess the effectiveness of the proposed fingerprint, four
different recognition experiments are performed as detailed in the following. First, the
original LBP was employed to compare the recognition accuracy on both datasets (VSC
and BIT) obtaining the demonstration of device invariance. Given this result, a comparison
was performed only on the BIT dataset employing LBP fingerprints computed as in [15]
vs. the three other LBP variants, i.e., LTP [25], SBP [26] and CLBP [27]. Moreover, also the
fingerprint robustness was investigated. To this aim, a challenging scenario was created
where the query samples were intentionally altered by removing some pixels from the
digital image to simulate physical damage of the paper (e.g., tears, holes). Finally, an
optimization in terms of fingerprint dimensions was carried out and tested as well by
exploiting principal component analysis (PCA) [29].

4.1. Dataset Comparison

To demonstrate the goodness of the LBP-based fingerprint extraction method, we
started from the work of Guarnera et al. [15], our previous work, which represents the state
of the art. Table 4 shows the overall accuracy obtained in the recognition tests performed
on both datasets: 96.5% and 99.2% for VSC and BIT, respectively. Although samples from
different datasets have different patch sizes, the best for both datasets was 100× 100. This
is a reasonable trade-off to preserve local spatial information. The accuracy on the BIT
dataset is slightly higher than the accuracy obtained on the VSC. This demonstrates that
the robustness of the fingerprint does not depend on the acquisition settings nor device.
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Table 4. Best configuration parameters and accuracy of recognition test in VSC and BIT datasets.

Dataset Patch Size
Number of

Radius LBP Type Accuracy
Neighbors

VSC 100 32 42 uniform 96.5%

BIT 100 24 12 default 99.2%

4.2. Comparisons among LBP Variants

As introduced in Section 2, many LBP variants were proposed for texture analysis.
Among them, LTP [25], SBP [26] and CLBP [27] were selected for the experiments described
in this section. In the previous section, the independence of the proposed fingerprint
from the acquisition device was demonstrated. Starting from this evidence, in the next
experiments, only the BIT dataset will be employed given the higher number of available
samples. The results in terms of accuracy are reported in Table 5 where CLBP and SBP
show an improvement in terms of performance vs. LBP, by achieving an accuracy of 99.7%
and 99.4%, respectively. It is worth noting that LBP is the employed method of [15] to
extract the fingerprint, so the aforementioned results represent the overperformance with
respect to the state of the art. As described in the literature, LTP tends to work better
than LBP when the texture presents regions that are uniform (i.e., low variance). It is
worth noting that the wood fiber patterns show a high variance, thus explaining the worse
results of such descriptor. SBP, which is a generalization of the common binary pattern, as
expected, obtains accuracy results of (99.4%) that are slightly better than LBP. Finally, the
best performance was obtained by CLBP (99.7%) even if it delivers the largest fingerprint
in terms of histogram dimensions (number of bins).

Table 5. Recognition test accuracy of the test carried out in BIT dataset employing LTP, SBP and CLBP.

LTP CLBP SBP

Accuracy 90.83% 99.7% 99.4%

4.3. Tests on Noisy Environment: Synthetically Altered Documents Are Introduced

The proposed method for fingerprint extraction was tested under controlled conditions
to properly assess what was expected to happen in real cases, namely when a document
experienced some alteration between the first fingerprint extraction and the successive
ones. Hence, the original fingerprint of the document may be very dissimilar from the
latter one. To this aim, two types of damages on paper were simulated: tears and stain.
The “tear” simulates a loss of information which starts from one angle of a sheet sample xi
by replacing such loss with black pixels, while the “stain” introduces random black blocks
on the sample to simulate holes or stains. For both, the so-called degree represents the
size of black area: the maximum degree corresponds to about 75% of the full sample to be
removed (see Figures 5 and 6). Given the aforementioned alterations, a new recognition
test on the BIT dataset was carried out, which includes 120 samples without any alterations
on the fingerprint database and other 960 samples with alterations that were used to query
the database. The results are reported in Figures 7 and 8 further proving the robustness of
the proposed fingerprint, specifically the CLBP-based one which achieves best performance
once more.

(a) Degree 1. (b) Degree 11.

Figure 5. Examples of altered documents with simulations of tear damage; in particular (a) represents
the first degree of damage while (b) the last (e.g., 11).



J. Imaging 2021, 7, 126 9 of 14

(a) Degree 1. (b) Degree 11.

Figure 6. Examples of altered documents with simulations of stain damage; in particular (a) repre-
sents the first degree of damage while (b) the last (e.g., 11).

Figure 7. Accuracy employing CLB and LBP VS degrees of tear alteration.

Figure 8. Accuracy of CLB and LBP VS degrees of stain alteration.

4.4. Fingerprint Dimensions Optimization

All the tests described in the previous sections were performed employing the pipeline
described in Figure 1 with the following settings: images were cropped into patches of
100× 100 pixels; number of neighbors for CLBP were n = 12 and radius was r = 6. These
settings brought to 500 patches from the BIT dataset; thus, a histogram of 8194 elements
was computed for each patch. This results in a fingerprint with dimension of
500 × 8194 = 4,097,000 elements whose storage occupancy is about 8.3 MB. Since the
fingerprint with the proposed method could be even larger depending on parameters
and since large fingerprints decrease efficiency, some optimization strategies to reduce it
were explored.

The simplest strategy to reduce the fingerprint size was the increment of the patch
size p; however, this could not guarantee the same accuracy performance. Table 6 shows
the results obtained using larger values of p while monitoring the fingerprint size. The
analysis of the results showed that the setting with p = 200 presents a performance similar
to p = 100 (i.e., only a drop of 0.4% of accuracy) reducing the size by 25%, from 4,097,000
to 1,024,250 elements, that can be stored in 2.2 MB. However, as stated in the previous
sections, employing bigger patches does not preserve spatial information and actually
shows a tremendous accuracy drop (e.g., 67.6% for p = 500).
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Table 6. Accuracy and size of CLBP fingerprints to vary of patch size.

Patch Size Number of Bin Accuracy Storage Occupancy (MB)

100 4,097,000 99.7% 8

200 1,024,250 99.3% 2.2

250 655,520 97.9% 1.5

500 163,880 67.6% 0.4

To optimize the size of the fingerprint preventing a large loss in terms of accuracy, we
employed the Principal Component Analysis (PCA) [29]. As we know, PCA reduces the
dimensions by projecting each data point onto only some of the principal components to
obtain lower-dimensional data while preserving most of the data variance; in a nutshell,
it reduces the dimensions by preserving most of the information, which better describes
a certain phenomenon. PCA is applied to each histogram hj,i previously obtained using
CLPB. Hence, such histograms are drastically reduced in terms of dimensions. First, for
testing purposes, all the 120 samples included in the fingerprint database are used to fit
the PCA model. By employing the well-known explained variance analysis, we found
that 95% of the information can be preserved using the first 32 principal components
(also known as features), despite the original 8194. However, PCA moves histograms in
a geometric space where the Bhattacharyya distance becomes less efficient; to face this
problem, the recognition test was performed by means of the Euclidean distance. To verify
the quality of reduction, the same recognition tests, as described in the previous sections,
were carried out with the now-reduced fingerprints, delivering an accuracy of 97.97%
with only 16,000 elements while maintaining the excellent performance of the not-reduced
fingerprints case. It is worth noting that the PCA model was built using all the samples of
each of the 120 documents in BIT. This could generate a PCA model overfitted on the data.
Thus, a further test was performed using only the 50% of the dataset (60 documents) to fit
the PCA model, while and we queried the reference dataset with the samples which come
from the remaining 50%. In this case, it was found that 95% of information can be preserved
using the first 40 principal components for each patch. recognition tests confirmed the
results obtained with the PCA model built on all the 120 documents (97.97% of accuracy).
It is important to note that although in the fingerprint comparison we also consider the
missing parts when an alteration occurs, this does not heavily affect the Bhattacharyya
distance between two fingerprints. On the contrary, the Euclidean distance is affected
by this. In fact, the Euclidean distance calculated between an unaltered fingerprint of
a document and an altered fingerprint of the same document exhibits extremely higher
values, which impacts on the accuracy performance. To overcome this latter problem, a
custom Euclidean distance was employed, where only a part of the fingerprint elements
is considered in distance computation. Specifically, the differences between each element
of the two fingerprints is computed and, subsequently, we sorted those differences by
considering only a certain percentage of the lower ones. This percentage depends on the
dimensions of the missing part, but this information is known by the operator during the
identification phase, because in a real document the altered parts are visible. Figure 9a,b
report the accuracy (vertical axis) when varying the percentage of elements included in
distance computation (horizontal axis). The obtained results also suggest how to maintain
a high accuracy according to the alteration degree. For example, in an average scenario of
damage (orange lines) the 50% of distance is needed to maintain the accuracy over the 99%.
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(a) Tear damage. (b) Stain damage

Figure 9. Accuracy variability of different percentiles on tear (a) and stain (b) damages.

5. Fingerprint Robustness Analysis

The carried-out recognition tests started from the hypothesis that every query finger-
print Fq could find a correspondent fingerprint Fx into fingerprints database previously
extracted from the same document and stored. A real case scenario could present some
differences: the query fingerprint Fq could not find a correspondent Fx and then the nearest
one has no meaning (it is the most similar but it is a fingerprint extracted from another
document). Hence, additional information is needed: given the distance ē between two
samples. To solve this problem, ē was analyzed in all the previously presented experiments;
in particular, starting from the fingerprints extracted by the images acquired with BIT
device (e.g., 960), the distances obtained in the tests without simulated damages employing
CLBP and LBP were analyzed, considering three kinds of distances:

• ē0: distance obtained between Fq and Fx, both extracted from the same document,
when Fx is the closest fingerprint in the recognition test.

• ē1: distance obtained between Fq and Fx, both extracted from the same document,
when Fx is not the closest fingerprint in the recognition test.

• ēnull : distance obtained between Fq and Fx, extracted from different documents.

Given 840 different Fq, 120 distances have been computed for each of them. For every
Fq analyzed, two results were obtained:

• the closest fingerprint Fx is extracted from the same document of Fq, and then the
distance between them is classified as ē0 and the others 119 distances are classified
as ēnull .

• the closest fingerprint Fx is not extracted from the same document of Fq, and then the
distance between them is classified as ē1 and the others 119 distances are classified
as ēnull .

It is easy to figure out that the population of ēnull is much bigger than ē0 and ē1, whose
sum is exactly 840.

Figures 10a,b represent the plot of distances ē0, ē1, ēnull in both tests (LBP and CLBP).
The plots have been cut because the populations are unbalanced and because the focus of
the analysis is on the intersections of the two curves. In those plots it is possible to detect
two Gaussians almost fully separated. The intersection between them (the tail of green
Gaussian, delimited by orange and blue lines) represents an uncertainty zone. It is worth
noting that the position of ē1 in both cases (LBP and CLBP) is within this zone that confirms
the meaning of distance: lower will be the distance with the nearest fingerprint and greater
will be the possibility that the fingerprints are extracted from the same document. Naturally,
the concept of low/great depends on the descriptor employed; in the forensics domain
it is important the measure of the degree of uncertainty whenever it is available. The
percentage of uncertainty zone z and the percentage r of ē0 inside it gives a further degree
of confidence and it is variable for each descriptor. Given a descriptor the couple (z,r) can
be employed to describe the robustness of it. CLBP has the ē0 range between 0.286 and
0.338 and uncertainty zone between 0.331 and 0.338 and then z = 13.46%, while r = 2.62%
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due to 22 ē0 inside uncertainty zone on 837 total; LBP has z = 13.56% and r = 4.92%.
Table 7 shows the analysis for every binary pattern tested.

(a) Tear damage. (b) Stain damage
Figure 10. Accuracy variability of different percentiles on tear (a) and stain (b) damages. For both
the plots x-axis represents the values of the distances obtained and y-axis the number of occurrences.
ēnull , ē0 and ē1 are represented by gray, green and red respectively.

Table 7. Percentage of uncertainty zone (z) and percentage of ē0 inside it (r) for each analyzed
descriptor.

Descriptor z r

LBP 13.93 % 4.91 %
CLBP 13.32 % 2.62 %
SBP 15.72 % 3.13 %
LTP 91.38 % 91.05 %

Moreover, a cross-dataset analysis has been conducted to understand if there is a
correlation between input and descriptor efficiency. The textures with the distance within
z have been analyzed: CLBP has 22 distance on 837 while LBP 41 on 835. 13 are shared
while others are close to z meaning that bad texture (in terms of acquisition) will have a
bad distances (close or within z), independently from the descriptor.

6. Conclusions

In this paper, a novel approach for document identification was proposed. The
method employs variants of binary pattern descriptors (e.g., LBP, LTP, SBP, CLBP) to obtain
a proper fingerprint to uniquely recognize the input document, but at the same time, be
easily manageable. For this reason, an additional analysis was conducted to optimize the
fingerprint in terms of dimensions; it was based on PCA which has confirmed almost the
same degree of confidence, reducing the fingerprint size to less than 1/100 of the original.
To demonstrate the robustness of the method, the dataset was expanded by including more
noisy samples, demonstrating the value of the proposed technique in real case scenarios
and better results with respect to the state of the art. Finally, a further analysis on the
meaning of distances was conducted, to generalize the recognition test.
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