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ABSTRACT
We demonstrate the use of Haralick features for the automated classification of radio galaxies. The set of thirteen Haralick
features represent an extremely compact non-parametric representation of image texture, and are calculated directly from
imagery using the Grey Level Co-occurrence Matrix (GLCM). The GLCM is an encoding of the relationship between the
intensity of neighbouring pixels in an image. Using 10 000 sources detected in the first data release of the LOFAR Two-metre
Sky Survey (LoTSS), we demonstrate that Haralick features are highly efficient, rotationally invariant descriptors of radio galaxy
morphology. After calculating Haralick features for LoTSS sources, we employ the fast density-based hierarchical clustering
algorithm HDBSCAN to group radio sources into a sequence of morphological classes, illustrating a simple methodology to
classify and label new, unseen galaxies in large samples. By adopting a ‘soft’ clustering approach, we can assign each galaxy a
probability of belonging to a given cluster, allowing for more flexibility in the selection of galaxies according to combinations of
morphological characteristics and for easily identifying outliers: those objects with a low probability of belonging to any cluster
in the Haralick space. Although our demonstration focuses on radio galaxies, Haralick features can be calculated for any image,
making this approach also relevant to large optical imaging galaxy surveys.

Key words: methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

We are entering the era of ‘big’ observational astronomy, with
surveys such as the Dark Energy Survey (DES; Abbott et al. 2016),
Vera Rubin Observatory Legacy Survey of Space and Time (LSST;
Ivezić et al. 2008), Euclid (Laureijs et al. 2010), Australian Square
Kilometer Array Pathfinder (ASKAP) (DeBoer et al. 2009). In these
large surveys, simply curating the data volume becomes a significant
challenge and interesting scientific question in its own right. For
example, in the radio, the Square Kilometer Array (SKA; Schilizzi,
Dewdney & Lazio 2010) will be the largest big data project in the
world, producing 1000 petabytes of data each day and about 5
zettabytes of data per year (Farnes et al. 2018). Like all the large
surveys of present and future, within the vast data sets lie new
parameter spaces and new discoveries to be made.

Machine learning is becoming an important statistical tool for
astronomers seeking to efficiently analyse and derive meaning
from massive data sets, with ‘unsupervised’ methods in particular
showing promise in various applications, particularly in automatic
classification, including the separation of starbursts from active
galactic nuclei (Geach 2012), optical morphology (Hocking et al.
2018; Martin et al. 2020), variable stars (Armstrong et al. 2015;
Valenzuela & Pichara 2017), and light curves (Aguirre, Pichara &
Becker 2018). Other key applications are in parameter estimation
(e.g. redshifts; Geach 2012), anomaly and outlier detection (Baron
& Poznanski 2016; Pruzhinskaya et al. 2019). Although not without
limitations, unsupervised techniques are attractive for astronomical
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data exploration because they do not require labelled training sets,
unlike, for example, neural network-based classification approaches
(e.g. Bailer-Jones, Irwin & Von Hippel 1998; Ball et al. 2004).
Instead, unsupervised techniques generally rely on the data itself
to identify patterns (e.g. clusters of self-similar objects) in some
pre-defined ‘feature space’ that describes the n-dimensional volume
where the data are defined. At a simple level, this could just represent
a vector of observations (e.g. photometry across a set of filters), but
often it is desirable to project the data into another space, and that
choice is a human one.

In astronomy the two main types of data usually encountered
are catalogues (e.g. Bertin & Arnouts 1996), and imaging. Working
with catalogues is efficient, since they are a significantly reduced
representation of the original data; for example in many astronomical
images the majority of the pixels do not contain useful signal (at least
not at first glance). On the other hand, working with the imaging data
directly is preferred in some cases, since certain information is not
easily captured, or completely missing from catalogues. An example
of this is in morphological classification of galaxies. Although there
are various simple parametric measures of morphology based on
the distribution of pixel brightness (e.g. Gini, M20, Lotz, Primack
& Madau 2004; CAS, Conselice et al. 2013), unsupervised machine
learning offers opportunities to extract more fine detail – and perform
automatic classification – directly from imaging data.

For example, Uzeirbegovic, Geach & Kaviraj (2020) use Principal
Component Analysis (PCA) to project Hubble Space Telescope
thumbnail images of high redshift galaxies into a 12-dimensional
space where galaxies are represented as weighted combinations of
‘eigengalaxies’. The authors show how the set of weights for each
galaxy can be clustered to produce meaningful morphological classi-
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fications that ultimately required no human intervention to partition.
In another example, Hocking et al. (2018) and Martin et al. (2020)
present an approach that uses a hierarchical clustering technique
to group together small image patches into self-similar clusters,
representing each image patch as a vector containing the Fourier
transform of each patch to represent the spatial frequency distribution
of pixel brightness in several optical bands. The clustering resulted in
a set of visually pure morphological classes, with properties that can
be linked directly with crowd sourced (i.e. human) classifications
from the Galaxy Zoo project (Fortson et al. 2011), illustrating
the power and potential of unsupervised techniques in producing
interpretable morphological classifications directly from imaging
data. This is important because even with mega crowd sourcing, it is
unlikely that a large cohort of citizen scientists (Bonney et al. 2009)
will be able to classify the billions of objects to be detected by the
likes of LSST, Euclid, and SKA. Carbon footprint aside, machines
are inexhaustible and consistent.

Classification of galaxy morphology has been performed over
the years using a wide variety of techniques of increasing sophis-
tication. Traditionally visual inspection of galaxies in the optical
was carried out using Hubble’s classification scheme (Hubble 1926;
de Vaucouleurs 1957). For clusters of galaxies, the Bautz–Morgan
(BM) system was developed (McHardy & Riley 1974) to classify
the morphology of clusters according to the difference in apparent
magnitude between the brightest and next brightest members of the
cluster. In the radio, Fanaroff & Riley (1974) introduced the famous
Fanaroff–Riley classification scheme that divides radio galaxies into
two classes based on the relative brightness distribution of within
the radio lobes and jets. Fundamentally, these early classification
techniques across the electromagnetic spectrum were based on the
relative distribution of pixel (or photographic plate exposure) bright-
ness, with human beings ultimately performing the classification.

As astronomy became increasingly data driven over the twentieth
century, automated morphological classifications using machine
learning were introduced. Artificial neural networks were trained
to classify galaxies based on their morphology from the early 1990s
(Storrie-Lombardi et al. 1992; Naim et al. 1995; Lahav et al. 1996).
Since then an increasing number of studies have applied machine
learning for the classification of radio galaxy morphologies including
the use of Self-Organized Maps (Galvin et al. 2019; Ralph et al. 2019;
Mostert et al. 2021) and Convolutional Neural Networks (Aniyan &
Thorat 2017; Wu et al. 2018; Ma et al. 2019). More recently, ‘capsule
networks’ have also been used for the morphological classification of
radio galaxies (Katebi et al. 2019; Lukic et al. 2019). In this work, we
contribute to the effort of seeking more efficient means of automati-
cally classifiying and mining large imaging data sets in the radio using
‘Haralick’ features (Haralick, Shanmugan & Dinstein 1973), which
provide a compact representation of image texture. Although a well-
established tool in computer vision, Haralick features have not yet
been widely exploited in radio astronomy (although see Bazell 2000).

The paper is organized as follows: an introduction to Haralick
features is presented in Section 2, in Section 3 we describe the data
set we use as a demonstration of the technique from the LOFAR
Two-meter Sky Survey, and the Hierarchical Density Based Spatial
Clustering of Applications with Noise (HDBSCAN) algorithm we
adopt to perform classification. We present the results in Section 4
and make our conclusions in Section 5.

2 H A R A L I C K FE AT U R E S

Haralick features were introduced by Haralick et al. (1973) as
a statistical method of examining image texture. They consider

the relationship between the intensity of neighbouring pixels and
are useful in classifying similar regions in an image given the
local spatial distribution of pixel intensities (Ohmshankar & Paul
2014). Haralick features are based on the so-called Grey Level Co-
occurrence Matrix (GLCM). To compute the Haralick features, one
must first compute the GLCM, which can then be used to evaluate
the Haralick coefficients (Sieler, Tanougast & Bouridane 2010).

The GLCM p is a square matrix where each dimension corresponds
to the number of greyscale intensity values in the image. For an 8-bit
depth, this would result in a 2562 matrix, so the bit depth is normally
reduced to 3, such that p is an 8 × 8 matrix. Each element p(i,
j) is calculated as the frequency that a pixel with intensity i has a
pixel with intensity j at a given spatial offset. This offset is normally
the pixel in the same row but adjacent column, but other offsets
can be used. Therefore p encodes the relative spatial distribution of
greyscale levels in an image. Mathematically, for an image I of size
M × N pixels:

p(i, j ) =
M∑

r=1

N∑
c=1

{
1 if I (r, c) = i and I (r + �x, c + �y) = j

0 otherwise
,

(1)

where �x and �y are the desired offset. Typically we have (�x = 1,
�y = 0), however calculating p for the different directional offsets
and averaging, rotational invariance can be encoded. Finally, p is
normalized by the total number of comparisons made such that the
GLCM represents a probability distribution.

With p defined, we can define 14 Haralick features that describe the
textural properties of the image, or rather, an image section (Haralick
et al. 1973; Salhi et al. 2018). The features are defined as follows:

Angular second moment

f1 =
∑

i

∑
j

p(i, j )2 (2)

Contrast

f2 =
∑

i

∑
j

(i − j )2p(i, j ) (3)

Entropy

f3 = −
∑

i

∑
j

p(i, j ) log(p(i, j )) (4)

Correlation

f4 = 1

σxσy

∑
i

∑
j

(ij )p(i, j ) − μxμy, (5)

where μx, y and σ x, y are the means and standard deviations of the
corresponding row or column in p:

μx =
∑

ij

ip(i, j ) (6)

μy =
∑

ij

jp(i, j ) (7)

σx =
√∑

ij

(i − μx)2p(i, j ) (8)

σy =
√∑

ij

(j − μy)2p(i, j ) (9)

Variance

f5 =
∑

i

∑
j

(j − μ)2p(i, j ) (10)
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Haralick features 3419

Homogeneity (a.k.a. Inverse difference moment)

f6 =
∑

i

∑
j

p(i, j )

1 + (i − j )2
(11)

Sum average

f7 =
2N∑
i=2

ipx+y(i), (12)

where N is the number of grey levels and px + y(i) corresponds to

px+y(i) =
∑

x+y=i

p(i, j ) (13)

Sum entropy

f8 =
2N∑
i=2

px+y(i) log(px+y(i)) (14)

Sum variance

f9 =
2N∑
i=2

(i − f8)2px+y(i) (15)

Difference entropy

f10 = −
N−1∑
i=0

px−y(i) log(px−y(i)), (16)

where

px−y(i) =
∑

x−y=i

p(i, j ) (17)

Difference variance

f11 =
N−1∑
i=0

i2px−y(i) (18)

Information measure of correlation 1

f12 = HXY − HXY1

max{HX,HY } (19)

Information measure of correlation 2

f13 =
√

1 − exp(−2(HXY2 − HXY), (20)

where HX and HY are entropies of px and py:

HXY = −
∑

i

∑
j

p(i, j ) log(p(i, j )) (21)

HXY1 = −
∑

i

∑
j

p(i, j ) log(px(i)py(j )) (22)

HXY2 = −
∑

i

∑
j

px(i)py(j ) log(px(i)py(j )) (23)

Maximal correlation efficient
With the definition

Q(i, j ) =
∑

k

p(i, k)p(j, k)

px(i)py(k)
. (24)

The maximal correlation coefficient f14 is defined as the square root
of the second largest eigenvalue of Q. This is generally considered to
be numerically unstable and we only consider the first 13 Haralick
features.

Figure 1. Condensed tree visualization indicating the 10 persistent morpho-
logical clusters identified by HDBSCAN in a sample of the 10 000 brightest
LoTSS-DR1 galaxies. Reading from top to bottom, the root contains all of
the sample, and this branches off down the hierarchy; only clusters with a
number of points exceeding a certain critical threshold (the minimum cluster
size) persist, which is parametrized by the λ value, which represents the
inverse of the mutual reachability distance between points in the Haralick
space (See Section 3.2 for further details).

3 DATA A N D T R A I N I N G

3.1 The LOFAR two-metre sky survey

To demonstrate the efficacy of Haralick features in representing
radio galaxy morphology, we use the first data release from the
LOw Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS),
released in 2018 (LoTSS-DR1; Shimwell et al. 2019). LoTSS is a
survey of the northern sky over 120–168 MHz wide-area survey de-
livering continuum imaging at an angular resolution of θ = 6 arcsec.
LoTSS-DR1 comprises just 2 per cent of the total survey area, with
424 deg2 of imaging covering the Hobby-Eberly Telescope Dark
Energy Experiment (HETDEX) ‘Spring Field’ (10h45m–15h30m and
45◦–57◦). The median depth is 71μJy beam−1 at 144 MHz, with
a 90 per cent completeness for point sources at 0.45 mJy. A total
of 325 694 sources are catalogued across 58 mosaics covering the
HETDEX field. We refer the reader to Shimwell et al. (2019) for a
thorough description of LoTSS and the DR1 data products.

Using the LoTSS-DR1 catalogue, we extract thumbnail cutouts
around the position of the top 10 000 sources ranked by total flux.
We adopt a window size of 64 × 64 pixels (96 × 96 arcsec) which we
found to be appropriate for comfortably encompassing the majority
of sources, with the exception of some of the very brightest and
extended emission features. Each image is minmax normalized, put
on an 8-bit grey scale and the Haralick features computed (note
that we compute the features for all pixel offsets and average the
result). Finally, each source is represented by a 13-element vector
corresponding to the 13 Haralick features as described in Section 2. In
the next section, we describe an approach to cluster the feature vectors
to provide groupings of galaxies with similar Haralick features.

3.2 Hierarchical density-based cluster selection

HDBSCAN is an unsupervised machine learning algorithm that is
based on DBSCAN (Density-based Spatial Clustering of Applications
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Figure 2. Thumbnails of LoTSS-DR1 sources sorted by similar Haralick features. Each row represents a cluster estimated by HDBSCAN (Section 3), and for
clarity we show the top 16 examples (ranked by membership strength, with the first thumbnail in each row representing the most representative member). Each
image subtends 96 × 96 arcsec and is linearly scaled between the 0.1–99.9th percentiles. The rows are sequential in terms of their extraction from the HDBSCAN

hierarchical tree structure, and it is clear that the procedure essentially provides a morphological sorting ranging from radio galaxies with pronounced jets and
lobes to point sources. Clustering of 10 000 objects took approximately half a second.

with Noise), first introduced by Ester et al. (1996). It is a density-
based clustering algorithm that assumes clusters are characterized
by ‘islands’ of high density in the sea of the parameter space, such
that clusters are regarded as data partitions that have a higher density
than their surroundings. HDBSCAN (Campello, Moulavi & Sander
2013) takes forward the DBSCAN concept by introducing a hierarchy
to the clustering, with ‘persistent’ clusters finally extracted from the
hierarchical tree. Following Malzer & Baum (2020), HDBSCAN works
as follows:

(i) The data is a set of vectors. In our case, each vector x has
13-elements representing the Haralick features of each thumbnail
image.

(ii) Consider the ‘core’ distance for a point x, corek(x), which
defines the distance to the kth nearest neighbour, which is an efficient
measure of density. Low values of corek(x) correspond to high density
and vice versa.

(iii) The ‘mutual reachability distance’ between two points a and
b is defined as dmut(a, b) = min{corek(a), corek(b), d(a, b)}. Here d(a,
b) is the distance between a and b according to some metric (e.g.
Euclidean). The idea here is that the mutual reachability distance
allows points in dense regions stay close together, and those in less
dense regions to be pushed away. A mutual reachability graph can
be used to represent the data set, with vertices as the data objects and
weighted edges as connections.

(iv) The mutual reachability graph is used to construct the mini-
mum spanning tree, and sorting its edges by the mutual reachability
distance results in a hierarchical tree structure. The hierarchy of
connected components is defined by sorting the edges of the tree
by distance in reverse order, describing a dendogram. This is the
structure from which clusters will be identified.

(v) We wish to extract ‘flat’ clusters from the hierarchy, and this in
principle achieved by slicing through the dendogram. Unfortunately,
it is not clear at what point to make the cut, and if one does choose a
single cut point (i.e. a given distance), that would effectively select
clusters with the same density. HDBSCAN allows the extraction of
clusters of variable density, effectively cutting the dendogram at
different points.

(vi) First the cluster tree is condensed into a simpler structure.
Considering the single main trunk which contains all of the data
points, the tree splits into branches. A condensed cluster hierarchy
can be described by considering the number of points kept in each
branch as it splits. Here we introduce the key parameter of minimum
cluster size. If a given branch splits into two, with one branch
containing fewer points than the minimum cluster size means, the
larger branch ‘persists’ and the smaller split branch ‘falls out’ of the
cluster. If a branch splits into two with both branches exceeding the
minimum cluster size, both new branches persist, and so-on.

(vii) Clusters are extracted on the notion of persistence in the
hierarchy. The parameter λ = d−1

mut is defined, and each cluster has
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Haralick features 3421

Figure 3. Clustering time as a function of sample size for the 13-element
Haralick feature vectors. We compare the timing (in milliseconds) for
clustering that includes the calculation of the minimum spanning tree (MST)
and prediction data. The prediction data allow one to use the trained model
to predict the labels of new, unseen feature vectors.

a λbirth (the point at which the cluster split off) and λdeath (the point
when the cluster split into other clusters). In each cluster, we have
λp describing when each point fell out of the cluster (or was split
off into a new cluster), λbirth ≤ λp ≤ λdeath. Cluster stability S is
defined as the sum of λp − λbirth for all points in the cluster. To
extract clusters the following procedure is followed. First, select all
leaves as clusters. Then, working through the hierarchy, consider
the stability of a parent cluster Sp and its n descendants S

0,1,2,...,n
d .

If Sp >
∑n

i=0 Si
d we unselect all the descendants. If Sp <

∑n

i=0 Si
d

then the cluster stability is set such that Sp = ∑n

i=0 Si
d . At the root

node we have our set of selected clusters. Any point in the sample
that does not fall into one of the selected clusters is defined as ‘noise’.

(viii) The selected clusters can be used to label points. Further-
more, the definition of λp within a cluster, when normalized between
0 and 1 provides a means of characterizing a probability that a given
point belongs to the cluster, or alternatively a measure of the strength
of membership.

In this work, we use the Python implementation of HDBSCAN.1

As described above, there are some key parameters to set when
applying the algorithm, and we experimented with their effect on the
clustering results. We found that a simple Euclidean distance metric
was effective and computationally efficient, and that other in-built
distance metrics did not dramatically alter the results. The parameter
‘minimum cluster size’ and ‘minimum number of samples’ are the
most critical. The former sets the minimum size of a cluster, as
described in (v) above. We adopt a minimum cluster size of 64; in
experimentation, lower sizes result in a larger number of clusters with
very similar visual morphologies split over multiple labels and larger
values result in too few clusters to make useful/meaningful classes.
Our experimentation is based on visual inspection of the galaxies
in the clusters returned for different minimum cluster sizes. The
behaviour tends to be, as the minimum cluster size is reduced, some
clusters are generated that contain a small (by definition) number
of objects that are visually similar to some larger ‘main’ cluster. To
illustrate an example, if the minimum cluster size is reduced to 16,
then we generate 40 clusters in total. The final two clusters – by
definition morphologically similar – contain 196 and 3612 objects,
respectively, such that there is clearly a dominant cluster present.

1https://hdbscan.readthedocs.io

Since adjacent clusters are similar in the Haralick space, they are
likely small ‘islands’ broken off in the clustering space that now
satisfy the more lenient minimum cluster size. As we describe in the
following section, an adoption of ‘soft clustering’ mitigates the need
to define had cluster membership boundaries (in effect, every object
has some finite probability of belonging to every other cluster).

In some sense, the total number of clusters required is a matter
of taste or practical need. Indeed, one could argue that the desired
number of labels – i.e. the level of granularity in morphological
distinction – is use-case specific; for example, a limiting case might
be the simple separation of point and extended sources, in which case
just two clusters would suffice. The minimum number of samples
controls how conservative the clustering is, manifested as the fraction
of the data that is labelled as noise. This is generally set to the same
value as the minimum cluster size.

HDBSCAN is incredibly fast: for the 10 000 sample size considered
in this demonstration, the clustering time was just 0.5 s. Although
performance is obviously hardware dependent, HDBSCAN offers high
performance for the clustering of large samples, making the analysis
of the very large radio galaxy imaging catalogues of the future (e.g.
SKA and pathfinders) a tractable problem.

HDBSCAN has already been applied in astronomy. For transient
discovery, Webb et al. (2020) present an application in transient
discovery. The authors evaluated 85 553 min-cadenced light curves
from the Deeper, Wider, Faster program (Andreoni & Cooke 2017).
They were able to isolate anomalous sources for further analysis
including the discovery of seven uncatalogued variables and two
stellar flare events, including a rarely observed ultrafast flare.
Logan & Fotopoulou (2020) used HDBSCAN to identify clusters of
stars, galaxies, and quasars in a multidimensional space defined by
photometry. Using a set of 50 000 spectroscopically labelled objects
from the Sloan Digital Sky Survey (Stoughton et al. 2002) the authors
found that careful attribute selection is a vital part of accurate
classification with HDBSCAN. They optimized the hyperparameters
and input attributes of three separate HDBSCAN runs, each to select a
particular object class and, thus, treat the output of each separate run
as a binary classifier. They then consolidated the output to give the
final classification. They used F1 scores to measure the performance
of their classifier and they obtained F1 scores of 98.9, 98.9, and 93.13,
respectively. Finally, Jayasinghe et al. (2019) presented the Milky
Way Project second data release (DR2) and an updated data reduction
pipeline. The authors aggregated about 3 million classifications
from volunteers to produce the DR2 catalogue, which contained
2600 infrared ‘bubbles’ and nearly 600 candidate bow shock-driving
stars. HDBSCAN was used to create the bubble catalogue, identifying
clusters within a set of one million classifications in less than
5 min on a standard desktop computer, again illustrating the speed
performance of HDBSCAN when dealing with very large data sets.

4 R ESULTS AND D I SCUSSI ON

Since most of the morphological diversity is in the brightest radio
sources (e.g. those with extended jets and lobes), in our demonstra-
tion we take the top 10 000 sources ranked by total flux in the LoTSS-
DR1 catalogue. We run HDBSCAN with a minimum cluster size of 64
which results in 10 clusters containing 33 per cent of the sample. Fig.
1 shows the condensed tree visualization that shows the branching
of the sample from the main root. Examples of the representative
morphologies in each cluster are shown in Fig. 2. Interestingly, the
ordering of the cluster labels 1–10 form a progression: cluster 1
contains the most extended sources with prominent jets and lobes. In
Fig. 3, we show the scaling of clustering time with sample size for
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Figure 4. As Fig. 2, but showing a larger sample of objects within cluster 1 (left-hand panel) and cluster 10 (right-hand panel). The images are organized
row-wise in order of membership probability. The nature of the extraction of flat clusters from the condensed tree structure produced by HDBSCAN means that the
sequence of cluster labels (in this case 1–10) forms a natural morphological sort, from highly extended and complex radio morphologies in cluster 1 to compact
point sources in cluster 10.

our 13-element features. As one examines successive clusters, it is
clear that the morphology transitions, encompassing more compact
structures including close pairs of similar brightness (e.g. hotspots),
pairs of sources dominated by one brighter component, and finally to
isolated point sources. To emphasize this, in Fig. 4 we show a larger
sample of the top 256 most likely members of cluster 1 and cluster
10.

One drawback of HDBSCAN, at least in this application, is the
large fraction of sources that are labelled as ‘noise’ – i.e. sources
not assigned to any cluster. This is an outcome of the conservative
nature of HDBSCAN and the ‘hard edge’ nature of the clusters –
points close to the edge but just falling out of the selection are
classified as noise. We could have achieved a lower noise fraction
by reducing the minimum cluster size, such that a larger number of
clusters would have persisted, however this has the drawback that
the cluster labels become less useful. An alternative approach, which
we take here, is to use the concept of ‘soft’ clustering to assign
every source to its most likely cluster. Soft clustering avoids the
hard boundaries imposed by traditional clustering algorithms, and
instead takes a probabilistic view: each point has a probability of
belonging to a given cluster. In HDBSCAN, soft clustering is achieved
via a modification of the outlier score, which is based on the Global-
Local Outlier Score from Hierarchies (GLOSH) algorithm (Campello
et al. 2015), and combines this with a measure of distance from
a given cluster to produce an estimate of the probability that any
given point belongs to any of the fixed clusters extracted from the
condensed tree. We can then simply assign cluster labels for every
point by taking the most likely cluster it belongs to, and extract
samples of galaxies for each label using probability thresholds. This
fuzzy clustering approach is attractive because it recognizes the fact
that real galaxies may have shared characteristics (e.g. jet plus point
source versus jet without point source). In effect, it is the distribution
of membership probabilities for a given source that describes the

source morphology. Parametrizing morphology this way allows more
complex morphological-based selections to be made that combine the
full ‘spectrum’ of morphological types.

In Fig. 5 we duplicate Fig. 2, but this time show examples of
sources originally classified as noise by HDBSCAN. Soft cluster-
ing allows us to assign the most likely cluster membership, but
this visualization helps us understand the nature of these ‘noisy’
galaxies. In cluster 1 (top row) we can see that the sources are
all rather large and diffuse radio galaxies; real sources but rare in
the catalogue and therefore likely fall foul of the minimum cluster
size to be designated an independent cluster. In the sequence of
rows corresponding each cluster label we can see the same trend of
‘extended/lobed’ systems through to ‘compact/point-like’ systems as
in Fig. 2, indicating that the soft clustering assignment still respects
the original classification scheme. However, thumbnails often exhibit
contamination from artefacts (e.g. from the interferometric imaging,
such as ripples, striations, and haloes due to nearby bright sources),
or the presence of low signal-to-noise features such as diffuse
emission. In these cases we would expect the Haralick features
to encode the image textures associated with these properties. The
soft clustering assignment, along with the book-keeping regarding
the sources’ original classification allows us to easily identify such
outliers.

How do the different clusters compare to the basic observational
properties of the members? We consider cluster members in each of
the 10 clusters with high >90 per cent membership probabilities and
compare the distributions of total flux, major axis, and ratio of major
to minor axis as described by Shimwell et al. (2019).2 Fig. 6 compares
the distributions. The distribution of flux within each cluster is

2The fraction of sources with >90 per cent membership probability across all
clusters is 10 per cent. At >50 per cent membership probability the fraction
is 40–50 per cent.
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Figure 5. As Fig. 2, but showing examples of galaxies assigned to clusters via soft clustering that HDBSCAN originally failed to classify (i.e. ‘noise’). In cluster
1 we can see that the sources are typically large and diffuse systems comparable to the size of the thumbnail. The general appearance of the sources in each row
follows the trend seen in Fig. 2, but it is clear that the sample contains ‘sources’ contaminated by imaging artefacts and background features (e.g. ripples) that
might help explain the reason they were originally classified as ‘noise’ in the hard clustering.

remarkably consistent, although there is some variation in the bright
tails of each cluster’s distribution. As expected, there is a stronger
correlation with the shape measurements (although notably broad and
overlapping distributions in each case). For example, there is a pro-
gression with the numerical cluster label (which, recall, is dependent
on the point in the tree where the cluster was extracted, see Fig. 1).
For example, the most extended sources are in cluster 1, with the most
compact in the final cluster 10. It is clear that it would be challenging
to reproduce the same morphological groupings simply by using
the basic catalogue measurements of flux density, major, and minor
axis. Finally, we note that, since clusters are extracted in a sequential
fashion from the tree, and that the characteristics of sources in cluster
10 are ‘far away’ from those in cluster 1 (in Haralick space) means
that HDBSCAN has produced a meaningful sorting of radio galaxies by
morphology.

The Haralick features are trivial to compute direct from im-
agery via the GLCM, and – as demonstrated here – essentially
provide a compact description of source morphology. The Har-
alick feature values could be trivially included in source cata-
logues at relatively little memory expense. Care must be taken
however: since the features are calculated from pixel values, they
cannot be easily cross-compared between surveys (for example),
since they also encode information about the noise properties of
the image. That effect is not examined in detail here since we
have focused on very high signal-to-noise sources for the present
demonstration.

5 C O N C L U S I O N S

With a focus on radio galaxies, we have shown how Haralick features
can be used as simple, compact, and non-parametric descriptors
of source morphology. Haralick features are an established tool
in computer vision, and simply encapsulate local greyscale image
texture with 13 numbers evaluated from the Grey Level Co-occurance
Matrix. Since morphological variation is in essence due to differences
in the spatial distribution of pixel intensities in imaging, our hypothe-
sis was that Haralick features could be used to represent morphology.

Using sources from the LOFAR Two-metre Sky Survey (Shimwell
et al. 2019), we calculate Haralick features within 96 arcsec apertures
for the 10 000 brightest catalogued sources, spanning extended
systems with prominent lobes and jets, to compact point sources. We
find distinct morphological clusters within the ‘Haralick space’ using
the fast HDBSCAN clustering algorithm, which distinguishes ten main
morphological classes. Rather than fixing cluster assignment, we
adopt soft clustering which, rather than giving points a specific cluster
label, provides a probability of cluster membership. This allows
for far more flexibility in morphological selection, given that often
galaxies will share morphological characteristics across multiple
labels. As clusters are extracted from a hierarchical structure, and the
distance between clusters in the hierarchy depends on morphology
(as encoded by Haralick features) the sequence of cluster labels
provided by HDBSCAN are sorted in a meaningful way. In our example,
cluster 1 contains the most extended sources with prominent lobes
and jets, and the final cluster 10 contains isolated and compact
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Figure 6. A comparison of the distribution of (top) total 144 MHz flux,
(middle) major axis, and (bottom) ratio of major to minor axis for cluster
members with a probability of membership exceeding 90 per cent. The hard
cut offs in the flux distributions is a result of the original flux-based selection.
The horizontal lines indicate the median values.

sources. The probabilistic nature of the cluster assignments also
allow one to identify morphological outliers, making the detection
of unusual galaxies (or artefacts) trivial. HDBSCAN offers another
advantage: it is an incredibly fast clustering algorithm. In our
demonstration, the clustering and classification of 10 000 sources
took just half a second. Here we focus on radio morphologies, but of
course Haralick features could be calculated for any set of imaging
data (e.g. optical), and can be extended to more than two dimensions,
allowing one to encode spectral/colour information as part of the
classification.

The exploration and curation of the giant imaging data sets of
the future (e.g. SKA in the radio, LSST in the optical) requires
efficient methodologies, both in terms of computational expense
and storage considerations. We argue that Haralick features are
a valuable addition to non-parametric methods of morphological
classification of galaxies, with hierarchical soft clustering of the

Haralick features of a given sample providing a convenient means
of sorting and classifying galaxies in the morphological parameter
space.
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