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Abstract: The terminal ballistics effects of Intermetallic Reactive Materials (IRM) fragments have
been the object of intense research in recent years. IRM fragments flying at velocities up to 2000 m/s
represent a realistic threat in modern warfare scenarios as these materials are substituting conven-
tional solutions in defense applications. The IRM add Impact Induced Energy Release (IIER) to the
mechanical interaction with a target. Therefore, the necessity of investigations on IIER to quantify
potential threats to existing protection systems. In this study, Mixed Rare Earths (MRE) fragments
were used due to the mechanical and pyrophoric affinity with IRM, the commercial availability and
cost-effectiveness. High-Velocity Impacts (HVI) of MRE were performed at velocities ranging from
800 to 1600 m/s and recorded using a high-speed camera. 70 MREs cylindrical fragments and 24 steel
fragments were shot on armour steel plates with thicknesses ranging from 2 mm to 3 mm. The
influence of the impact pitch angle (α) on HVI outcomes was assessed, defining a threshold value
at α of 20◦. The influence of the failure modes of MRE and steel fragments on the critical impact
velocities (CIV) and critical kinetic energy (Ekin crit) was evaluated. An energy-based model was
developed and fitted with sufficient accuracy the Normalised EKin crit (Ẽcrit

kin ) determined from the
experiments. IIER was observed in all the experiments involving MRE. From the analyses, it was
observed that the IIER spreads behind the targets with velocities comparable to the residual velocities
of plugs and shattered fragment.

Keywords: reactive materials; impact-induced energy release; high-velocity impact; pyrophoric alloys

1. Introduction

The interest of the defence industry towards Intermetallic Reactive Materials (IRM) is
related to their structural properties, combined with the exothermal reaction triggered by a
thermal or mechanical shock, as discussed by Aydelotte [1].

IRM represent a valid substitute for inert casings of next-generation warheads, aug-
menting the post-detonation lethality abundantly. The scheme in Figure 1 shows how
small IRM fragments are generated and accelerated: after the detonation (a), the IRM bomb
casing fractures into fragments (b), which are then accelerated by the detonation gases
and the blast wave (c), reaching velocities up to 2000 m/s and covering a lethality range
significantly higher than the one covered by the blast, as Aydelotte [1] reported. The IRM
fragments will eventually interact with a target, triggering the Impact Induced Energy
Release (IIER) (d).

The IIER of fragments is the focus of this work. In order to set up a coherent and
reproducible methodology, High-Velocity Impacts (HVI) experiments were performed
using a ballistic set-up, shooting commercial Mixed Rare Earths (MREs) cylindrical samples,
with diameters of 3.5 mm and 5 mm and length L over diameter d ratios (L/d) of 1.
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Figure 1. Schematic representation of bomb detonation (a); case fragmentation (b); fragment flight 

accelerated by the blast (d); impact with target and impact-induced energy release (c). 
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(Ni-Al) based investigated by Aydelotte et al. [1,2] and Beason et al. [3], the aluminium-

tungsten (Al-W) based RMs assessed by Aydelotte et al. [1,2], or the tungsten-zirconium 

(W-Zr) based intermetallics described by Zhang et al. [4]. Furthermore, both IRM and 

MREs are brittle, according to the definition provided by Lemaitre et al. [5], and therefore, 

these materials shatter during high-velocity impacts, reacting exothermically and releas-

ing energy in the form of heat. 

The ballistic and pyrophoric properties of commercial MREs with different com-

pound compositions were investigated by Waite et al. [6]. In the study, thirty-three metals 

and metal alloys were assessed and compared. Cylindrical fragments were shot with ve-
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ium plates (HB 150), 1.6 mm thick titanium plates (HB 145) and 1.8 mm thick 1010 steel 

(HB 100). All the MREs mixtures assessed showed IIER, recording temperatures ranging 

from 2300° up to 3000° C [6]. 

Similar observations were described by Hillstrom [7], who assessed the ignition 

threshold for cylindrical fragments of MREs impacting 6.35 mm thick aluminium targets 

(HB 120) and 38 mm thick steel blocks (HB 140). Both Waite et al. [6] and Hillstrom [7] 

documented that commercial MREs showed mechanically induced pyrophoricity at lower 

impact velocities than other pyrophoric metals. The authors linked the IIER with the fail-

ure mechanisms observed: the pyrophoric metals tested, such as zirconium, titanium, haf-

nium, steel or copper, experience ductile failure and mechanical induced ignition from the 

frictional stresses caused by the target/penetrator interaction. On the other hand, the igni-

tion mechanism for the MREs samples was attributed to internal shear stresses producing 

intergranular friction and heating.  

Furthermore, Hillstrom [7] noted that the thickness and material of the target influ-

enced the IIER for MREs. The different mechanical properties involved in the frag-

ment/plate interaction affected the values of impulsive load applied to the fragment, in-

fluencing the shattering and reaction. 

Aydelotte et al. [1,2] and Beason et al. [3], among others, linked impact-induced frac-

ture of IRM to IIER. In the case of MREs, an oxide reduction is responsible for the IIER, 

while the reaction experienced by IRM is an intermetallic formation reaction, manifesting 

as heat release rather than pressure rise, as Aydelotte [1] and Cagle [8] observed. How-

ever, even considering the significantly different nature of the reactions, the macroscopic 

effects of IIER are considerably similar, and peak temperatures are in the same range. 
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Figure 1. Schematic representation of bomb detonation (a); case fragmentation (b); fragment flight accelerated by the blast
(d); impact with target and impact-induced energy release (c).

MREs fragments were selected to perform the experiments considering their affinity
with IRM commonly described in the relevant literature, such as the nickel-aluminium
(Ni-Al) based investigated by Aydelotte et al. [1,2] and Beason et al. [3], the aluminium-
tungsten (Al-W) based RMs assessed by Aydelotte et al. [1,2], or the tungsten-zirconium
(W-Zr) based intermetallics described by Zhang et al. [4]. Furthermore, both IRM and
MREs are brittle, according to the definition provided by Lemaitre et al. [5], and therefore,
these materials shatter during high-velocity impacts, reacting exothermically and releasing
energy in the form of heat.

The ballistic and pyrophoric properties of commercial MREs with different compound
compositions were investigated by Waite et al. [6]. In the study, thirty-three metals and
metal alloys were assessed and compared. Cylindrical fragments were shot with velocities
ranging from 300 m/s to 1600 m/s. The targets were 1.27 mm thick 7075-T6 aluminium
plates (HB 150), 1.6 mm thick titanium plates (HB 145) and 1.8 mm thick 1010 steel (HB
100). All the MREs mixtures assessed showed IIER, recording temperatures ranging from
2300 ◦C up to 3000 ◦C [6].

Similar observations were described by Hillstrom [7], who assessed the ignition
threshold for cylindrical fragments of MREs impacting 6.35 mm thick aluminium targets
(HB 120) and 38 mm thick steel blocks (HB 140). Both Waite et al. [6] and Hillstrom [7]
documented that commercial MREs showed mechanically induced pyrophoricity at lower
impact velocities than other pyrophoric metals. The authors linked the IIER with the
failure mechanisms observed: the pyrophoric metals tested, such as zirconium, titanium,
hafnium, steel or copper, experience ductile failure and mechanical induced ignition from
the frictional stresses caused by the target/penetrator interaction. On the other hand,
the ignition mechanism for the MREs samples was attributed to internal shear stresses
producing intergranular friction and heating.

Furthermore, Hillstrom [7] noted that the thickness and material of the target in-
fluenced the IIER for MREs. The different mechanical properties involved in the frag-
ment/plate interaction affected the values of impulsive load applied to the fragment,
influencing the shattering and reaction.

Aydelotte et al. [1,2] and Beason et al. [3], among others, linked impact-induced
fracture of IRM to IIER. In the case of MREs, an oxide reduction is responsible for the IIER,
while the reaction experienced by IRM is an intermetallic formation reaction, manifesting
as heat release rather than pressure rise, as Aydelotte [1] and Cagle [8] observed. However,
even considering the significantly different nature of the reactions, the macroscopic effects
of IIER are considerably similar, and peak temperatures are in the same range. Therefore,
MREs fragments represent a valid selection for the investigation of IIER during HVIs. In
addition, the commercial availability and relative cost-effectiveness make MREs a sensible
choice for the study.

The works from Waite et al. [6] and Hillstrom [7] represent a valid reference in assess-
ing the ballistic and pyrophoric investigation of MREs. The present work discusses the
IIER of MREs using a state-of-the-art experimental set-up, described in detail in Section 2.1.
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Furthermore, the HVI of MREs described in this paper were performed using armour steel
plates with HB hardness significantly higher than targets used in previous studies, as they
are representative of a realistic target in a modern warfare scenario.

The experimental outcomes were quantified in terms of Critical Impact Velocities
(CIV), Critical Kinetic Energy (Ekin crit), Specific Kinetic Energy (ESpeci f ic

Kin crit ) and normalised
EKin crit (Ẽcrit

kin ). Prior to the quantitative analysis of the HVI outcomes, the influence of the
impact pitch angle (α) on the perforation process was investigated to define a threshold
value for α. Details are discussed in Section 2.2.

The development of an energy-based model is exposed in Sections 2.3 and 4.
The investigation of the IIER is discussed in Section 3.4.

2. Materials and Methods

HVI experiments of MRE fragments impacting armour steel plates were performed
using a 7.62 mm calibre powder gun. The set-up allows the fragments to reach velocities up
to 1600 m/s. A double infrared (IR) light barrier LS 260 was employed as impact velocity
measurement system for the fragments before the impact. The IR were 0.5 m apart and can
capture velocities up to 2000 m/s. A Shimadzu HPV-1 high-speed camera, triggered by
the IR system, records the shots. The target is installed inside a closed ballistic chamber,
equipped with a window allowing high-speed recording.

Among the parameters affecting the fragment/plate interaction, the impact pitch
angle (α), defined as the angle formed between the longitudinal axis of the fragment
and the horizontal flight direction, plays a crucial role, as discussed by Zukas [9] and
Rosenberg et al. [10]. The experimental set-up, shown schematically in Figure 2, enables
measuring α but does not allow the measurement of the yaw angle, i.e., the angle be-
tween the longitudinal axis of the fragment and the vertical reference plane, nor any
rolling rotation.
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Figure 2. Ballistic experiment schematic set-up: (a) light barrier; (b) high-speed camera; (c) ballistic chamber; (d) target;
(α) impact-pitch angle.

By analyzing the high-speed recordings it was possible measuring the residual ve-
locities (vres) reached by the shattered fragments behind the target after perforation, by
the plugs ejected from the plate after the perforation, and by the energy release front.
The evaluation of vres was performed by measuring the component of the velocity vector
normal to the target, as indicated in Figure 3.

The effects of α were quantified by measuring the significant variations in vres, using
as reference a 10 mm × 10 mm grid placed on the background of the ballistic chamber: the
grid as allows estimating the distance travelled in a specific timeframe. The recordings
were performed at a frame rate of 250,000 fps.
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Figure 3. 5 mm MRE fragment impacting 2 mm plate at 889 m/s. Estimated residual velocity of
325 m/s.

For reference, Figure 3 shows 3 frames from the high speed recordings of a 5 mm
MRE fragment impacting a 2 mm plate at 889 m/s. It is visible that the plug, the front
of the debris cloud and the energy release front, travel with significantly similar residual
velocities, provided the absence of intense rotations.

Five shots were performed without lighting to focus on the IIER. This set-up does
not allow evaluating the angle of impact α but is necessary to focus on reaction initiation
and evolution.
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2.1. Materials

Mixed Rare Earths (MRE) are commercially available pyrophoric mixtures. The
compound used in the experiments is composed mainly of cerium (Ce, 49%) and lanthanum
(La, 23%). A detailed list of the components of commercially available MRE from different
suppliers is available [11].

Table 1 lists the mechanical properties of MRE and armour steel used in this paper.

Table 1. Mechanical properties of MRE [6] and armour steel.

Material E (GPa) Yield Str. (MPa) Ult. Str. (MPa) ρ (g/cm3)

MRE 15.9 ÷ 31.7 96.5 ÷ 126.3 128.9 ÷ 159.3 6.35

Armour steel 210 1050 1150 7.50

A total of 94 cylindrical fragments were used to perform the analyses. The fragments
can be divided into three categories: MRE samples with a diameter of 5 mm, MRE samples
with a diameter of 3.5 mm, and steel fragments with a diameter of 4.6 mm. All fragments
had a length (L) over diameter (d) ratio (L/d) of one. The masses of the MRE fragments
are 0.6 and 0.2 g, respectively, while the steel fragments weigh 0.6 g. The fragments were
encapsulated in a plastic sabot, which in turn was fixed on a 7.62 mm cartridge. The
shooting velocities were controlled by adjusting the amount of gun powder used to fill
the cartridge. During the flight, the fragment separates from the sabot due to the different
kinetic energies.

Similarly to what described by Waite et al. [6] and Hillstrom [7], steel fragments
were used in the study. Different solutions were evaluated to achieve high comparability
between shots involving fragments made from different materials. In the first approach,
the geometrical features and masses were kept constant. In this manner, the experiments
had the same initial kinetic energy and the same impact surface. In order to achieve this,
considering the different densities of the materials, a hole was drilled on the back end of
steel cylinders with diameters of 5 mm and L/d ratio of one to reduce the mass to the
desired value. However, this solution was discarded as it influenced the deformation and
failure of the fragments significantly. Consequently, an agreement was made to keep the
mass of the fragments constant, keeping the L/d ratio fixed to one. Therefore, the diameter
of the steel fragments was decreased to 4.6 mm steel fragments obtaining a mass of 0.6.
Armour steel plates with three different thicknesses (2 mm, 2.5 mm and 3 mm) were used
in the experiments. Figure 4 shows a 10 mm × 10 mm × 2 mm plate and the different
fragments employed.

2.2. Influence of Impact Pitch Angle (α) on HVIs

The impact pitch angle (α) plays a crucial role on impacts, as discussed by Zukas [9]
and Rosenberg et al. [10]. However, Zukas [9] highlighted that the influence of α is inhibited
when materials with significantly different hardness values interact, as in the case of rigid
penetrators impacting a relatively soft target. Similarly, the hardness of the plates used in
the experiments described is up to three times (270 ÷ 380 HB) the hardness of the MRE
fragments (120 HB). Therefore, the influence of α on the experimental outcomes needed
to be quantified. An analysis of the vres of the plugs recorded for 5 mm MRE fragments
impacting 2 mm plates was performed to quantify the threshold value of α.

The Recht-Ipson (RI) [12] formula, shown in Equation (1), was used to fit the experi-
mental data

vres = a ∗
(

vb
i − CIVb

) 1
b (1)

where a and b are fitting parameters.
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Figure 4. (a) 10 mm × 10 mm × 2 mm armour steel plate; (b) 3.5 mm MRE fragments; (c) 5 mm MRE
fragments; (d) 4.6 mm steel fragment.

The CIV indicates the perforation capabilities of a fragment. CIV was defined as the
statistically determined minimum velocity necessary to perforate a particular target with a
specific fragment, with no residual velocity detected. The definition of perforation is central
in this context: for our purpose, a complete perforation is considered when a plug is entirely
detached from the plate, and IIER is clearly visible in the form of a reaction spreading
behind the target. The CIV is evaluated summing the four highest impact velocities for
shots that result in no complete perforation to the four lowest impact velocities resulting
in complete perforation of the target, dividing the result by the total number of shots
considered, as expressed in Equation (2)

CIV =
n

∑
i=1

vper f
i + vnon per f

i
2n

(2)

where vper f
i represents the ith shot resulting in perforation and vnon per f

i represents the ith

shot resulting in no perforation of the plate; 2n represents the total number of shots used to
evaluate the CIV, which in this work is 8.

The Least Square Method was used to perform the curve fitting. It was observed that,
for values of α lower than 30◦ degrees, the effects on residual velocities do not influence
the RI curve fit, as visible in Figure 5. It was also observed that higher values of α resulted
in lower vres, indicating an grater amount of energy dissipated by the target.

In the graph, the blue markers indicate the residual velocities measured for shots
impacting the target with 0 degrees, the black markers indicates the residual velocities for
impacts at α up to 30◦ degrees, and the red markers indicate impacts at values of α higher
than 30◦ degrees. A significant effect in the outcomes is evident on the red markers.

The RI curves depicted in Figure 5 were defined by fitting the different dataset rep-
resented in the graph. In particular, the blue curve was obtained by fitting the residual
velocities from normal impacts, the black curve from all the shots up to 30◦ degrees, and the
red curve by considering the entire data set, including shots having impact angles higher
than 30◦ degrees. The curves are sufficiently similar. However, the residual velocities
indicated by the red markers are evidently lower than the value predicted by the RI curves.
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Figure 5. Recht Ipson curves for 5 mm fragments impacting 2 mm plates.

Therefore, it is reasonable to use α higher than 30◦ degrees as exclusion criterion in the
analytical analysis of the problem. Bratton et al. [13] described a similar threshold value
for IRM impacting 4130 steel targets

2.3. Analysis of Critical Impact Energy

The critical impact velocity (CIV), critical kinetic energy (EKin crit) and residual velocity
quantify the ballistic properties of HVIs of the fragments assessed. The EKin crit represents
the minimum kinetic energy necessary for the fragment to perforate a specific target.
The EKin crit is obtained by imposing the CIV value as initial velocity, as described by
Equation (3).

EKin crit =
1
2

MV2
CIV (3)

The analysis of the experiments described in this paper starts from the energy balance.
Equation (4) expresses the energy balance formulated by Grady et al. [14], which described
the HVI of cylindrical brittle fragments on steel targets.

1
2

MV2
0 =

1
2

(
Mres + Mplug

)
v2

res + Ex (4)

where M is the initial mass of the fragment, Mres and Mplug are, respectively, the residual
mass of the fragment and the mass of the plug ejected from the plate; V0 indicates the initial
velocity and Ex was defined by Grady et al. [14] as “excess energy”, which was expressed
as the following sum

Ex = Ekin
res f rg + Wp + E f (5)

where the value Ekin
res f rg is the residual kinetic energy associated with the expansion of the

shattered fragment; Wp is the energy dissipated by the plate in the perforation process, and
Ef is the energy absorbed by the fragment for shattering. The balance can be simplified by
imposing the CIV as the initial velocity in Equation (4): as result, the residual kinetic energy
becomes null. Therefore, by combining Equations (3)–(5), the balance can be rewritten
as follows

EKin crit =
1
2

MV2
CIV = Wp + E f (6)

Further simplification of the balance can be made following the observations of
Grady et al. [14], which remarked that the term Ef is negligible for brittle materials, as they
experience fracture without any significant plastic deformation and, therefore, without
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or with minor energy dissipation. Consequently, EKin Crit can be approximated to Wp, as
reported in Equation (7).

EKin crit =
1
2

MV2
CIV = Wp + E f

∼= Wp (7)

The quantitative evaluation of the term Wp has been the subject of intensive study.
Empirical equations for the evaluation of the term Wp were defined in the forties by
Bethe [15] and later by Taylor [16] and have been continiously improved over the years
as summarised by Rosenberg et al. [10]. In this work an empirical formula, shown in
Equation (8), is used for the evaluation of the term Wp

Wp = πkσudh2 (8)

where d is the diameter of the fragment, h is the thickness of the plate, and σu is the ultimate
stress of the plate, multiplied by the constant k, dependent on the strain rate. Historically,
the term k represented a multiplier of the strength of the plate obtained experimentally,
dependent on the mechanical and geometrical features of fragments and plates involved.
Recent studies such as the investigations discussed by Meyer et al. [17] and Stepanov [18]
provide a physical explanation to the need of a multiplier for the ultimate strength σu
during a dynamic impact. In particular, the study performed by Meyer et al. [17] discusses
the increase of yield strength observed in metals during very high strain rate loadings
(

.
ε ≥ 105 − 106 s−1). Stepanov [18] also investigated the influence of strain rate of impact and

explosive loading conditions on the mechanical properties of high strain steels, observing
that for

.
ε ≥ 105s−1 the strength values exceed the static value several times. The strain

rates characterising the HVI discussed in this work are estimated to be in the ranges of
4 ÷ 5 * 105 s−1, and, therefore, the term k in Dquation (8) is associated with the significant
increase of yield strength experienced by the armour steel plates during the impacts. The
estimated strain rate values were obtained by dividing the impact velocities by the thickness
of the plate, as discussed by Cagle et al. [8]. The values obtained align with indications by
Zukas [9].

By combining Equation (7) with the formula in Equation (8), the balance could be
expressed as follows

EKin crit =
1
2

MV2
CIV = Wp + E f

∼= Wp = πkσudh2 (9)

This last form of the energy balance could be rearranged through algebraic manip-
ulation to make it adimensional, similarly to what was done by Aly et al. [19]. In the
paper, seven different empirical equations valid for predicting EKin crit for cylindrical and
hemispherical fragments impacting metallic plates were compared. The different equations
were expressed in adimensional form to identify the non-dimensional parameters affecting
the normalised EKin crit. It was observed that the parameter (h/d), where h is the plate
thickness and d is the diameter of the fragment, plays a critical role in evaluating the energy
necessary for perforation.

Similarly to what was described by Aly et al. [19], the energy balance in Equation (9)
was rewritten in adimensional form as a function of the parameter (h/d)

Ẽcrit
kin

(
h
d

)
=

EKin crit
σud3 =

Wp

σud3 +
E f

σud3 = ε ∗
(

h
d

)2
+ ϕ ∗

(
h
d

)
∼= ε ∗

(
h
d

)2
(10)

where Ẽcrit
kin represents the normalised EKin crit. It can be observed that the parameter ε

represents the following expression
ε = π ∗ k (11)

which allows estimating the value of the multiplier k.
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The analytical model in Equation (10) was used to fit the Ẽcrit
kin calculated from the

experimental data. The expression shows that Ẽcrit
kin is equal to a two-term quadratic

equation. However, according to Grady et al. [14], the linear term is negligible in first
approximation. An assessment of the validity of the approximation, the estimation of the
parameters ε and ϕ from Equation (10) and k from Equation (11) are described in Section 4.

3. Results

Table 2 lists the experimental outcomes for the MRE and steel fragments impacting
armour steel plates with different thicknesses. The results are categorised in function of the
characteristic h/d parameter, where h represents the plate thickness and d the diameter of
the fragment impacting the target. The outcomes of each shot in termos of perforation are
indicated with X and V for non perforation and perforation of the targets, respectively.

Table 2. Summary of experimental results.

Material h (mm) d (mm) h/d Mass (g) α◦ (deg) V0 (m/s) vres (m/s) ∆Ekin (J) Perforation

MRE 2 5 0.4 0.6

16 843 0 221 X
2 852 0 226 X
22 857 184 141 V
19 861 0 231 X
0 861 193 139 V
0 867 241 122 V
0 870 0 236 X
12 873 260 117 V
24 877 278 112 V
18 877 305 102 V
0 883 312 102 V
28 889 325 99 V
0 899 352 93 V
2 1099 500 112 V
18 1311 714 111 V

MRE 2.5 5 0.5 0.6

0 883 0 243 X
8 909 0 257 X
4 928 0 268 X

10 938 153 192 V
7 960 0 287 X

10 972 134 219 V
22 981 263 161 V
20 992 280 160 V
20 1061 337 163 V
2 1091 333 179 V

20 1177 473 154 V
28 1220 541 144 V

ND 1 1252 - - V
ND 2 1312 555 178 V
ND 2 1372 538 217 V
ND 2 1427 625 200 V

MRE 3 5 0.6 0.6

18 1035 0 334 X
16 1043 0 339 X
5 1051 0 344 X
23 1060 0 350 X
0 1075 103 294 V
10 1085 214 236 V
5 1099 172 268 V
12 1141 245 250 V
22 1366 416 281 V

ND 1 1420 500 264 V
ND 1 1432 384 342 V
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Table 2. Cont.

Material h (mm) d (mm) h/d Mass (g) α◦ (deg) V0 (m/s) vres (m/s) ∆Ekin (J) Perforation

MRE 2 3.5 0.57 0.2

0 985 0 103 X
23 997 0 106 X
0 1023 87 93 V
0 1029 98 92 V
0 1034 0 114 X

12 1036 134 87 V
28 1045 0 117 X
26 1078 232 77 V
0 1206 326 77 V

27 1228 307 85 V

MRE 2.5 3.5 0.71 0.2

26 1240 0 164 X
0 1245 0 166 X

17 1248 31 158 V
20 1270 0 173 X
22 1281 95 150 V
28 1290 0 178 X
28 1315 193 135 V
25 1317 239 124 V
30 1330 250 117 V
28 1397 268 127 V

MRE 3 3.5 0.86 0.2

3 1491 0 238 X
19 1495 0 239 X
8 1502 0 241 X
6 1508 149 198 V

15 1532 0 251 X
29 1541 82 228 V
28 1549 119 219 V
7 1560 185 202 V

Steel 2 4.6 0.43 0.6

0 550 0 91 X
2 583 0 102 X
0 597 75 82 V
3 600 0 108 X

10 630 142 71 V
0 643 134 78 V
5 656 0 129 X
0 693 154 87 V

Steel 2.5 4.6 0.54 0.6

5 733 0 161 X
12 735 0 162 X
5 771 91 139 V
0 773 0 179 X
4 777 135 124 V
0 785 174 112 V

11 806 189 114 V
2 808 0 196 X

Steel 3 4.6 0.65 0.6

10 786 0 185 X
3 806 104 148 V
0 824 0 204 X
0 831 167 132 V

18 833 0 208 X
0 840 0 212 X
8 852 176 137 V
2 866 182 140 V

1 Shot performed in the darkroom. The angle of impact and residual velocities were not quantifiable. 2 Shot performed in the darkroom.
The angle of impact is not quantifiable.
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3.1. Critical Impact Velocity (CIV), Critical Impact Energy (EKin crit ) and Normalised EKin crit

Table 3 lists the CIV, the EKin crit, ESpeci f ic
Kin crit and the Ẽcrit

kin defined using the shots listed
in Table 2.

Table 3. Summary of results for CIV, EKin crit and Ẽcrit
kin evaluated from shots listed in Table 3.

Material h/d CIV (m/s) EKin crit (J) ESpecific
Kin crit (kJ/kg) Ẽ

crit
kin ( h

d )

MRE
0.4 859 222 370 1.54
0.5 956 274 457 1.91
0.6 1073 345 575 2.40

MRE
0.57 1028 106 530 2.15
0.71 1276 163 815 3.30
0.86 1518 230 1150 4.66

Steel
0.43 619 114 190 1.02
0.54 773 179 298 1.60
0.65 833 208 347 1.86

The data listed in Table 3 show that the CIV increases with increasing plate thickness
for all the tested configuration. The CIV values for 4.6 mm steel fragments (yellow markers)
are in the range of 20 ÷ 28% lower than the values obtained for 5 mm MRE fragments
impacting targets with the same thickness, and in the range of 39 ÷ 45% lower than the
values obtained for 3.5 mm MRE fragments impacting the same targets.

The same trend is reflected on the EKin crit, ESpeci f ic
Kin crit and the Ẽcrit

kin defined. The EKin crit
outcomes are plotted in Figure 6. Results for 5 mm MRE fragments and 4.6 mm steel
fragments lie on the same kinetic energy curve as they possess the same mass. The EKin crit
values for 4.6 mm steel fragments (yellow markers) are lower (35 ÷ 49%) than the values
obtained for 5 mm MRE fragments impacting targets with the same thickness.
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Figure 6. Critical kineti energy over critical impact velocities. The dashed lines indicate the kinetic
energies for fragments having mass of 0.6 and 0.2 g, respectively in purple and black, as function of
impact velocity.

The EKin crit values defined for the 3.5 mm MRE fragments are lower than the values
obtained for 5 mm MRE fragments impacting the same target (52% for 2 mm plates and
30% for the 3 mm plates).

On the othe hand, when compared with the steel fragments, the values of EKin crit
estimated for the 3.5 mm MRE fragmnets are similar, (circa 8% difference). Obviously, the
fact that the 3.5 mm MRE fragments weigh 1/3 than the steel fragments is reflected on the
CIV, resulting in the translation of the points along the x axis.
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Figure 7 shows the EKin crit per unit mass for all the configurations tested. In this case,
the ESpeci f ic

Kin crit values for the MRE fragments of 3.5 and 5 mm follow the same trend, while
the values for the steel fragments are between 40 and 50% lower.
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Furthermore, the graph indicates that the ESpeci f ic
Kin crit values observed for 3.5 mm MRE

fragments are higher than the respective values obtained for 5 mm fragments. The differ-
ence magnifies increasing h/d, going from 16% for the 2 mm plates to 25% for 2.5 mm plates
and 30% for the 3 mm plate.

The graph in Figure 8 depicts the Ẽcrit
kin over h/d. The lower energy values obtained

are linked with the different failure modes observed: MRE are brittle and undergo frag-
mentation upon impact, while the steel fragments are ductile and deform plastically, as
visible in Figure 9. The failure mode influences significantly the fragment/plate interaction,
resulting in lower impact velocities required to perforate the plates using steel fragments.
This is reflected in values of Ẽcrit

kin between 28 and 48% lower for steel fragments are than
for the MRE fragments.
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plug
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Figure 9. Failure mode comparison. On the left, 4.6 mm steel fragment impacting 2 mm plate at
693 m/s; on the right, 5 mm MREs fragment impacting 2 mm plate at 877 m/s. (a) steel fragment
flying towards the target, (b) impact between steel fragment and the plate, (c) the deformed fragment
perforates the target and the plug is ejected; (d) MRE fragment flying towards the target with
24 degrees of yaw, (e) impact, pre-perforation energy release and plug formation, (f) the fragment
shatters during the interaction with the target and spreads behind the plate.

The frames in Figure 9 compare the time evolution of two impacts involving, on the
left, a 4.6 mm steel fragment impacting a 2 mm plate at 693 m/s, and, on the right, a 5 mm
MRE fragment impacting a 2 mm plate at 877 m/s.

Figure 9c displays the deformed steel fragment, having the characteristic “mushroom”
shape. Figure 9f, on the other hand, shows the shattered MRE fragment and IIER. This
brittle nature of MRE leads to fragmentation even at low impact velocities. The impact
loadings cause intense stresses and internal friction, resulting in fragmentation and energy
release. The shattered MRE fragment continues its trajectory behind the perforated plate
while expanding as a debris cloud, essentially following the launch trajectory.

The high-speed recordings showed that the shattered parts of the fragment travel with
comparable residual velocities of the plugs, provided the absence of rotations observed
for impact velocities close to CIV. It was not possible to recover the shattered fragment as,
continuing its trajectory, it further reacted, impacting walls of the chamber.
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IIER was observed in the form of light emission for all experiments involving MRE.
Figure 9f shows the energy release spreading. It can be observed that the energy release
front travels with the same velocities of the shattered fragment and the plug.

3.2. Plate Perforation

The primary failure mode observed for the targets impacted at velocities above the
CIV was shear plugging for both the 3.5 mm and the 5 mm MRE fragments, as can be
onserved in Figure 10. Shear plugging is the typical failure mode for materials with high
strength and high failure strains, such as armour steel, as discussed by Hazell [16] for
instance, who concluded that plugging is more favourable than plate deformation.
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Figure 10. Cross sections of perforated plates. In detail: (a) 3 mm plate impacted by 5 mm fragment at 1075 m/s; (b) 3 mm
plate impacted by 3.5 mm fragment at 1549 m/s; (c) 2 mm plate impacted by 5 mm fragment at 861 m/s; (d) 2 mm plate
impacted by 3.5 mm fragment at 1023 m/s.

The cross-sections of the plates show that the perforation channels have diameters
equal to the diameter of the impacting fragments. In the case of thicker plates, shown in
Figure 10a,b, minor hole enlargement on the impact surface was observed.

In Figure 10c,d, some minor dishing was observed in 2 mm plates impacted by both
the 3.5 mm and 5 mm MRE fragments at velocities close to the CIV.

The failure mode of the plate influences directly the perforation process and, conse-
quently, the post-perforation IIER spread behind the plate. Details on the IIER velocity will
be discussed in detail in Sections 3.3 and 3.4.

3.3. Residual Velocity Analysis

The RI curves for the experimental results were determined. Quantitative considera-
tions are discussed for the firings involving the 5 mm MRE fragemnts, as the experimental
setup does not allow to reach velocities greater than 1600 m/s.

In the case of 3.5 mm MRE fragments, it was observed that, due to the bluff shape
and the mass of only 0.2 g, the flight stability of was severely affected for velocities higher
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than 1200 m/s, and, therefore, the data collected are not sufficient for a reliable curve fit, as
observable in Figure 11.
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The results from Table 4 are plotted in Figure 12. The RI fitting coefficients a and b are
defined for each case through a least square fit of the experimental data.

Table 4. Summary of parameters for the RI equation.

(h/d) CIV (m/s) a b

0.40 859 0.5358 4.642

0.50 956 0.4713 3.473

0.60 1073 0.3712 3.166
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Figure 12. Recht Ipson curve fittings for 5 mm fragments impacting targets with values of α lower
than 30◦.

The RI curves indicate that the increase of thickness of the plates from 2 mm to 2.5 mm
results in residual velocities circa 20% lower, while the increase from 2.5 mm to 3 mm plates
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results in a decrease of circa 30%, indicating an average increase of 5% in velocity loss per
additional millimetre.

Figure 13 shows the kinetic energy loss relative to the shots depicted in Figure 12.
The experimental distributions depicted in Figure 13 follow a linear trend for each frag-
ment/plate combination, as highlighted by the curve fit indicating an increase of circa 10%
in terms of kinetic energy loss with increasing plate thickness by 5 mm, i.e., 2% circa per
additional millimetre.
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Figure 13. Kinetic energy loss for 5 mm fragments over impact velocity. The blue markers indicate
the amout of kinetic energy lost impacting 2 mm plates; the black markers indicate the kinetic
energy loss observed when impacting 2.5 mm plates and the red markers indicate the kinetic energy
loss measured impacting 3 mm plates. The dashed lines are linear curve fit obtained from the
experimental data.

3.4. Impact Induced Energy Release

The experimental set-up used to record the IIER did not allow to measure the impact
angles for shots reported in Table 5. However, the residual velocities recorded are coherent
with the analyses discussed in this paper.

Table 5. Summary of parameters for the RI equation.

h/d Shot CIV (m/s) vres plug (m/s) venergy release front (m/s)

0.5
14 1312 555 555
15 1372 538 538
16 1427 625 625

0.6
10 1420 500 500
11 1432 384 416

The evaluation of the energy release front velocities, summarised in Table 5 shows that
the energy release travels with velocities comparable to the residual velocities of shattered
fragments and plugs flying without tumbling, as shown in Figure 3.

A visual comparison of firings involving 5 mm MRE fragments impacting 2.5 mm
target at velocities of 1252 m/s and 1220 m/s are depicted in Figure 14, respectively, on the
left and the right. The frames are taken with the same time intervals.
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Figure 14. Time evolution of high-velocity impact for 5 mm MRE fragments impacting 2.5 mm plates.
Left: energy release at impact velocity 1252 m/s. Right: impact velocity 1220 m/s. (a) impact between
fragment and target, (b) interaction between the fragments and the targets and plug formation;
(c) plug ejection; (d–g) plug flight behind the plate, debris cloud spreading and post-perforation
energy release evolution.
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The velocity difference between the two shots is 2.5%, which is sufficiently close for a
qualitative discussion.

The frames on the left, recorded in a dark room, highlight the IIER time evolution,
while the frames on the right show the mechanical aspects of plate perforation and MRE
fragment shattering.

In Figure 14a, the first reaction is triggered upon impact. The process continues
and lasts approximately 30 µs until the plug is ejected from the target and the energy
release is visible behind the target, as indicated in Figure 14c. In Figure 14d–f he energy
release continues spreading behind the plate, mainly following a normal direction. The
post-perforation energy release lasts approximatively 600 µs, as indicated by Figure 14g.

A significant amount of energy release is observed prior to perforation. During the
perforation, the MRE samples are shattered into numerous smaller parts, as visible in
Figure 14e,f. The reaction continues spreading and expands, following a conical shape.

4. Discussion

Figure 15 displays the values of Ẽcrit
kin derived from the experimental results for each

fragment-plate combination over the h/d parameter. The trend shown by the experimental
Ẽcrit

kin values in follow the same tendency observed by Børvik [20] and Wen [21] in their
papers describing the transition zone between shear plugging and adiabatic shear plugging.
In both publications, the transition zone between plugging failure modes was identified
for values of h/d ranging between 0.5 and 0.6.
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kin over h/d for every fragment-plate combination.

As reported by Equation (10), the value of Ẽcrit
kin is expressed by a two-term quadratic

equation but, following the indications of Grady et al. [14], the linear term of the equation
can be neglected and Ẽcrit

kin is then approximated by a one-term equation. The fitting
parameters determined through a least square fit from the experimental data are listed in
Table 6. It can be observed that, in the two-terms equation, the linear parameter ϕ is one
order of magnitude smaller than ε.

Table 6. Summary of parameters defined for the Ẽcrit
kin equation.

ε ϕ k

Two-term eq. 5.14 0.99 1.6
One-term eq. 6.55 - 2.1
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The estimated values of the multiplier k are sensible. Preliminary Taylor impact
tests have been performed and the results indicate the validity of the estimation. Further-
more, the estimations align significantly with the observations of Meyer et al. [17] and
Stepanov [18] discussed in Section 2.3. Further details on the dynamic experimental and
numerical characterization of MRE are described in a dedicated publication by the authors
of this paper [22].

The graph in Figure 15 shows the two curves, respectively, in red and black. Both
curves are accurate for values of (h/d) ≥ 0.57, while a certain degree of discrepancy can
be observed for lower ranges of (h/d), as indicated by the graph. The red curve is still
sufficiently accurate at the h/d value of 0.5, with an error of only 2%, while the black curve
shows an error in the order of 10% at the same abscissa. The inaccuracy becomes more
significant at h/d of 0.4, reaching a value of 30% for the one-term form of the model.

Overall, the energy-based model is significantly reliable, giving accurate indications
on the Ẽcrit

kin . By neglecting the linear term of the model, the evaluations are still significantly
accurate, indicating that the observations formulated by Grady et al. [14] can be applied to
this case study.

It is worth noting that the energy-based model does not consider the physical aspects
involved in the perforation process at the base of observations, as Børvik et al. [23] pointed
out. In fact, Wen et al. [21] observed that the failure modes of plates impacted by blunt pro-
jectiles are dependent on the parameter h/d. In particular, in the area ranging from values of
h/d of 0.3 to 0.5, the plates fail by simple shear plugging. As discussed in Section 3.2, minor
dishing was observed in the area surrounding the craters in this zone. The deformation of
the plate increases the energy dissipation and is reflected in the Ẽcrit

kin trend observed. The
area going from values of h/d ≥ 0.6, indicates the adiabatic shear plugging zone. Adiabatic
Shear Bands (ASB) formation plays a crucial role in forming the plug, resulting in lower
energies necessary for the perforation. The higher impact velocities necessary for perfora-
tion in this zone are responsible for the adiabatic shear plugging initiation [21]. The area
ranging from h/d of 0.5 to 0.6, represents the transition zone. The subdivision just described
represent a reference accepted by the scierntific community and perfectly alignes with the
observations and conclusions of Børvik et al. [20,23] and Wen et al. [21]. However, a clear
boundary between shear plugging, transition and adiabatic shearing cannot be defined,
as the formation of ASB is an evolutionary process that starts from, approximately, 0.5 h/d
and is strongly affected by the variability of microstructural morphology that is intrinsic in
every commercial product, as observed by Xu et al. [24], by Couque [25], Yiadom et al. [26]
or Jo et al. [27].

Metallographic analyses were performed on sections of the perforated plates to vali-
date the observations discussed in this chapter. Figure 16 shows the presence of ABS in a
3 mm plate impacted by a 5 mm MRE fragment at 1141 m/s.
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Figure 16. Metallographic analysis of plate impacted at 1141 m/s with an h/d = 0.6; (a) details of wide
dASBs and gradual formation of tASB; (b) deformed shear bands (dASB), which are characteristic for
early-stage deformations and shear; (c) narrow transformed shear band (tASB) created by further
development of the dASB.

5. Conclusions

94 ballistic impact experiments were performed to collect relevant information on
the behaviour of MRE fragments impacting armour steel plates with thicknesses ranging
from 2 mm to 3 mm. MRE samples are used as surrogate material of IRM, considering
the affinity in terms of mechanical properties and macroscopic IIER effects. Quantitative
parameters as CIV, EKin crit, Ẽcrit

kin and residual velocities were evaluated.
Prior to the set-up of the experiments, the influence of the pitch angle (α) on the impact

outcomes was assessed. In particular, it was observed that for values of α up to 25◦, the
residual velocities measured were not affected significantly, as shown by the Recht-Ipson
curves in Section 2.3.

The MRE fragments shattered upon impact, continuing the trajectory behind the
perforated target plates. The comparison with inert steel fragments led to the conclusion
that the failure mode influences the CIV and EKin crit quantification significantly, resulting
in lower values of both CIV and EKin crit for steel fragments. It was concluded that by
increasing the thickness of the plates by 0.5 mm, the kinetic energy loss increases by 10%.

The failure mode observed in the plates is an indication of the energy necessary to per-
forate the plate. The interaction between the target plates and the MRE fragments at impact
velocities greater than the CIV resulted in shear plugging failure for all fragment/plate
combinations. However, for lower values of h/d, simple shear plugging was preceded by
minor dishing, while for the higher values of h/d adiabatic shear plugging was observed,
affecting the CIV and EKin crit.

Impact induced energy release was observed for all shots performed using MRE
fragments. The IIER front spreads with velocities comparable with the residual velocities
of the shattered fragment and, provided a stable flight, the ejected plugs.

The energy-based model developed is sufficiently accurate for the Ẽcrit
kin evaluation

for observed. The comparison between the two-terms form and the one-term form of the
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model indicates that the energy absorbed by the fragment for shattering is negligible, at
least in first approximation, due to the brittle nature of MRE, confirming the assumptions
formulated by Grady et al. [14].
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