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Abstract 

This study evaluates a suspension design of a passenger car to obtain maximum rider's comfort when the 

vehicle is subjected to different road profile or road surface condition. The challenge will be on finding a 

balance between the rider's comfort and vehicle handling to optimize design parameters. The study uses a 

simple passive suspension system and an active suspension model integrated with a pneumatic actuator 

controlled by proportional integral derivative (PID) controller in both quarter car and full car models having 

a different degree of freedoms (DOF) and increasing degrees of complexities. The quarter car considered 

as a 2-DOF model, while the full car model is a 7-DOF model. The design process set to optimise the spring 

stiffnesses, damping coefficients and actuator PID controller gains. For optimisation, the research featured 

genetic algorithm optimisation technique to obtain a balanced response of the vehicle as evaluated from the 

displacement, velocity and acceleration of sprung and unsprung masses along with different human comfort 

and vehicle performance criteria. The results revealed that the active suspension system with optimised 

spring stiffness, damping coefficients and PID gains demonstrated the superior riding comfort and road 

holding compared to a passive suspension system. 
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Nomenclature 

sZ -Sprung Mass Displacement urrZ -Rear-Right Unsprung Mass Displacement 

𝑍𝑠

.

-Sprung Mass Velocity 𝑍𝑢𝑟𝑟

.

-Rear-Right Unsprung Mass Velocity 

 uZ   -Unsprung Mass Displacement rflZ  -Road-Profile at Front-Left Wheel 

𝑍𝑢

.

 -Unsprung Mass Velocity 
rfrZ -Road-Profile at Front-Right Wheel 

rZ  -Road Profile rrlZ -Road-Profile at Rear-Left Wheel 

uflZ -Front-Left Unsprung Mass Displacement  
rrrZ -Road-Profile at Right-Right Wheel 

𝑍𝑢𝑓𝑙

.

-Front-Left Unsprung Mass Velocity   -Pitch Angle 

frZ -Front-Right Unsprung Mass Displacement 𝜃
.

 -Pitch Angular Velocity 

𝑍𝑢𝑓𝑟

.

-Front-Right Unsprung Mass Velocity   -Roll Angle 

urlZ  -Rear-Left Unsprung Mass Displacement 𝜙
.

 -Roll Angular Velocity 

𝑍𝑢𝑟𝑙

.

-Rear-Left Unsprung Mass Velocity 
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1. Introduction 

Since the advent of transport technologies, for easy mobility of and comfort humans, vehicle suspension 

systems (VSS) have played significant roles, from the horse-drawn carriages with flexible leaf springs at 

the four corners to the modern springs (generally made of steel and its alloys, chrome silicon, chrome 

vanadium, beryllium copper, phosphor bronze and titanium) in modern automobiles with complex control 

algorithms [1]. On this account, the significance of VSS is invariably factored into vehicles' design because, 

in situations where the drivers and passengers have to be exposed to prolonged driving distances on uneven 

road topographies, they are prone to discomfort and health-related problems [1-3]. In general, vehicle VSS 

are classified into three sets, namely the passive suspension system (PSS), the semi-active suspension 

system (SASS), and the active suspension system (ASS) [2]. As far as this work is concerned, only the PSS 

and ASS will be given considerable emphasis herein. Nonetheless, one important thing to note about SASS 

is that they have aroused the interest of researchers and received a substantial amount of attention because 

they apparently provide the best trade-off between economic viability and field-proven reliability when 

compared with PSS and ASS [3]. 

On the one hand, a PSS uses damping elements such as hydraulic shock absorber/viscous dampers 

positioned between the body and wheels of the vehicle to restrain the motion of the body and wheel by 

limiting their relative velocities to a rate that gives a satisfactory comfort [3]. The PSS only offers a trade-

off between ride comfort and road holding by providing spring and damping coefficients with fixed rates 

[4]. On the other hand, an ASS is a closed-loop system with a feedback signal representing all or a few of 

the system variables to control actuators. The actuators are added in addition to the usual passive elements, 

or the passive elements are replaced altogether. In general, the ASS contains external power sources, force-

generating actuators, measuring and sensing instruments along with the conditioning and amplifying 

devices [5]. Nonetheless, it is important to note that irrespective of the suspension type, their primary 

function is to reduce or eliminate the road excitations (road shocks and vibrations) transmitted to the body 

of the vehicle, that is, dampen road profile-induced and vehicle manoeuvre-induced vibrational energies 

from the vehicle which most often than not is invariably discomforting and detrimental to the health and 

safety of the driver, the passengers and the vehicle itself [1-5]. Owing to these phenomena, a good VSS 

should provide a comfortable ride and decent road holding within a reasonable array of suspension 

deflection [3-5].  

For a long time now, the design of perfect VSS has remained one of the most daunting challenges for 

automotive engineers. As a matter of fact, the enormous corpus of practical experiences and previous 

studies have pre-eminently revealed that it is difficult to achieve excellent comfortability for the driver and 

the passengers and simultaneously have a decent road-holding when the car is subjected to exogenous and 

endogenous perturbations such as different road roughness profiles, an unpredictable variation of vehicle 

speed and load variation [3-8]. Therefore, the traditional protocol of designing VSS has been and it is still 

centred on the basis of a trade-off between ride comfort and road holding. Many researchers have attempted 

to optimise quarter car, half car and full car parameters (QC, HC and FC) models for all types of VSS with 

the primary objective of probably eliminating the foregoing trade-off [4, 6-9].  

Puneet at al., have applied design of experiment (DOE) and multi-objective genetic algorithm (MOGA) to 

optimise the input QC parameters for better ride comfort and road holding wherein they used a passive 

damper [6]. Mitra et al., have demonstrated that MOGA proved effective in optimising the QC parameters 

when PSS is deployed in the vehicle. In comparison with the non-optimised QC parameters, they reported 

improvement in the ride comfort with a small decrease in road holding value while the non-optimised QCP 
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resulted in significant deterioration of the road holding [4]. When Seifi et al. [7], noticed a critical 

knowledge gap regarding the foregoing subject matter, they conducted a comprehensive study that 

presented a method for the optimised design of a PSS in order to improve different aspects of the ride 

comfort, road holding, workspace and the rollover resistance by considering a full vehicle model with 11-

DOF. Similarly, the authors used MOGA to solve their optimisation problem [7]. More recently, Yatak and 

Sahin have applied a hybrid fuzzy controller to improve the ride comfort-road holding trade-off 

characteristics of a full VSS [8]. In the work of Anandan and Kandavel, they proposed an ASS composed 

of a hydraulic actuator and a proportional-integral-derivative controller. Their simulated results alongside 

MOGA-tuning of the controller parameters showed that the proposed ASS significantly improved the ride 

comfort with guaranteed vehicle stability [9]. After an extensive literature survey, the authors of the present 

work saw that a lot of research effort is still needed to upgrade PSS to a level where the previously 

mentioned trade-off is negligible. As for ASS, they are characterised with satisfactory performance with 

MOGA optimisation and even better performance when equipped with proportional integral derivative 

(PID) controllers. In addition, ASS poses an advantage over the PSS to reduce the traditional design as a 

compromise between vehicle road handling and the occupant riding comfort by directly controlling the 

suspensions force actuators by using different controllers such as PIDs and linear-quadratic regulator (LQR) 

control [10,11]. The optimisation of the controller parameters can be performed using different optimisation 

techniques like a genetic algorithm (GA), particle swarm optimisation (PSO), simulated annealing (SA) 

technique and other optimisation techniques. The genetic algorithm is selected in this study due to its ability 

to handle complex problems and proven performance regarding VSS control [6-7]. 

A genetic algorithm (GA) is the evolutionary optimisation technique that mimics the natural selection 

process to solve constrained and unconstrained optimisation problems. The algorithm iteratively modifies 

the initial population of individual solutions. At each step, the GA selects individuals from the current 

population of solutions and considers them as parents to apply genetic operations to produce the children 

for the next generation. Over successive generations, the population "evolves" and the optimal solution is 

reached. The GA performs well where other optimisation techniques fail and are not well suited, which 

includes the problems in which the objective function is nondifferentiable, stochastic, discontinuous, or 

highly non-linear [12].  The GA differs from a classical, derivative-based, optimisation algorithm in a sense 

that while a classical algorithm generates a single solution at each iteration for the sequence to approach an 

optimal solution, the GA generates a population of solutions at each generation for the population to 

approach an optimal solution. Also, while the classical approach selects the next point in the sequence of 

solutions by a deterministic computation, the GA selects the next population by randomised operations 

[13]. This is an indication that the GA is well suited for the present study, which is also pre-eminently 

corroborated by the works of the authors in the preceding paragraph [6-10].  

Concerning PID control, it is widely used in industrial control systems which employ the control loop 

mechanism through feedback and a variety of other applications where continuously modulated control is 

essential. A PID controller uses the error term calculated continuously from the difference of a measured 

process variable and the desired setpoint or reference of that variable and applies a corrective action based 

on proportional, integral, and derivative terms. The industrial control applications of the PID control include 

the regulation temperature, flow, pressure, speed and other process variables [14]. The PID control is a 

control strategy of choice because it is easy to implement and is a well-established way of driving the 

desired system towards a target position or level [15]. Ahmed et al., have been able to establish that in a 

quarter car model, the introduction of an active element in the VSS with a PID controller can achieve a 
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better trade-off than is possible using purely passive elements [15]. Nagarkar et al., demonstrated that 

MOGA-optimized QC parameters in conjunction with PID control of the ASS gave better control and ride 

comfort in comparison with classic parameters and PSS [11]. Tandel et al., have also found that 

implementation of PID control decreases the body acceleration of ASS to the almost half of PSS and 

therefore the ride comfort of the driver and passengers can be improved. One can agree that the GA 

optimisation is a viable option to tune PID parameters for enhanced performance of ASS. The proposed 

approach is tested for the optimal vehicle suspension design meeting the following basic requirements: ride 

comfort, reduction of dynamic road-tire forces, and the reduction of relative motions between the vehicle 

bodies [16].  

Hence, the primary objective of this study is to design the suspension system to achieve the balance between 

rider comfort and road handling. In this study, two different models with varied complexities are used to 

model the suspension system. Quarter and full car models with an increasing level of complexity were used 

to carry the modal simulations. The state-space representation of the equations of motion considered during 

this study makes it easy to use the MATLAB program to obtain the response of the system. The objective 

function of the GA was to minimise various performance responses such as the sprung mass displacement, 

unsprung mass displacement and the suspension travel. The modelling, simulation and optimisation were 

done with the aid of MATLAB computational resources. The choice of this computational tool was guided 

by the successful historical records of their implementation and performance with respect to similar 

suspension problems [14-16]. 

2. Vehicle Dynamics 

The vehicle dynamics (VD) is a part of engineering primarily concerned with the mechanics of vehicle 

systems. The VD plays a key role in the development of the automobile industry, being a fundamental 

theory of the industry.  The VD for a car can be defined as the response of the vehicle to a driver's inputs 

on a given solid surface [17]. The VD can be subdivided into longitudinal, lateral and vertical VD. The 

longitudinal and lateral aspects of the vehicle motion are part of first two sections which include driving, 

braking and cornering, while the latter concerns with the vertical motion of the vehicle and intern related 

to the suspension system and rider comfort. The essential parts of the vertical VD system usually comprise 

the body of the vehicle (sprung mass), the suspension component (spring and damper) and the tire (unsprung 

mass). The ride comfort focuses on vehicle vibration and pitched movement caused by vertical tire force. 

Hence, in this study, the vertical dynamics was adapted as it suitable for the objective of the study [18]. 

These models include quarter car (QC), half car (HC) and the full car (FC) models with an increasing level 

of complexity and ability to capture details of the dynamics of the vehicle [17-20]. Only the QC and FC 

models are pertinent to this study. 

2.1. Quarter Car Model 

In the case of QC model, the mass of the vehicle body and the occupants is represented as a single mass 

element called the sprung mass (Ms). The unsprung mass (Mu) consists of the mass of the wheel assembly. 

A spring and a damper are used to model the suspension system between the sprung and unsprung masses 

while another set of spring and damper are used to model the tire stiffness and internal damping 

respectively. For the QC representation of ASS, only the actuating force is considered. The actuator is not 

modelled explicitly for simplicity, and hence the actuator dynamics are not considered making it an ideal 

actuator. As QC model is most simple to implement, it comes with the inherent limitations. The roll and 
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pitch motion of the vehicle cannot be modelled using QC model. Also, the effect of dependent motion of 

individual wheel suspensions is not taken into consideration. Fig.1 shows the  

 

 

Figure 1: Schematic of a quarter car model [17] 

The equations of motion for the active QC model are given in Eq. (2.1) where Zs and Zu are the vertical 

displacements of the sprung and unsprung mass, respectively. The road profile is denoted as Zr. The 

derivatives, i.e., the velocity and accelerations of the sprung and unsprung masses, are represented by a 

single and double dot over the variables, respectively. ks is the stiffness of the suspension spring and Cs is 

the damping coefficient of the suspension damper. The tire stiffness is represented by kt and internal 

damping coefficient of the tire is Ct. The actuation force is given as Fa. The QC model for the PSS system 

can be obtained simply by removing the actuation force term from the following equations. 

𝑀𝑠𝑍�̈� = −𝐶𝑠(𝑍�̇� − 𝑍�̇�) − 𝑘𝑠(𝑍𝑠 − 𝑍𝑢) + 𝐹𝑎

𝑀𝑢𝑍�̈� = 𝐶𝑠(𝑍�̇� − 𝑍�̇�) + 𝑘𝑠(𝑍𝑠 − 𝑍𝑢) − 𝐶𝑡(𝑍�̇� − 𝑍�̇�) − 𝑘𝑡(𝑍𝑢 − 𝑍𝑟) − 𝐹𝑎

                  (2.1) 

The standard state-space model equations are given as eq. (2.2). 

�̇�(𝑡) = 𝐴 𝑋(𝑡) + 𝐵 𝑈(𝑡)
𝑌(𝑡) = 𝐶 𝑋(𝑡) + 𝐷 𝑈(𝑡)

                                (2.2) 

where, 𝐴 = State space matrix, 𝐵 = Input matrix, 𝐶 = Output matrix, 𝐷 = Direct transmission matrix, 𝑋 = 

State variables, 𝑈 = Input of system, 𝑌 = Output of system. 

It is important to note that State Space Model (SSM) refers to a class of model that describes the dependence 

between the latent state variable and the observed measurement. The state or the measurement can be either 

continuous or discrete. In control engineering, a state-space representation is a mathematical model of a 

physical system as a set of input, output and state variables related by first-order differential equations or 

difference equations [21]. The state variables are selected (𝑋(𝑡)) based on the desired outputs as given in 

Eq. (2.3). 
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𝑥1 = 𝑍𝑠  

𝑥2 = 𝑥1̇ = 𝑍�̇�  
𝑥3 = 𝑍𝑢  

𝑥4 = 𝑥3̇ = 𝑍�̇�  
𝑥5 = 𝑍𝑟  

                                          (2.3) 

The left-hand side of the first state-space equation is obtained by taking the first derivative of the state 

variable vector to be  

 (𝑋(𝑡) = [𝑥1  𝑥2  𝑥3  𝑥4  𝑥5]
𝑇) ⇒ �̇�(𝑡) = [𝑥1̇  𝑥2̇  𝑥3̇  𝑥4̇  𝑥5̇]

𝑇           (2.4) 

Now substituting the state variables in the equations of motion to get the desired values of first derivatives 

of state variables: 

𝑀𝑠𝑥2̇ = −𝐶𝑠(𝑥2 − 𝑥4) − 𝑘𝑠(𝑥1 − 𝑥3) + 𝐹𝑎

⇒ 𝑥2̇ =
1

𝑀𝑠
[−𝐶𝑠(𝑥2 − 𝑥4) − 𝑘𝑠(𝑥1 − 𝑥3) + 𝐹𝑎]

𝑀𝑢𝑥4̇ = 𝐶𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3) − 𝐶𝑡(𝑥4 − 𝑍�̇�) − 𝑘𝑡(𝑥3 − 𝑥5)

⇒ 𝑥4̇ =
1

𝑀𝑢
[𝐶𝑠(𝑥2 − 𝑥4) + 𝑘𝑠(𝑥1 − 𝑥3) − 𝐶𝑡(𝑥4 − 𝑍�̇�) − 𝑘𝑡(𝑥3 − 𝑥5) − 𝐹𝑎]

            (2.5) 

By rearranging the above equations, the representations of the first derivatives of the state variables are 

obtained.  

𝑥1̇ = 𝑥2

𝑥2̇ = −
𝑘𝑠

𝑀𝑠
𝑥1 −

𝐶𝑠

𝑀𝑠
𝑥2 +

𝑘𝑠

𝑀𝑠
𝑥3 +

𝐶𝑠

𝑀𝑠
𝑥4 +

1

𝑀𝑠
𝐹𝑎

𝑥3̇ = 𝑥4

𝑥4̇ =
𝑘𝑠

𝑀𝑢
𝑥1 +

𝐶𝑠

𝑀𝑢
𝑥2 −

(𝑘𝑠 + 𝑘𝑡)

𝑀𝑢
𝑥3 −

(𝐶𝑠 + 𝐶𝑡)

𝑀𝑢
𝑥4 +

𝑘𝑡

𝑀𝑢
𝑥5 +

𝐶𝑡

𝑀𝑢
𝑍�̇� −

1

𝑀𝑢
𝐹𝑎

𝑥5̇ = 𝑍�̇�

              (2.6) 

By writing the above equations in the matrix form, the following state-space representation is obtained. 

[
 
 
 
 
𝑥1̇

𝑥2̇

𝑥3̇

𝑥4̇

𝑥5̇]
 
 
 
 

=

[
 
 
 
 
 
 

0 1 0 0 0

−
𝑘𝑠

𝑀𝑠
−

𝐶𝑠

𝑀𝑠

𝑘𝑠

𝑀𝑠

𝐶𝑠

𝑀𝑠
0

0 0 0 1 0
𝑘𝑠

𝑀𝑢

𝐶𝑠

𝑀𝑢
−

(𝑘𝑠 + 𝑘𝑡)

𝑀𝑢
−

(𝐶𝑠 + 𝐶𝑡)

𝑀𝑢

𝑘𝑡

𝑀𝑢

0 0 0 0 0 ]
 
 
 
 
 
 

[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 

+

[
 
 
 
 
 
 

0 0

0
1

𝑀𝑠

0 0
𝐶𝑡

𝑀𝑢
−

1

𝑀𝑢

1 0 ]
 
 
 
 
 
 

[𝑍�̇�

𝐹𝑎

]                  (2.7) 

[
 
 
 
 
𝑥5

𝑥1

𝑥2

𝑥3

𝑥4]
 
 
 
 

=

[
 
 
 
 
𝑍𝑟

𝑍𝑠

𝑍�̇�

𝑍𝑢

𝑍�̇�]
 
 
 
 

=

[
 
 
 
 
 
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 −1 0 0]

 
 
 
 
 

[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 

+

[
 
 
 
 
 
0 0
0 0
0 0
0 0
0 0
0 0]

 
 
 
 
 

[𝑍�̇�

𝐹𝑎

]                               (2.8) 

Notice that the input is 𝑍�̇� but the road profile is 𝑍𝑟, which can be obtained by differentiating the input. 
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2.2. Full Car Model 

In contrast with QC model, FC is a reasonably complex model and hence can capture the detailed 

dynamics of the vertical motion of the vehicle. The FC model consists of the sprung mass and four 

unsprung masses are connected to it at four corners through the spring and damper of the suspension 

system. The tires are modelled as parallel sets of spring and damping elements. The model considered 

in the study has seven DOFs, which include the heave, roll and pitch of sprung mass and vertical 

displacement of four unsprung masses. All the elements of the suspension system and the tire stiffness 

and damping are assumed to be linear. It is also assumed that the location of the centre of gravity (CG) 

of the sprung mass does not change with time and the coordinate system of the suspension system is 

attached to the CG of the vehicle and is aligned with the principal axes of the vehicle body. The roll 

and pitch angles induced during the operation are assumed to be small, and the small-angle 

approximation is used to obtain the equations of motion, which also adds to the limitation of the model 

[17]. Like QC model, only the actuating force is considered, and the actuator is not modelled explicitly 

for the ASS case. The longitudinal, lateral and yaw DOF and the suspension system affect each other. 

However, this effect is not considered in this model. 

 

 
Figure 2: Schematic of a full car model [17] 

After applying a force-balance analysis to the model in Fig. 2., the equations of motion for the FC model 

are given as: 
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𝑀𝑠�̈� = −(2𝐾𝑠𝑓
+ 2𝐾𝑠𝑟

)𝑍 − (2𝐶𝑠𝑓
+ 2𝐶𝑠𝑟

)�̇� + (2𝑎𝐾𝑠𝑓
− 2𝑏𝐾𝑠𝑟

)𝜃 +

  (2𝑎𝐶𝑠𝑓
− 2𝑏𝐶𝑠𝑟

)�̇� + 𝐾𝑠𝑓
𝑍𝑢𝑓𝑙

+ 𝐶𝑠𝑓
𝑍�̇�𝑓𝑙

+ 𝐾𝑠𝑓
𝑍𝑢𝑓𝑟

+ 𝐶𝑠𝑓
𝑍�̇�𝑓𝑟

+

  𝐾𝑠𝑟
𝑍𝑢𝑟𝑙

+ 𝐶𝑠𝑟
𝑍�̇�𝑟𝑙

+ 𝐾𝑠𝑟
𝑍𝑢𝑟𝑟

+ 𝐶𝑠𝑟
𝑍�̇�𝑟𝑟

𝐼𝑦𝑦�̈� = (2𝑎𝐾𝑠𝑓
− 2𝑏𝐾𝑠𝑟

)𝑍 + (2𝑎𝐶𝑠𝑓
− 2𝑏𝐶𝑠𝑟

)�̇� − (2𝑎2𝐾𝑠𝑓
+ 2𝑏2𝐾𝑠𝑟

)𝜃 +

  −(2𝑎2𝐶𝑠𝑓
+ 2𝑏2𝐶𝑠𝑟

)�̇� − 𝑎𝐾𝑠𝑓
𝑍𝑢𝑓𝑙

− 𝑎𝐶𝑠𝑓
𝑍�̇�𝑓𝑙

− 𝑎𝐾𝑠𝑓
𝑍𝑢𝑓𝑟

−

  𝑎𝐶𝑠𝑓
𝑍�̇�𝑓𝑟

+ 𝑏𝐾𝑠𝑟
𝑍𝑢𝑟𝑙

+ 𝑏𝐶𝑠𝑟
𝑍�̇�𝑟𝑙

+ 𝑏𝐾𝑠𝑟
𝑍𝑢𝑟𝑟

+ 𝑏𝐶𝑠𝑟
𝑍�̇�𝑟𝑟

𝐼𝑥𝑥�̈� = −0.25𝑤2(2𝐾𝑠𝑓
+ 2𝐾𝑠𝑟

)𝜙 − 0.25𝑤2(2𝐶𝑠𝑓
+ 2𝐶𝑠𝑟

)�̇� + 0.5𝑤𝐾𝑠𝑓
𝑍𝑢𝑓𝑙

+

  0.5𝑤𝐶𝑠𝑓
𝑍�̇�𝑓𝑙

− 0.5𝑤𝐾𝑠𝑓
𝑍𝑢𝑓𝑟

− 0.5𝑤𝐶𝑠𝑓
𝑍�̇�𝑓𝑟

+ 0.5𝑤𝐾𝑠𝑟
𝑍𝑢𝑟𝑙

+

  0.5𝑤𝐶𝑠𝑟
𝑍�̇�𝑟𝑙

− 0.5𝑤𝐾𝑠𝑟
𝑍𝑢𝑟𝑟

− 0.5𝑤𝐶𝑠𝑟
𝑍�̇�𝑟𝑟

                                                         (2.9)

  

𝑀𝑢𝑍�̈�𝑓𝑙
= 𝐾𝑠𝑓

𝑍 + 𝐶𝑠𝑓
�̇� − 𝑎𝐾𝑠𝑓

𝜃 − 𝑎𝐶𝑠𝑓
�̇� + 0.5𝑤𝐾𝑠𝑓

𝜙 + 0.5𝑤𝐶𝑠𝑓
�̇� −

  (𝐾𝑠𝑓
+ 𝐾𝑡)𝑍𝑢𝑓𝑙

− (𝐶𝑠𝑓
+ 𝐶𝑡)𝑍�̇�𝑓𝑙

+ 𝐾𝑡𝑍𝑟𝑓𝑙 + 𝐶𝑡𝑍�̇�𝑓𝑙

𝑀𝑢𝑍�̈�𝑓𝑟
= 𝐾𝑠𝑓

𝑍 + 𝐶𝑠𝑓
�̇� − 𝑎𝐾𝑠𝑓

𝜃 − 𝑎𝐶𝑠𝑓
�̇� − 0.5𝑤𝐾𝑠𝑓

𝜙 − 0.5𝑤𝐶𝑠𝑓
�̇� −

  (𝐾𝑠𝑓
+ 𝐾𝑡)𝑍𝑢𝑓𝑟

− (𝐶𝑠𝑓
+ 𝐶𝑡)𝑍�̇�𝑓𝑟

+ 𝐾𝑡𝑍𝑟𝑓𝑟 + 𝐶𝑡𝑍�̇�𝑓𝑟

𝑀𝑢𝑍�̈�𝑟𝑙
= 𝐾𝑠𝑟

𝑍 + 𝐶𝑠𝑟
�̇� + 𝑏𝐾𝑠𝑟

𝜃 + 𝑏𝐶𝑠𝑟
�̇� + 0.5𝑤𝐾𝑠𝑟

𝜙 + 0.5𝑤𝐶𝑠𝑟
�̇� −

  (𝐾𝑠𝑟
+ 𝐾𝑡)𝑍𝑢𝑟𝑙

− (𝐶𝑠𝑟
+ 𝐶𝑡)𝑍�̇�𝑟𝑙

+ 𝐾𝑡𝑍𝑟𝑟𝑙 + 𝐶𝑡𝑍�̇�𝑟𝑙

𝑀𝑢𝑍�̈�𝑟𝑟
= 𝐾𝑠𝑟

𝑍 + 𝐶𝑠𝑟
�̇� + 𝑏𝐾𝑠𝑟

𝜃 + 𝑏𝐶𝑠𝑟
�̇� − 0.5𝑤𝐾𝑠𝑟

𝜙 − 0.5𝑤𝐶𝑠𝑟
�̇� −

  (𝐾𝑠𝑟
+ 𝐾𝑡)𝑍𝑢𝑟𝑟

− (𝐶𝑠𝑟
+ 𝐶𝑡)𝑍�̇�𝑟𝑟

+ 𝐾𝑡𝑍𝑟𝑟𝑟 + 𝐶𝑡𝑍�̇�𝑟𝑟

 

Where, Ms and Mu have a similar meaning as QC model and are sprung and unsprung mass, respectively. 

The additional roll and pitch DOFs come into picture due to the moment of inertia Ixx and Iyy about the roll 

and pitch axes of the vehicle respectively. The pitch angle is represented as 𝜃 and the roll angle is 

represented as 𝜙. Z is the vertical displacement of the sprung mass while the unsprung mass and road profile 

are denoted as Zu and Zr with the subscripts corresponding to the wheel. Here fr stands for front-right, fl is 

front-left, rr is rear-right and rl stands for rear-left. A single dot above the variable denotes the velocity, 

while the acceleration is given as double dots. The spring stiffness and the damping coefficient are demoted 

as Ks and Cs while the front and rear variations are denoted with the subscripts f and r, respectively. The 

tire stiffness is Kt and the tire internal damping coefficient is Ct. 

The equations of motion are represented in the form of state-space equations. The selected states are given 

in eq. (2.10). 



9 
 

𝑥1 = 𝑍  

𝑥2 = �̇�  
𝑥3 = 𝜃  

𝑥4 = �̇�  
𝑥5 = 𝜙 

𝑥6 = �̇�  
𝑥7 = 𝑍𝑢𝑓𝑙

𝑥8 = 𝑍�̇�𝑓𝑙

𝑥9 = 𝑍𝑢𝑓𝑟
 

𝑥10 = 𝑍�̇�𝑓𝑟
 

𝑥11 = 𝑍𝑢𝑟𝑙

𝑥12 = 𝑍�̇�𝑟𝑙

𝑥13 = 𝑍𝑢𝑟𝑟
 

𝑥14 = 𝑍�̇�𝑟𝑟

𝑥15 = 𝑍𝑟𝑓𝑙

𝑥16 = 𝑍𝑟𝑓𝑟

𝑥17 = 𝑍𝑟𝑟𝑙 

𝑥18 = 𝑍𝑟𝑟𝑟 

                             (2.10) 

The derivatives of the states can be obtained by rearranging the equations of motion. 

𝑥1̇ = 𝑥2

𝑥2̇ =
1

𝑀𝑠
{−2(𝐾𝑠𝑓

+ 𝐾𝑠𝑟
)𝑥1 − 2(𝐶𝑠𝑓

+ 𝐶𝑠𝑟
)𝑥2 + 2(𝑎𝐾𝑠𝑓

− 𝑏 ∗ 𝐾𝑠𝑟
)𝑥3

  +2(𝑎𝐶𝑠𝑓
− 𝑏 ∗ 𝐶𝑠𝑟

)𝑥4 + 𝐾𝑠𝑓
𝑥7 + 𝐶𝑠𝑓

𝑥8 + 𝐾𝑠𝑓
𝑥9 + 𝐶𝑠𝑓

𝑥10

  +𝐾𝑠𝑟
𝑥11 + 𝐶𝑠𝑟

𝑥12 + 𝐾𝑠𝑟
𝑥13 + 𝐶𝑠𝑟

𝑥14}

𝑥3̇ = 𝑥4

𝑥4̇ =
1

𝐼𝑦𝑦
{2(𝑎𝐾𝑠𝑓

− 𝑏𝐾𝑠𝑟
)𝑥1 + 2(𝑎𝐶𝑠𝑓

− 𝑏𝐶𝑠𝑟
)𝑥2 − 2(𝑎2𝐾𝑠𝑓

+ 𝑏2𝐾𝑠𝑟
)𝑥3

  −2(𝑎2𝐶𝑠𝑓
+ 𝑏2𝐶𝑠𝑟

)𝑥4 − 𝑎𝐾𝑠𝑓
𝑥7 − 𝑎𝐶𝑠𝑓

𝑥8 − 𝑎𝐾𝑠𝑓
𝑥9 − 𝑎𝐶𝑠𝑓

𝑥10

  𝑏𝐾𝑠𝑟
𝑥11 + 𝑏𝐶𝑠𝑟

𝑥12 + 𝑏𝐾𝑠𝑟
𝑥13 + 𝑏𝐶𝑠𝑟

𝑥14}

𝑥5̇ = 𝑥6

𝑥6̇ =
1

2𝐼𝑥𝑥
{−𝑤2(𝐾𝑠𝑓

+ 𝐾𝑠𝑟
)𝑥5 − 𝑤2(𝐶𝑠𝑓

+ 𝐶𝑠𝑟
)𝑥6 + 𝑤𝐾𝑠𝑓

𝑥7 + 𝑤𝐶𝑠𝑓
𝑥8

  −𝑤𝐾𝑠𝑓
𝑥9 − 𝑤𝐶𝑠𝑓

𝑥10 + 𝑤𝐾𝑠𝑟
𝑥11 + 𝑤𝐶𝑠𝑟

𝑥12 − 𝑤𝐾𝑠𝑟
𝑥13 − 𝑤𝐶𝑠𝑟

𝑥14}

𝑥7̇ = 𝑥8

𝑥8̇ =
1

𝑀𝑢
{𝐾𝑠𝑓

𝑥1 + 𝐶𝑠𝑓
𝑥2 − 𝑎𝐾𝑠𝑓

𝑥3 − 𝑎𝐶𝑠𝑓
𝑥4 +

𝑤

2
𝐾𝑠𝑓

𝑥5 +
𝑤

2
𝐶𝑠𝑓

𝑥6                                                    (2.11)  

  −(𝐾𝑠𝑓
+ 𝐾𝑡)𝑥7 − (𝐶𝑠𝑓

+ 𝐶𝑡)𝑥8 + 𝐾𝑡𝑥15 + 𝐶𝑡𝑍�̇�𝑓𝑙}

𝑥9̇ = 𝑥10
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𝑥10̇ =
1

𝑀𝑢
{𝐾𝑠𝑓

𝑥1 + 𝐶𝑠𝑓
𝑥2 − 𝑎𝐾𝑠𝑓

𝑥3 − 𝑎𝐶𝑠𝑓
𝑥4 −

𝑤

2
𝐾𝑠𝑓

𝑥5 −
𝑤

2
𝐶𝑠𝑓

𝑥6

  −(𝐾𝑠𝑓
+ 𝐾𝑡)𝑥9 − (𝐶𝑠𝑓

+ 𝐶𝑡)𝑥10 + 𝐾𝑡𝑥16 + 𝐶𝑡𝑍�̇�𝑓𝑟}

𝑥11̇ = 𝑥12

𝑥12̇ =
1

𝑀𝑢
{𝐾𝑠𝑟

𝑥1 + 𝐶𝑠𝑟
𝑥2 + 𝑏𝐾𝑠𝑟

𝑥3 + 𝑏𝐶𝑠𝑟
𝑥4 +

𝑤

2
𝐾𝑠𝑟

𝑥5 +
𝑤

2
𝐶𝑠𝑟

𝑥6

  −(𝐾𝑠𝑟
+ 𝐾𝑡)𝑥11 − (𝐶𝑠𝑟

+ 𝐶𝑡)𝑥12 + 𝐾𝑡𝑥17 + 𝐶𝑡𝑍�̇�𝑟𝑙}

𝑥13̇ = 𝑥14

𝑥14̇ =
1

𝑀𝑢
{𝐾𝑠𝑟

𝑥1 + 𝐶𝑠𝑟
𝑥2 − 𝑎𝐾𝑠𝑟

𝑥3 − 𝑎𝐶𝑠𝑟
𝑥4 −

𝑤

2
𝐾𝑠𝑟

𝑥5 −
𝑤

2
𝐶𝑠𝑟

𝑥6

  −(𝐾𝑠𝑟
+ 𝐾𝑡)𝑥13 − (𝐶𝑠𝑟

+ 𝐶𝑡)𝑥14 + 𝐾𝑡𝑥18 + 𝐶𝑡𝑍�̇�𝑟𝑟}

𝑥15̇ = 𝑍�̇�𝑓𝑙

𝑥16̇ = 𝑍�̇�𝑓𝑟

𝑥17̇ = 𝑍�̇�𝑟𝑙

𝑥18̇ = 𝑍�̇�𝑟𝑟

 

𝑍𝑠𝑓𝑙
= 𝑍 − 𝑎𝜃 + (𝑤/2)𝜙

𝑍𝑠𝑓𝑟
= 𝑍 − 𝑎𝜃 − (𝑤/2)𝜙

𝑍𝑠𝑟𝑙
= 𝑍 + 𝑏𝜃 + (

𝑤

2
)𝜙                        (2.12)

𝑍𝑠𝑟𝑟
= 𝑍 + 𝑏𝜃 − (𝑤/2)𝜙

 

The matrix representation of the above equations is used in the MATLAB implementation. 

3. Control of the active suspension 

The PID control is the most-used feedback control design in control engineering. It shows the three terms 

on the error signal to produce a control signal. If u(t) is the control signal sent to the system y(t) is the actual 

output, r(t) is the desired output, and the tracking error e(t) = r(t) – y(t), a PID controller has the next form 

[21]: 

( ) ( ) ( ) ( )p i d

d
u t k e t k e t dt k e t

dt
= + +      (2.13) 

The desired closed-loop dynamics can be obtained by adjusting the three parameters Kp, Ki and Kd, often 

iteratively with "tuning" and without specific knowledge of a plant model. Stability can often be obtained 

using the proportional term. The integral term permits the rejection of a step disturbance. The derivative 

term provides damping or shaping of the response. PIDCs are the most well-established class of control 

systems [21]. 

The ASS consists of a PID controller which operates on the basis of error signal, which is the suspension 

travel calculated as the difference in the displacements of sprung and unsprung masses. The PID controller 

for the QC model is shown in Fig. 3 where aF and K denote the actuating force and static gain in the system, 

respectively. As for the FC model, it has four actuators as shown in Fig 4 where each of the four force 

actuators is having its corresponding PID controller. This translates to the tuning of the total of 12 
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parameters mentioned elsewhere, 3 for each PID controller. The forces ffr, ffl, frr and frl are the actuating 

forces and the suspension travels corresponding to each wheel are taken as the error signal. 

 

Figure 3: Block diagram for PID controller for the QC model 

 

Figure 4: Block diagram for PID controller for the FC model 

The setpoint is zero in all the cases as the objective is to minimise the suspension travel. Similar to the 

QC model case, the K is gain with value one included to facilitate the MATLAB implementation. 

4. Genetic Algorithm Optimisation 

GA is an evolutionary algorithm technique to find an optimum solution of the problem, where the problem 

is affected by a number of factors. This is inspired by biological terms such as mutation, cross-over and 

reproduction. The GA uses objective functions which in our case are selected as LQR cost function and 

Constraint-Based (CB) objective functions. Concerning LQR objective function, it is a type of optimal 

control based state-space representation. It is applicable in a dynamic system described by a set of linear 

differential equations, and the objective is described by a quadratic function [22]. The penalty matrices, Q 

and R are the diagonal matrices whose elements are selected manually from the knowledge of the system 

and the intuition. As for the CB objective function, the objective function is the sum of different physical 
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constraints required to be enforced on the suspension system pertaining to the rider comfort, road handling 

and vehicle safety[23].  

Previous studies have shown that the evolutionary GA and other AI techniques such as fuzzy logic and 

neural network by virtue of their capabilities to solve multiple-inputs-multiple-outputs optimisation 

problems are preferable than the traditional PID tuning techniques like Zeigler Nichols, Cohen-coon and 

pole placement tuning scheme for obtaining optimal gains for PID controllers [24]. The GA protocol is 

adapted for this due to its flexibility in terms of PID tuning schemes. In this study, the GA-Linear Quadratic 

Regulator (LQR) optimisation technique was employed for obtaining the optimal PID gains and the GA-

Constraint-Based (CB) optimisation technique was employed for obtaining the optimal PID gains and 

suspension parameters. More importantly, unlike the GA-LQR approach, the GA-CB approach does not 

involve the onerous process of manually selecting a number of penalties for its implementation [22,23] and 

only one penalty variable alpha is used in GA-CB. The parameters used for the GA optimisations are 

illustrated in Table 1. 

Table 1: GA parameters used for both the LQR and CB cases. 

Parameter Value 

Population size 100 

Number of generations 50 

Constraint Tolerance 1e-3 

Cross-over approach Scattered 

Cross-over fraction 0.8 

Elite count 5 

Mutation function Gaussian 

Lower bound: [Ks Cs Kp Ki Kd ] [15000 400 1 1 1] 

Upper bound: [Ks Cs Kp Ki Kd ] [80000 5500 150000 150000 150000] 

Alpha  10000 

 

4.1. GA-LQR optimisation of PID controller gains for the ASS  

Here, we have taken the cost function from the Linear Quadratic Regulator (LQR) control as the objective 

function for the GA. The GA uses the objective function from the LQR controller system to arrive at the 

optimal set of PID parameters. Thus, for a given state-space model; 

�̇� = 𝐴𝑥 + 𝐵𝑢 

The LQR cost function is given as  

𝐽 =
1

2
∫ [𝑥𝑡𝑄𝑥 + 𝑢𝑇𝑅𝑢]𝑑𝑡                  (2.13)

∞

0

 

Here, x and u are states and inputs respectively. The Q matrix is a diagonal matrix and the diagonal element 

are the penalties for the corresponding state-variables. In the case of QC model, the R matrix is the penalty 

for actuating force Fa. Similarly, in the case of FC model, the 𝑅 matrix is the penalty for actuating force 𝑓𝑓𝑙, 

𝑓𝑓𝑟, 𝑓𝑟𝑙 and 𝑓𝑟𝑟. These penalties are selected manually according to the requirement and understanding of 

the physical behaviour of the system. The values of these penalties vary from 10 to 100000 to drive 

responses to the desired performance.  
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4.2. GA-CB Optimization of PID Parameters for ASS in QC model 

The next objective is to find the optimum values for spring stiffness (𝑘𝑠) and damping coefficient (𝐶𝑠) for 

achieving the maximum rider comfort with the quarter car model. The Genetic Algorithm is used to find 

these optimum parameters. The lower and upper bounds for the optimisation process are selected based on 

the range of values used in the literature.  

The cost function is selected such that the main objective is to achieve the maximum rider comfort. The 

rider comfort is assessed by the acceleration of the sprung mass (𝑍�̈�). The minimisation of the RMS (root 

mean square) of the absolute value of the acceleration for time T seconds is the objective function 𝑓. There 

are multiple constraints of this objective function denoted as 𝑔1 to 𝑔8. 

𝑓 = 𝑅𝑀𝑆|𝑍�̈�| 

The constraints are also included in the cost function J to convert the problem into an unconstrained one. 

These constraints are: 

• The ISO standard ISO2631 states that the passenger feels highly comfortable for weighted RMS 

acceleration maintained below 0.315 m/s2. This is the first constraint. 

𝑔1 = 𝑓 − 0.315𝑚/𝑠2 ≤ 0 

• To absorb a bump acceleration of "0.5g" without hitting the suspension stops, at least 12.7 cm (5 

inches) of suspension travel must be available. Also, the maximum acceleration value is kept under 

the threshold to avoid hitting the suspension stops during operation. These form the next two 

constraints. 

𝑔2 = |𝑍𝑠 − 𝑍𝑢| − 0.127𝑚 ≤ 0

𝑔3 = 𝑚𝑎𝑥|𝑍�̈�| − 4.5𝑚/𝑠2 ≤ 0
 

• The dynamic tyre forces are constraints using the maximum tyre deflection. 

𝑔4 = |𝑍𝑢 − 𝑍𝑟| − 0.0508𝑚 ≤ 0 

• The other side of the passenger comfort is road handling, which is included in the equation as a 

constraint. 

𝑔5 = |𝑍𝑢| − 0.07𝑚 ≤ 0 

The objective function and the constraints are the same as the passive case. However, three additional 

constraints are added to incorporate the comfortable frequency range of 0.8 Hz and 1.5 Hz. Also, the jerk 

experienced by the passengers is considered as a constraint. 

𝑔6 = 0.8 ≤ 𝑊𝑛 ≤ 1.5𝐻𝑧

𝑔7 = |𝑍�⃛�| − 18𝑚/𝑠3  

The actuating force should be below a specific limit: 

𝑔8 = |𝐹𝑎| − 400𝑁 ≤ 0 
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In the sixth constraint, the natural frequency is calculated using the suspension parameters using: 

Ride Rate = 𝑅𝑅 = 𝑘𝑠 × 𝑘𝑡/(𝑘𝑠 + 𝑘𝑡)

Ride Frequency = 𝑓𝑛 = √
𝑅𝑅

𝑀𝑠
×

1

2𝜋
𝐻𝑧

Damped Frequency = 𝑓𝑑 = 𝑓𝑛√1 − 𝜁2𝐻𝑧

Damping Ratio = 𝜁 =
𝐶𝑠

√4𝑘𝑠𝑀𝑠

 

The total cost function J is given by 

𝐽 = 𝑓 + 𝛼 ∑max(0, 𝑔𝑖)

8

𝑖=1

 

Where 𝛼 is the penalty for each constraint violation. 

4.3. GA-CB Optimization of PID Parameters for ASS in the FC model 

In this section, the objective is to find the optimum values for spring stiffnesses for the front (𝐾𝑠𝑓
) and rear 

(𝐾𝑠𝑟
) suspension and the damping coefficient for the front (𝐶𝑠𝑓

) and rear (𝐶𝑠𝑟
) suspension for achieving 

the maximum rider comfort with the full car model. The PID parameters 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are optimised to 

have optimum actuating force. 

The objective function and the constraints are the same as the previous section with few added constraints. 

The multiple constraints of this objective function are denoted as 𝑔1 to 𝑔24. 

The constraints are also included in the cost function J to convert the problem into an unconstrained one. 

These constraints are: 

𝑔1 = 𝑓 − 0.315𝑚/𝑠2 ≤ 0 

𝑔2 = |𝑍𝑠𝑓𝑙
− 𝑍𝑢𝑓𝑙

| − 0.127𝑚 ≤ 0

𝑔3 = |𝑍𝑠𝑓𝑟
− 𝑍𝑢𝑓𝑟

| − 0.127𝑚 ≤ 0

𝑔4 = |𝑍𝑠𝑟𝑙
− 𝑍𝑢𝑟𝑙

| − 0.127𝑚 ≤ 0

𝑔5 = |𝑍𝑠𝑟𝑟
− 𝑍𝑢𝑟𝑟

| − 0.127𝑚 ≤ 0

𝑔6 = 𝑚𝑎𝑥|�̈�| − 4.5𝑚/𝑠2 ≤ 0

 

𝑔11 = |𝑍𝑢𝑓𝑙
| − 0.07𝑚 ≤ 0

𝑔12 = |𝑍𝑢𝑓𝑟
| − 0.07𝑚 ≤ 0

𝑔13 = |𝑍𝑢𝑟𝑙
| − 0.07𝑚 ≤ 0

𝑔14 = |𝑍𝑢𝑟𝑟
| − 0.07𝑚 ≤ 0

 

The front and rear frequency, along with the jerk constraints, are the added constraints.  
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𝑔15 = 0.8 ≤ 𝑓𝑑𝑓
≤ 1.5𝐻𝑧

𝑔16 = 0.8 ≤ 𝑓𝑑𝑟
≤ 1.5𝐻𝑧

𝑔17 = |𝑍| − 18

 

The natural frequency of front suspension should be greater than the rear suspension 

𝑔18 = 𝑓𝑑𝑓
> 𝑓𝑑𝑟 

Pitch frequency and roll frequency range should be the same as the ride frequency 

𝑔19 = 0.8 ≤ 𝑓𝑑𝑓
≤ 1.5𝐻𝑧

𝑔20 = 0.8 ≤ 𝑓𝑑𝑟
≤ 1.5𝐻𝑧

 

The actuating force should not exceed a specific range 

𝑔21 = |𝐹𝑎𝑓𝑙
| − 1000𝑁 ≤ 0

𝑔22 = |𝐹𝑎𝑓𝑟
| − 1000𝑁 ≤ 0

𝑔23 = |𝐹𝑎𝑟𝑙
| − 1500𝑁 ≤ 0

𝑔24 = |𝐹𝑎𝑟𝑟
| − 1500𝑁 ≤ 0

 

The total cost function J is given by 

𝐽 = 𝑓 + 𝐺𝑐 

Where 𝐺𝑐 is the combined effect of the constraints given by 

𝐺𝑐 = 𝛼 × ∑𝑚

24

𝑖=1

𝑎𝑥(0, 𝑔𝑖) 

Where 𝛼 is a penalty value which will vary between 8000 and 10000. 

4.4. Road Profile 

The road profile is of paramount importance in the understanding of a vehicle's response to endogenous 

and exogenous perturbations or road excitations. Examples of such perturbations can be encountered when 

a vehicle meet bumps and potholes. Bumps were selected for investigation in this study. It has been 

established that, with rectangular cleats, the dynamic reaction of a vehicle or a single tyre to sudden impact 

can be investigated. If the shape of the obstacle is approximated by a smooth function, like a cosine wave, 

then discontinuities will be avoided. Usually, deterministic obstacles are described in local coordinate 

systems as furnished in Figure 5 [24]. 
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Figure 5: Rectangular cleat (left), cosine-shape bump (centre), and rounded obstacle or pothole (right) 

[24] 

Then, the rectangular cleat is simply defined by 

( , )  if else,   &
0 2 2 2 2

H L L B B
z x y X y


= −   −  


                                               (2.14) 

And the cosine-shaped bump is given by 

1
1 cos 2  if else, 

( , )  & 2
2 2 2 2

0

x
H L L B B

z x y x yL


   
+   

= −   −     



        (2.15) 

Where L, B, and H denote the length, width and height of the obstacle. The cosine-shaped bump was 

selected for this study [24]. The parameters used for the car models are presented in Table 2. 

Table 1: Parameters used for quarter car and full car models 

Parameter Quarter Car Full Car 

Sprung Mass (kg) Ms 375 Ms 1500 

Unsprung Mass (kg) Mu 59 Mu 59 

Spring stiffness for front suspension (N/m) Ks 35000 Ksf 35000 

Spring stiffness for rear suspension (N/m) - - Ksr 3800 

Damping coefficient for front suspension (N/m/s) Cs 1000 Csf 1000 

Damping coefficient for rear suspension (N/m/s) - - Csr 1100 

Tire stiffness (N/m) Kt 190000 Kt 190000 

Damping coefficient for tire (N/m/s) Ct 2 Ct 2 

Moment of inertia about roll axis (Kg-m2) - - Ixx 460 

Moment of inertia about pitch axis (Kg-m2) - - Iyy 2100 

Distance of CG of sprung mass from front axle (m) - - A 1.4 

Distance of CG of sprung mass from front axle (m) - - b 1.7 

Width of sprung mass (m) - - w 3 

 

5. Results and Discussion 

The simulated results for the PSS and those from the GA protocols for the ASS are presented in Figures 6-

9 for the QC model and the FC model. To evaluate the performances of the designed ASS, the results are 

compared with that of the PSS. The parameters selected for comparisons in the QC model are the sprung 
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mass displacement, unsprung mass displacement, and the suspension travel in the time domain. While for 

FC model, the pitch angle and the roll angle were added to the parameters. For the QC model, only the PID 

gains were optimised while the PID gains and other performance parameters were optimised for the FC 

model. The simulations were performed using the car model parameters given in Table 2, for the desired 

road profiles and the optimal suspension parameters are presented in Table 3. 

5.1. Quarter Car Model with GA-LQR Optimization for the PID Gains 

 

Figure 6: Plots of (a) road profile versus time (b) suspension vs travel time (c) sprung mass displacement 

parameters vs time and (d) unsprung mass displacement parameters vs time for the QC model 

Figure 6 (a) shows the road profile with two bumps of 0.1 m, i.e., 10 cm height and Figure 6 (b-d) shows 

the comparisons of suspension travel, sprung mass displacement, and unsprung mass displacement for the 

GA-LQR optimised ASS and the PSS in the time domain. It indicates that the suspension travel, the sprung 

mass displacement and the unsprung mass displacement all reduced with the implementation of the active 

elements despite the same road profiles. It was observed for all simulated instances that the GA-LQR 

optimised ASS for the QC model outperformed the PSS. The peak amplitudes and vibration settling time 

(VST) of the PSS are higher than that of the ASS which translates to improved ride comfort (sprung mass 

acceleration), road holding (suspension travel) and tyre deflection (unsprung mass acceleration) for the 

ASS. The VST reduced from around 25 to 7 seconds for the optimised ASS. Similarly, the peak amplitude 

of sprung mass displacement observed for the optimised ASS is around 17% less than the PSS. The 
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maximum suspension travel for the PSS is almost double of that for the ASS. Nonetheless, both suspension 

systems settled within the desired travel time. This is an indication that the LQR objective function can be 

successfully integrated with GA for enhanced performance of an ASS equipped with a PID controller. Mitra 

et al., and Ahmed et al., have reported similar findings when they compared PSS and ASS in their studies 

[4,15]. 

5.2. Quarter Car Model with GA-CB Optimization for the PID Gains 

 

Figure 7: Plots of (a) road profile versus time (b) suspension vs travel time (c) sprung mass displacement 

parameters vs time and (d) unsprung mass displacement parameters vs time for the QC model 

Figure 7 (a) shows the road profile with two bumps of 0.1 m, i.e., 10 cm height and Figure 7 (b)-(d) shows 

the comparisons of suspension travel, sprung mass displacement, and unsprung mass displacement for the 

GA-LQR optimised ASS and the PSS in the time domain. It indicates that the suspension travel, the sprung 

mass displacement and the unsprung mass displacement all reduced with the implementation of the active 

elements despite same road profiles. Correspondingly, the GA-CB optimisation showed similar results in 

all simulated instances as was observed for the GA-LQR approach. In both the approaches the physical 

constraints mentioned in the GA-CB sections are followed and the values of maximum suspension travel is 

less than 0.127m (5 inches) as advised and stayed at the nominal value of around 0.02m. Also, the maximum 

value of the sprung mass acceleration observed was less than 4.5m/s2 and was below 1 m/s2. Similar to the 
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GA-LQR optimised ASS case, the VST is reduced from 25 to 7 seconds as compared to the PSS. The 

prominent improvement in the rider comfort can be observed considering the VST. The peak amplitudes of 

the sprung mass displacement, i.e., the displacement felt by the occupants of the vehicle, is reduced 

considerably for the optimised ASS. The results presented indicate that there is only a slight difference in 

the performance of the GA-LQR and GA-CB optimization approach. However, the GA-CB optimisation 

approach is a better alternative as its implementation involves the use of actual vehicle constraint and a 

smaller number of manual tunning parameters. Table 3 presents the optimised valued of PID gains for two 

different optimisation approaches. 

Table 3: Optimised PID gains of GA-LQR and GA-CB approaches for quarter car model 

PID Gain GA-LQR GA-CB 
Kp 227.13 12225 

Ki 1.20 22241 

Kd 5878.56 841.7 

  

5.3. Full Car Model with GA-LQR Optimization for the PID Parameters 

 

Figure 8 (a): Plots of road displacement vs time for the FC model (the four wheels are illustrated in the 

plots) 

Figure 8(a) shows the double bumps of 10 cm height experiences by four wheels of the vehicle. The delay 

is maintained between the bumps on the right and left side of the vehicle to induce rolling movement in 

the vehicle. The bumps experienced by the rear wheels also have some delay. However, this delay 

depends on the wheelbase of the vehicle and the longitudinal speed with which it is travelling. 
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Figure 8 (b): Plots of suspension travel vs time for the FC model (the four wheels are illustrated in the 

plots) 

 

Figure 8 (c): Plots of pitch angle vs time for the FC model  



21 
 

 

Figure 8 (d) Plots of roll angle vs time for the FC model  

 

Figure 8 (e): Plots of sprung mass displacement vs time for the FC model  
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Figure 8 (f1): Plots of unsprung mass displacement vs time for the FC model (Front-Left Wheel) 

 

Figure 8 (f2): Plots of unsprung mass displacement vs time for the FC model (Front-Right Wheel)  
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Figure 8 (f3): Plots of unsprung mass displacement vs time for the FC model (Rear-Left Wheel) 

 

Figure 8 (f4): Plots of unsprung mass displacement vs time for the FC model (Rear-Right Wheel) 

A comprehensive result of the full vehicle performance (after GA-LQR optimisation) in terms of suspension 

travel, sprung mass displacement, unsprung mass displacement, pitch angle and roll angle in the time 

domain is presented in Figure 8 (a)-(f). Figure 8 (a) shows the road profile used for the simulation. It was 

observed that the introduction of the active elements with GA-LQR optimised PID gains reduced the 
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suspension travel (at the four wheels), the pitch angular acceleration and the sprung mass acceleration. 

However, no significant differences were observed between the roll angular acceleration and the unsprung 

mass accelerations (at the four wheels) of the PSS and the optimised active elements. A reduction from 

around 20 seconds to 6 seconds can be observed in the VST for the full car optimised ASS as compared to 

the PSS. Similar performance of the ASS over the PSS has been observed in the case of quarter car model 

results. A considerable reduction in the sprung mass displacement can be observed in Figure 8 (e). Although 

the unsprung mass acceleration at the four wheels did not reflect any significant change between the PSS 

and the ASS, the overall displacement of the unsprung mass of the ASS is lower than that of the PSS. This 

indicates an appreciable road holding. With regards to pitch angular acceleration furnished in Figure 8 (c), 

for the ASS, the acceleration amplitude range is lower and consequently returns to zero very fast at about 

6 sec. This is an indication that the LQR objective function can be successfully integrated with GA for 

enhanced performance of an ASS equipped with a PIDC. Similar results have been documented by 

Shirahatti et al., [25].  

5.4. Full Car Model with GA-CB Optimization for the PID Parameters 

 

Figure 9 (a): Plots of road displacement vs time for the FC model (the four wheels are illustrated in the 

plots) 
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Figure 9 (b): Plots of suspension travel vs time for the FC model (the four wheels are illustrated in the 

plots) 

 

Figure 9 (c): Plots of pitch angle vs time for the FC model 
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Figure 9 (d): Plots of roll angle vs time for the FC model 

 

Figure 9 (e): Plots of sprung mass displacement vs time for the FC model 
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Figure 9 (f1): Plots of unsprung mass displacement vs time for the FC model (Front-Left Wheel) 

 

Figure 9 (f2): Plots of unsprung mass displacement vs time for the FC model (Front-Right Wheel) 
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Figure 9 (f3): Plots of unsprung mass displacement vs time for the FC model (Rear-Left Wheel) 

 

Figure 9 (f4): Plots of unsprung mass displacement vs time for the FC model (Rear-Right Wheel) 

Figure 9 (a) shows the road profile used for the simulated results. Similarly, the GA-CB optimisation 

showed similar results (Figure 9) as was for observed for the GA-LQR optimisation in terms of suspension 

travel, sprung mass displacement, unsprung mass displacement, pitch angle and the roll angle in the time 

domain. For this case, it was also observed that the introduction of the active elements with GA-CB 
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optimised PID parameters (PID gains inclusive) reduced the suspension travel (at the four wheels), the pitch 

angular acceleration, the pitch angle, the pitch angular velocity, and the sprung mass acceleration. However, 

no significant differences were observed between the roll angular acceleration and the unsprung mass 

accelerations (at the four wheels) of the PSS and the optimised active elements. . The VST reduced from 

20 to 5 seconds for the fully optimised ASS case as compared to the PSS case. The vibrations die down as 

soon as the rear wheel passes the second bump. Also, the maximum displacement of the sprung mass has 

reduced by more than 30% for the fully optimised ASS. Although the unsprung mass acceleration at the 

four wheels did not reflect any significant change between the PSS and the ASS, the overall displacement 

of the unsprung mass of the ASS is lower than that of the PSS. This indicates an appreciable road holding 

compared to the PSS. With regards to pitch angular acceleration furnished in Figure 9 (c), for the ASS, the 

acceleration amplitude range is lower and consequently returns to zero very fast at about 6 sec. This is an 

indication that the CB objective function can be successfully integrated with GA for enhanced performance 

of an ASS equipped with a PID controller. Similar results have been documented by Shirahatii et al., [25]. 

Table 4 presents the PID gains for controller placed at wheels at front left, front right, rear left and rear right 

for the GA-LQR and GA-CB optimization approaches. Table 4 summaries the optimised suspension 

parameters, i.e., the suspension stiffness and the damping coefficient for the quarter and full car model. 

Table 4: Optimised PID gains for the controller at four wheels with GA-LQR and GA-CB for full car 

model 
PID gains GA-LQR GA-CB 

Kpfl 54925 28001 

Kifl 14983 7261 

Kdfl 4110 3587 

Kpfr 77573 6793 

Kifr 28774 12257 

Kdfr 6119 6802 

Kprl 75900 28162 

Kirl 35196 11848 

Kdrl  1509 6694 

Kprr 44412 38241 

Kirr 61465 17675 

Kdrr 1491 1673 

 

Table 5: Optimised suspensions parameters for half car and full car models 

Parameter Quarter Car Full Car 

Spring stiffness for front suspension (N/m) Ks 73462 Ksf 33786 

Spring stiffness for rear suspension (N/m) - - Ksr 28037 

Damping coefficient for front suspension (N/m/s) Cs 2578 Csf 1553 

Damping coefficient for rear suspension (N/m/s) - - Csr 1424 

 

Conclusions 

The investigation starts with the understanding of the suspension system using the passive quarter car 

model. The response of this model shows the typical behaviour of the passive suspension system where the 

amplitude of displacements, velocities and accelerations for sprung and unsprung masses are high. Also, 

the system takes a long time to settle to the zero position after the initial stimulus in the form of a bump. 

From this understanding, the formulation including the active component to restrict the motion of the 
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suspension in a controlled manner, was developed for the quarter car model. The active suspension system 

with an actuator controlled by the PID controller provides a better response than a passive system giving 

motivation the further investigation. Although the manually tuned PID controllers show promising results, 

their full potential can be harnessed to achieve a better ride comfort along with the conflicting road-handling 

criteria. This type of optimisation is only possible with the help of sophisticated algorithms like genetic 

algorithm.  

The genetic algorithm uses the objective function defined for the LQR controller to obtain the optimised 

PID parameters. The manual aspect of the selection of penalty variables provides better control over the 

optimisation process; however, this makes it crucial to select these penalties carefully. The optimised 

quarter car active suspension model shows a significant improvement in ride quality. 

The quarter car model provides insight into the behaviour of the suspension system. However, it is primitive 

in the sense that it cannot provide a detailed response of the existing suspension system of the vehicle, 

which includes four sets of suspension units. The full car model is the obvious next step to understand the 

response of suspension system including the bounce, pitch and roll. The full car passive suspension model 

was developed using the state-space formulation. The double bump road profile is used throughout this 

study to illustrate the road condition. A delayed bump on the right side of the vehicle compared to the left 

side induces the rolling and pitching motion to the vehicle providing valuable insight into the suspension 

behaviour. The response of this passive system defines the baseline response for the vehicle suspension 

system and the improvement achieved by the active suspension system can be judged based on this 

response.  

Similar to the quarter car model, the genetic algorithm provides the optimisation solution to get PID 

parameters for achieving a better response. For the optimised system, the amplitudes of the displacements, 

velocities and accelerations are reduced considerably. One thing noted at this stage was that the number of 

PID gains are four times more than the quarter car case. Hence the manual selection of the penalty values 

becomes more difficult and calls for a better objective function and constraint handling strategy. This issue 

was addressed in the next stage. 

The second branch of the optimisation was to obtain optimal spring stiffnesses and damping coefficients. 

The passive quarter and full car models are optimised to achieve this objective. These systems show 

significant improvement over the un-optimised passive suspension models.  The objective function used 

for this purpose was different from the LQR cost function, which involved the minimisation of the sprung 

mass acceleration as the prime objective. The advantage of using this type of objective function is that the 

constrained problem is transformed into an unconstrained one. Also, unlike the LQR cost function, only 

one penalty parameter is to be selected, which reduces the human component from the optimisation process 

and the Genetic Algorithm can be exploited to the full extent.  

The final stage of the study was to combine the understanding gained in the previous stages to optimise the 

spring stiffnesses, damping coefficients and PID gains simultaneously. The quarter car model was 

optimised with these objectives using the previously formulated objective function with the constraints. 

This model shows the best performance amongst the quarter car models pertaining to the availability of 

more control parameters to converge to the optimal solution.  

In the continuation, the full car model undertakes the same objectives to obtain a fully optimised model. 

Also, the objective function utilised in the quarter car model provided the best performance leading to its 



31 
 

use in the full car model. The sprung mass acceleration constraints provide control over the maximum as 

well as RMS acceleration, resulting in better rider comfort. On the other hand, road handling is taken care 

of by the unsprung mass displacement constraint. The tyre deflection constraints help in reducing the 

dynamic forces of the tyres, reducing the damage to the road. The suspension travel constraints help in 

reducing the possibility of suspension hitting the suspension stops during the operation. As there are 

frequency constraints embedded in the formulation, the comfortable ride frequency as well as the roll and 

pitch frequencies are assured. The added constraint on the jerk experienced by the occupants of the vehicle 

reduces the sudden changes in the acceleration. The constraints applied to the actuating forces as any 

actuator can provide a limited amount of force, and also it minimises the energy used for the actuation.   

In short, from the results of the conducted in this study, it can be concluded that the active suspension 

system with optimised spring stiffnesses, damping coefficients and PID gains provides the best rider 

comfort and road handling balance and the genetic algorithm can be used to perform a successful 

optimisation. 
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