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Abstract: The increase of electric vehicles (EVs), environmental concerns, energy preservation, battery
selection, and characteristics have demonstrated the headway of EV development. It is known that
the battery units require special considerations because of their nature of temperature sensitivity,
aging effects, degradation, cost, and sustainability. Hence, EV advancement is currently concerned
where batteries are the energy accumulating infers for EVs. This paper discusses recent trends
and developments in battery deployment for EVs. Systematic reviews on explicit energy, state-of-
charge, thermal efficiency, energy productivity, life cycle, battery size, market revenue, security,
and commerciality are provided. The review includes battery-based energy storage advances and
their development, characterizations, qualities of power transformation, and evaluation measures
with advantages and burdens for EV applications. This study offers a guide for better battery
selection based on exceptional performance proposed for traction applications (e.g., BEVs and HEVs),
considering EV’s advancement subjected to sustainability issues, such as resource depletion and the
release in the environment of ozone and carbon-damaging substances. This study also provides a
case study on an aging assessment for the different types of batteries investigated. The case study
targeted lithium-ion battery cells and how aging analysis can be influenced by factors such as ambient
temperature, cell temperature, and charging and discharging currents. These parameters showed
considerable impacts on life cycle numbers, as a capacity fading of 18.42%, between 25–65 ◦C was
observed. Finally, future trends and demand of the lithium-ion batteries market could increase by
11% and 65%, between 2020–2025, for light-duty and heavy-duty EVs.

Keywords: aging analysis; battery; electric vehicle; energy storage systems; sensitivity analysis;
prediction; time-series study; sustainability; life cycle analysis

1. Introduction

Electrification in transportation plays an essential role in decarbonization for reduc-
ing carbon discharge from the transportation sector by 2030 target. This process will be
unreachable unless many researchers pay particular attention to CO2 emission reduction
and different greenhouse gases (GHG), see [1]. Today, internal combustion engine (ICE)
replacement with electrical machines [2] provides a significantly higher efficiency and
is targeted worldwide, as the electrical machines can offer above 90% efficiency, while
the ICE’s median efficiency rate is 30% [3]. Despite numerous benefits, the utilization of
EVs remains limited compared to ICE-based vehicles, the primary issue being the energy
stockpile. Currently, no technologies are comparable with the specific energy and range
affordability of fossil fuels, and future goals are set to satisfy the requirement of above
200 Wh/kg energy density. The flywheels [4,5] and ultracapacitors [6,7] are a few alterna-
tives to batteries. These come with the same power restriction, a complicated process from
storing and planning hydrogen fuel cells [8,9]. However, the low range of specific power
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restricts EVs’ usage because almost all reasonable choices come with increasing costs and
short life cycle, which eventually limits the production of EVs [10].

Commercial electrochemical batteries are currently the essential energy stockpile
candidates used in EVs. For example, LCO cathodes are still the most used among Li-
ion batteries. However, they should be replaced due to environmental, safety, and cost
considerations. A greener and safer type are LMO. LFP also offers the safest and most
sustainable cathodes used in hybrid BMW i5 cars. NCA and NMC are the most promising
cathodes for EVs due to their capacity. Table 1 demonstrates the specific capacity and
discharge midpoint of different lithium-ion batteries. The discharge is set to the midpoint
as calculated based on one voltage toward Li/Li at C/20 for all cases, except LNMO, which
is C/10.

Table 1. Popular cathode battery materials for EVs.

Li-ion Battery Type Specific Capacity (mAh/g) Discharge Midpoint (V/Li/Li)

LiCoO2 (LCO) 155 3.9
LiFePO4 (LFP) 160 3.45

LiMn2O4 (LMO) 120 4.05
LiNi1−x−yMnxCoyO2 (NMC) 180 3.8

LiNi0.8 Co0.15Alx0.05O2 (NCA) 200 3.73
LiNi0.4Mn1.6O2 (LNMO) 134 4.65

EVs are made with advanced electric-related components for ensuring their long-
lasting and efficacy runs. Factors such as selection and planning of power resources, energy
stockpiles, and stockpile planning methods are important for the future of EV technology.
Ensuring smooth services in EV demands planning power resources, selecting battery
energy storage systems (BESS), maintaining the capacity of the stockpile cell, and causing
regularity. This study [11] has reviewed the current scene of energy storage systems (ESS)s,
advanced qualities of BESSs, analysis, problems, and the difficulties of current methods.

Related Works

Several review papers were published on BESS-related technologies and develop-
ment [12–29]. In summary, researchers [12] have studied the state-of-the-art wired and
wireless technologies in battery EVs. They introduced AC and DC charging methods, as
well as conventional charging technologies. M. Naguib et al. [13] demonstrated a review
on lithium-ion battery performance such as robust state of charge (SoC) prediction, and
investigated on prediction algorithms used for SoC estimations. The latest status and gap
in the lithium-ion battery supply chain is reported in [15], where the authors highlighted a
consistent increase in demand and, subsequently, possible resource shortages. In another
review paper [17], the researchers presented machine learning algorithms, such as support
vector machines, neural networks, and radial basis functions for battery SoC and state of
health (SoH) prediction purposes. T.A. Lehtola and A. Zahedi [18] discussed battery cell
cycle aging for the vehicle-to-grid operations. This review paper studied different batteries,
considering the vehicle’s range, capacity, and SoC. H. Karlsen et al. [21] reviewed the
challenges, criteria, and solutions in temperature dependence in battery management sys-
tems used in EVs. The authors investigated the challenges in another work and provided
recommendations about the energy management systems for lithium-ion batteries utilized
in EVs [22]. E. Chemali et al. [23] reviewed electromechanical and electrostatic energy
storage systems and EV management. They discussed batteries, ultracapacitors, and future
battery chemistries. E. Hossain et al. [24] reviewed second-life battery technologies and
challenges. They studied the increasing demand for batteries in EVs, where environmental
effects and effective disposal of battery production were considered. The paper guided
second-life battery technologies, which can ultimately reduce battery manufacturing and
provide a better disposal process on a large scale. C. Vidal et al. [29] reviewed the recent
publications about the impacts of low temperatures on lithium-ion batteries for EVs. This
study considered a capacity loss, power loss, life degradation, safety hazard, unbalanced
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capacity, charging difficulty, thermal management system complexity, battery model and
state estimation method complexity, and incremental cost. Finally, the study offered corre-
lations and possible solutions for future investigations. The further grouping of ESSs is
investigated in this paper [30], including the advantages and disadvantages of all types of
ESS and their building, electric-based qualities, and usage.

Electrochemical batteries are time-dependent, defective components due to the nature
of their chemical elements, which influence their performance and lifetime [31–43]. The
main parameter for evaluating aging effects [31–36] is battery capacity. Battery capacity fad-
ing evaluation can be possible in real-world practices if battery indications can be properly
monitored [37]. Therefore, battery calendar aging estimation is of extreme importance for
developing persistent ESSs for EVs. The use of machine learning techniques [38–41], such
as neural networks for prediction purposes has recently increased. Also, the development
of management strategies for ESS has been reported in many papers [42–45]. To highlight
some of the most recent developments:

A. E. Mejdoubi et al. [31] studied the lithium-ion battery health assessment, considered
SoH, and estimated remaining useful life (RUL). They studied the aging of the battery
by proposing the Rao-Blackwellization particle filter for EVs. In these studies [32,33], the
researchers evaluated battery aging for EVs, considering different driving behaviors. The
study showed that aggressive driving, recharging behavior, and temperature changes
significantly impact battery life suppression. Concerning EV driving characteristics, B. Gao
et al. [34] proposed an acceleration speed optimization considering battery aging. Their
research could improve battery capacity loss by 9.6%. For improving aging monitoring
methods, S. H. Kim et al. [37] developed a new technique tested for lithium-ion batteries
using harmonic-based analysis. Foraging prediction purposes, researchers recently applied
machine learning techniques. K. Liu et al. [38] investigated gaussian process regression.
The proposed method enhanced prediction performance with higher accuracy and better
generalization ability. In [39,40], the researchers successfully used the neural networks
approach for battery aging predations. S. B. Vilsen et al. [41] studied a log-linear model
which estimates battery aging. In this technique, they utilized dynamic aging profiles every
week. To perform accurate predictions, R. Xiong et al. [42] developed a battery management
system to study SoH in a lithium-ion battery. They employed online monitoring of SoH
to estimate battery capacity and RUL. In another study [43], the researchers developed
an active adaptive battery aging management system for EVs, controlling the battery
capacity degradation. The strategy considered vehicle performance, including driving
range, recharge time, and drivability. F. Chang et al. [44] studied the impact of current
ripples on the aging of lithium batteries. They experimented with a long-term aging
assessment on battery cells to investigate the effect of the current ripples in cascaded
multilevel topologies. It is reported that the impact of most cascaded multilevel topologies
is insignificant for lithium-ion batteries. The fast charging of lithium-ion batteries has also
become popular in recent years. In reference [45], the authors performed a population-
based optimization algorithm for finding the optimum charging current patterns within
a charging control strategy considering aging effects. The study is based on an electric-
thermal model considering battery temperature under different charging conditions.

At this stage, it is also important to stress the implications that the battery aging pro-
cess may have on the environmental sustainability of EVs and the future availability of
resources. In fact, due to aging effects, the demand for electrochemical batteries may in-
crease due to the need for battery replacement during the vehicle’s service life [46–52]
or to a shorter vehicle life cycle, which Y. Ma et al. [53] envisaged being reduced to
8–10 years. This will inevitably pose a series of challenges for the environment at a different
level of the supply chain. As noted by T. R. Hawkins et al. [48], the EVs’ environmental
performance across all impact categories are sensitive to the battery replacement schedules.
This is mainly due to the intensity of the activities related to battery manufacturing and raw
materials extraction, which contribute to a significant share of the environmental impacts
of EVs [51–54], including the depletion of resources [55,56]. In battery replacement, the
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impact of manufacturing needs to be doubled in the calculation for all impact categories.
If the vehicle has a shorter life cycle, the shorter timeframe should be considered in the
analyses. T. R. Hawkins et al. [48] and P. Marques et al. [49,50] stressed the importance of
accounting for battery replacement schedules when assessing the impact of lithium-ion
batteries for automotive applications or EVs. Existing studies considered capacity fade
models to estimate the number of batteries required during the vehicle life [57–59]. P.
Marques et al. [49] published a study that integrates capacity fade in the LCA assessment.
It was found that when aging effects are considered, battery replacement could increase up
to 31% for EVs based on the type of chemistry and driving conditions. These results reflect
state of the art and do not consider recycling pathways for recycling key materials used in
lithium-ion batteries, potentially reducing up to 50% of material production intensity and
decelerating the material depletion process [60]. However, the development of recycling
facilities is critical to support the transition to electric mobility and decoupling society from
the intensive consumption of finite resources [61,62].

Because of raising environmental concerns and technological limitations for the effec-
tive disposal of electrochemical batteries, battery selection, and usage criteria are required.
This paper’s contribution provides a systematic review of recent performance achieve-
ments, developments, and future trends of batteries for EVs. Due to concerns arising
from an increase in the demand for batteries, i.e., material consumption and the harmful
implications of manufacturing-related activities on the environment; the study also offers
a comparative aging analysis to demonstrate the life cycle of different types of popular
batteries. A sensitivity analysis is also provided to better understand the effects of other
effective parameters on aging performance. Based on the historical data gathered for bat-
tery demands in EVs, the study also presented future directions using time series analysis
techniques.

The paper’s main highlights and findings are listed as:

• The paper provides an overview of the latest technologies and developments of
electrochemical batteries used in EVs.

• The best performance was reported by LiNi1−x−yMnxCoyO2, whereas LiFePO4 is the
greenest and safest battery.

• Capacity fading of 18.42%, between 25–65 ◦C, is studied as a function of the cycle
number and cell temperature.

• The lithium-ion market will be increasing by 11% and 65%, between 2020–2025, for
light-duty and heavy-duty EVs.

• The lithium-ion cell production mass will rise by 81% and 74% for both light- and
heavy-duty EVs in the market between 2020–2025.

This paper is organized as follows: a systematic review of the recent developments
and findings for electrochemical batteries is given in Section 2. In Section 3, battery aging
is mathematically defined, and the modeling is presented. The simulation results are also
discussed in this section. Based on extensive historical data on batteries’ EV demand and
their environmental impacts, the future trends are predicted and discussed in Section 4;
and conclusions are in Section 5.

2. Systematic Review of Recent Development in BESSs

All regular chargeable batteries are considered electrochemical energy storage systems.
These include flow batteries and other chargeable batteries [63]. In the electrochemical energy
storage systems, energy is transformed into chemical power from electrical energy and again
changed via a reversible function using power efficiency and physical changes. To evaluate
the performance of all electrochemical rechargeable batteries, the role of several technical
parameters, like SoC, SoH, DoD, operating cell temperature, aging, RUL, etc. [64–165], is
inevitable in EVs. Because of the traction application’s fast charging and discharging nature,
accelerations and decelerations have considerable effects on the battery cycle number and
battery life. The BESS market is still experiencing the impact of range anxiety of EVs, which
is critically influenced by battery capacity fading and aging [166].
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Secondary batteries (SB)s dictate the market of portable power storehouse devices
used in EVs and different electric usage (Spinel NixCo2−xO4) as a bifunctional air electrode
for zinc-air batteries [137]. Such batteries stock electricity in chemical power, and they
create electricity via an electrochemical reaction method. Normally, SB involves electrodes,
anode, and another cathode, electrolytes, dividers, and cases. SB has remarkable qual-
ities like high energy [167,168], power density, leveled discharge, less resistance, small
memory result, and a good range of performance in temperature. However, almost all
batteries include toxic elements. Therefore, ecological consequences at the time of dis-
charge must be considered [169]. The SBs provide high power density and a specific
energy of electricity storehouse systems in most EV implementations because of cell tech-
nologies’ high technologies and competitive costs [170,171]. For different EVs, the SB can
be made of a zinc-halogen category (Zn-Cl2, Zn-Br2), metal-air category (Fe-Air [65,66],
Al-Air [64,65], Zn-Air [136–143]), sodium-beta (Na-S, Na-NiCl2), lithium high temperature
(Li-AlFeS, Li-AlFeS2), medium temperature lithium, such as lithium-polymer (Li-polymer)
and lithium-ion (Li-ion), and batteries family, such as Li-NiCoAlO2, LiNixMnyCozO2,
LiFePO4, and LiCoO2 cathodes. Compared to other Li-ion batteries, Li-S offer higher spe-
cific energy, better safety, and a slightly wider operating temperature. They are currently
under extensive development research. These high-energy lithium-ion batteries are the
most utilized type within modern and emerging EVs today. Lead-acid (LA) with Pb-O2
formula [67,68] batteries are generally regarded as the worst choice, mainly because of
their poor energy density compared to other presented batteries, as shown in Table 2. They
were used, however, to replace ICE vehicles and applied for other areas such as the grid
ESSs, renewable ESSs, and emergency power supply due to their low cost, temperature
tolerance, safe operation, and ruggedness. The comparative performance of these batteries,
presented in Table 2, is lower than nickel-based batteries (Ni-Fe, Ni-Zn, Ni-Cd, Ni-MH,
Ni-H2) [170–176]. The most recent battery candidates developed are Li-Ion [76–83], Li-
polymer [84–91], and NiMH [122–128] batteries, due to significant energy density, life
cycle, and operating temperature range, where the battery can provide its highest promis-
ing efficiency. The other listed batteries are undesirable for EVs; the worst kinds are
NaNiCl2 [92–103], NaS, NiZn [129–135], and ZnCl2. Although NaNiCl2 and NaS have
shown a notable life cycle, their operating temperature is the main reason for not deploying
them. Vice versa, NiZn and ZnCl2 lack a reasonable life cycle, which eventually results in
lower total range capability. As shown in Table 2, energy density, cut-off voltage (about
4.2 V), and cell voltage are relatively higher than other types of electrochemical batteries
for the lithium-ion cobalt (Li-Ion-Co) battery. Therefore, they are selected as one of the
best cost-effective candidates for EV applications. Among newly developed batteries,
lithium-titanate or titanium oxide batteries (e.g., Li4Ti5O12LTO) can offer considerably
long life cycles (up to 15,000) and high charging efficiencies (85–90%). However, their
disadvantages are low energy density and high cost. After discovering modern batteries
such as lithium batteries and Li-polymer batteries, LA batteries continue to have a presence
in the industry, particularly within devices whose temperatures are not regulated and
durability is needed. One downside of lead-acid cells is their limited life cycle, which
ranges from 400 to 2000 cycles [176,177]. Smaller versions of the LA batteries have become
increasingly popular for automotive electric equipment and rescue services. While larger
ones are typically used for stationary and starting, lighting, and ignition (SLI), applications
have only lately been produced [178]. For example, SLI and uninterruptible power supply
(UPS) batteries are usually LA batteries that have small voltages and ratings of 12, 8, and
6 V. A valve-regulated lead-acid (VRLA) has also been used to power the EVs due to no
maintenance being needed, the capability of rapid charging, low cost, and high power.
Recent studies have also investigated the weight and size minimization of advanced batter-
ies and maintaining energy density [179–181], such as VRLA batteries including gel and
absorbent glass mat (AGM) batteries [182–184], which are made of fiberglass electrolytes;
a solid material which contains and absorbs acid without any leakage. They require less
space and have a compact volume, and their vibration resistance is higher than many other
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standard batteries [185,186]. This battery has a specific function that can recombine oxygen
and hydrogen into the water during charging inside a unit and limit water loss. On the
other hand, a gel battery is composed of the electrolyte of gel-state which is gelatinous and
not solid enough to contain acid without any leakage. These batteries require controlled
and slower charging as compared to many others. These batteries’ corresponding chal-
lenges, strategies, and perspectives are discussed in [187–190]. For example, the risk of
using gel batteries can be the bubbles of gas produced in the electrolyte. They may damage
a battery permanently.

Table 2. Performance of electromechanical batteries for EVs.

Batt. Type The Energy
Density (Wh/kg) Life Cycle Internal

Resistance (mΩ) Cell Voltage (V) Charging
Temperature (◦C)

Pb-O2 40 250 <100 (12 V pack) 2 −20 to 50
Ni-Cd 62 1000 150 (6 V pack) 1.2 0 to 45

Li-Ion-PO4
3− 115 1500 25–502 3.3 0 to 4510

Li-Ion-Mn 117 750 25–752 3.8 0 to 4510

Li-Ion-Co 170 750 17 3.6 0 to 4510

Li4Ti5O12LTO 90 7000 2 (per cell) 2.4 0 to 45
LSD-NiMH 95 900 250 (6 V pack) 1.2 0 to 45

Ni-MH 90 400 250 (6 V pack) 1.2 0 to 45

Notes: The life cycle is reported in 80% discharge. Bold text indicates the best performance for EVs among the considered batteries. At the
same time, underlined text indicates the worst performance.

Table 3 demonstrates several popular electrochemical batteries for EVs, where the
anode is graphite for all presented batteries. LiMn2O4 has the highest nominal tension
capability; NaNiCl2 has shown the greatest thermal runaway feature, while the specific
energy is reported as the weakest. Also, ZnOH42− offers the highest specific energy among
others. In commercialized batteries, LiCoO2 is still the most used cathode material. It
was an unbeatable cathode for decades due to its large energy density, long life, and ease
of preparation. Nonetheless, the phase transition from hexagonal to monoclinic at high
voltages, and the cost of cobalt and its toxicity, motivated the scientists to search for a better
solution [191,192]. H2SO4 and hydrochloric acid (HCl) were used as the main agent to
compare the effects on cobalt and lithium extraction.

Table 3. Popular battery characteristics and requirements for EVs.

Chemistry
Description

Lithium Cobalt
Oxide

Lithium Manganese
Oxide

Sodium-Nickel
Chloride

Nickel-Metal
Hydride Zinc-Air

Reaction formula LiCoO2 LiMn2O4 NaNiCl2 NiMH ZnOH42−
Nominal tension (V) 3.60 3.70 2.85 1.20 1.4

Specific energy
(Wh/kg) 150–200 100–150 94–130 300–400 350–500

Charge (C-rate) 0.7–1 0.7–1 0.3 0.1 0.8
Discharge (C-rate) 1 1 1 1 0.1

Thermal runway (◦C) 150 250 270–350 40–70 280–320

Notes: The life cycle is reported in 80% discharge. Bold text indicates the best performance for EVs among the considered batteries. At the
same time, underlined text indicates the worst performance.

In the recovery of cobalt and lithium from Li-Ion battery active mass, HCl performs
better than H2SO4. The actual state for cobalt and lithium recovery is 2M HCl, 90 min of
leaching time, and 60–80 ◦C of leaching temperature. In this condition, the extraction ratio
for Co and Li is nearly 100%. The methods used for synthesizing LiCoO2 as a cathode
and recycling the cobalt and lithium from spent Li-Ion batteries are mechanical, thermal,
hydrometallurgical, and the sol-gel phases. The active cathode material has a good charge-
discharge capability and cycling performance because of LiCoO2 powder [193–195]. Less
life span, low thermal stability, and reduced specific power capability are the disadvantages
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of LiCo-based batteries. Some batteries, such as Li-Ion and Cobalt- blended Li- Ion, reduce
the life span due to mainly anode thickening, solid electrolyte interface, and lithium plating
during rapid charging and reduced charging [196].

A lithium-ion manganese oxide battery is a lithium-ion cell with a cathode made of
manganese dioxide (MnO2). Their issues and challenges are discussed in [197,198]. They
vary widely for EVs, such as LiNi0.5 CO0.22Mn0.3O2 (NCM523). Solvent-based slurry
casting techniques are widely used to create these cathodes, which are harmful to the
environment, energy-intensive, and time-consuming.

Longer transit distances at a lower cost have been a focus, ensuring optimum per-
formance and reducing utilizing second-life batteries for EVs. In an approach to reduce
battery production, their performance, application, feasibility, environmental impacts,
economic benefits, and challenges are reported in [199–202]. They work under the same
intercalation/de-intercalation principle as commercialized secondary rechargeable bat-
teries such as LiCoO2. Earth-abundant, cheap, non-toxic, and thermally stable, cathodes
dependent on manganese-oxide compounds are used. Another advanced type of battery is
the lithium manganese oxide, LiMnO2; the battery uses manganese for the cathode and
lithium as the anode. For the boost ion transfer, the battery is shaped like a spinel. It
contains lithium chloride, which acts as an organic solvent to help electrons flow between
the anode and the cathode. The lithium manganese oxide battery has several benefits
that make it appealing to users. It has a large life cycle of about ten years, which ensures
long-term dependability. For example, Nissan Leaf EV, in 2013, adopted LiMnO2, which
offers up to 225 miles in driving range. Additionally, the reports and innovative studies on
how to deal with their temperature rise and thermal management solutions can be found
in [203–245].

While there is widespread consensus that the demand for EVs is growing, a substantial
portion of the population remains skeptical. The key concerns are range limits, battery
durability, and safety. As the market grows, Table 4 presents considerations to overcome
these challenges. The recent and new manufactured EVs in the market are reported in
Table 4. Their key parameters are reported, such as driving range, battery capacity, charging
duration, power, and energy consumption. It is also reported that the battery size in terms
of power significantly increased up to 67 kWh in 2020, which is predicted to rise to 80 kWh
in 2030 (see [246,247] for more details). From the table, the best overall performance can be
selected for Jaguar I-Pace EV400 using a lithium-ion battery, where the highest top speed,
driving range, and battery capacity are provided.

Table 4. Recent and new market trends for passenger and van EVs.

Brand Model Year
Top Speed

(mph)/Range
(mi)

Battery Capacity
(kWh)/Fast Charging

Time (h)

Normal and Maximum
Battery Charging

Power (kW)

Energy
Consumption

(Wh/mi)

Audi e-tron 55 quattro 2019 124/225 86.5/0.46 11 AC/155 DC 315
BMW i3 2019 93/219 42.2/0.5 11 AC/49 DC 195
Audi e-tron 50 quattro 2020 118/175 64.7/0.45 11 AC/120 DC 365

Vauxhall * Vivaro-e Life Elite L 2020 81/110 50/0.52 7.4 AC/99 DC 310
Fiat 500e Cabrio 2020 93/135 42/0.45 11 AC/85 DC 185

Jaguar I-Pace EV400 2020 124/225 90/0.32 11 AC/262 DC 290
Tesla 3 long range 2021 91/145 77/0.54 11 AC/190 DC 190

Citroën e-C4 2021 81/115 45/0.52 7.4 AC/99 DC 205
Mercedes EQA 250 2021 99/220 66.5/0.55 11 AC/100 DC 250

Ford Mustang Mach-E
ER 2021 120/335 88/0.72 11 AC/150 DC 260

Tesla Y long range 2021 112/260 72.5/0.31 11 AC/250 DC 240
Lexus UX 300e 2021 99/160 54.3/1.15 6.6 AC/35 DC 260

Peugeot * e-Traveller Long 2021 81/115 50/0.52 7.4 AC/99 DC 325
BMW iX3 2021 112/225 74/0.52 11 AC/155 DC 255

Notes: Bold text indicates the best performance for passenger EVs among the studied cases. Whereas underlined text indicates the worst
performance, and * presents van EVs. The energy consumption is calculated under standard WLTP drive cycle for this table.
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Critical safety problems in BESSs comprise temperature rises and management. Im-
proving efficiency, range, charging, durability, and protection can be achieved by effectively
handling the heat in the utilized BESS. In Table 5, several thermal cooling methods con-
sider their efficiency and operating temperature such as air, liquid, direct refrigerant,
phase change material, thermoelectric, and heat pipe. The highest efficiency could be seen
for direct refrigerant and thermoelectric cooling methods. Battery thermal management
advances can be found in the following review and technical papers [247–254].

Table 5. Battery thermal cooling methods for EVs.

Thermal Cooling
Methods Efficiency (%) Operating

Temperature (◦C) Citations

Air 40–60 50–200 [203–207]
Liquid 45–75 50–300 [208–214]

Direct refrigerant 55–80 25–600 [215–220]
Phase change 50–65 −20–45 [221–229]

Thermoelectric 65–80 0–150 [230–235]
Heat pipe 50–75 25–300 [236–246]

3. Aging Analysis Considering Cell Temperature for HEVs: A Case Study
3.1. Mathematical Equations

The HEV’s powertrain is modeled to deliver power demands from the BESS to the
wheels. Depending on the driving conditions, the power demand Pdemand varies, which
combines both ICE and electric machine (EM) with motoring and generating capabilities.
Hence, the Pdemand can be introduced into two categories, (1) braking and coasting; and (2)
accelerating and cursing modes:(1) : Pdemand ≤ 0, Prpb(t) = Pdemand(t)−

PEM(t)
ηt(GR(t))

(2) : Pdemand > 0, PICE(t) =
Pdemand(t)
ηt(GR(t)) − PEM(t)

(1)

where Prpb is the regenerative power braking produced from the negative acceleration,
under braking condition PEM is the net output power from the EM, and PICE is the net
output power from the ICE. ηt is the total transmission efficiency, which is a function of
gear ratio GR.

Battery aging analysis considering the electro-thermal effects demonstrates how the
performance of the BESS can be degraded. The electro-thermal modeling of the BESS
using a Thevenin circuit is considered for this study, based on [254–257]. Considering the
Thevenin circuit, presented in Figure 1, the terminal voltage Uc can be given as:

Uc = Voc(SoC, T)−URs(IL, t)−
N

∑
i=1

URC,i(t) (2)

where Voc is the open-circuit voltage, T is the operating cell temperature of the battery, IL is
the load (or battery) current, VRs is the instantaneous voltage drop over the ohmic internal
resistance (R0), which is computed using R0 × ∆I, where ∆I indicates the step change of
battery charging or discharging current. VRC is the transient voltage drop over the ith RC
shown in Figure 1.
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In this study, the aging analysis of multiple connected lithium-ion battery cells is
modeled. The effects of battery temperature on the capacity degradation and life cycle are
investigated, where the battery temperature is:

Tc(n) = Tc(n− 1) +
I2
LRo + ILUp + ILTc

dUocv
dTc
− hS(Tc − Ta)

Cm
(3)

where Tc is the average battery temperature, resulting from all considered battery cells
Tc = Tc1 +Tc2 +Tc3 + · · ·+Tcn; h is the heat transfer coefficient, and S is the total superficial
area of battery; Uocv is the open circuit voltage; Ta is the ambient temperature of the battery
cells. These are varied for better understanding its impact on the battery’s aging, using a
global sensitivity method based on Sobol random sampling and Monte Carlo analysis. C is
the heat capacity of the battery cells, and m is the battery total mass.

The discharging/charging functions f1 and f2 of the lithium-ion battery cell is:

f1

( .
Q, i∗, i, Tc, Ta

)
= E0(Tc)− K(Tc)

Q(Ta)

Q(Ta)−
.

Q

(
i∗ +

.
Q
)

+Ae(−B
.

Q) − C·
.

Q
f2

( .
Q, i∗, i, Tc, Ta

)
= E0(Tc)− K(Tc)

Q(Ta).
Q+0.1Q(Ta)

i∗ − K(Tc)

Q(Ta)

Q(Ta)−
.

Q

.
Q + Ae(−B

.
Q) − C·

.
Q

(4)

where E0 is the constant voltage;
.

Q is the extracted capacity; Q is the maximum battery
capacity; K is polarization resistance; i∗ is the low-frequency current dynamics; i is the
battery current; A and B are exponential voltage and capacity constant, and C is the
nominal discharge curve slope. To calculate the polarization resistance or constant:

K(Tc) = KTre f ·e
(α( 1

Tc −
1

Tre f
))

(5)

where Tre f is the reference cell temperature, and KT_re f is the constant related to Tre f .
Considering the aging effects of a lithium-ion battery cell, the capacity degradation can be
defined as:

Q(n) =
{

QBOL − ε(n)·(QBOL −QEOL) i f k/2 6= 0
Q(n− 1) otherwise

(6)

where QBOL is the capacity of battery under the beginning of the life (BoL) condition, QEOL
is the capacity of the battery under the end of life (EoL) condition. Both are measured at the
nominal (or reference) ambient temperature. ε is the battery cell aging parameter, and n is
the sequence number.
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3.2. Battery Cell Modeling and Settings

In this electro-thermal modeling, the BESS is designed using a MATLAB Simulink
environment ans simscape library, as shown in Figure 2. The designed HEV powertrain is
developed for a passenger vehicle with a curb weight of 1600 kg which can travel up to
980 km (total range). Under positive acceleration a permanent magnet synchronous
machine (PMSM) is employed to deliver a continuous torque between 0–450 Nm and a
maximum shaft speed of 10,000 rpm. A planetary gear with 2.8 gear ratio is selected to
manage the power between the fuel engine with 120 kW maximum power and PMSM.
In addition, a proportional and integral (PI) controller is used to control the speed at
the proposition shaft in the drivetrain, and to study the aging of a lithium-ion (LiFePO4)
battery pack, the effects of different depth of discharge (DoD), state of health (SoH), capacity
degradation, discharge current, SoC, and Ta. As presented in Figure 2, the changes of
positive (motoring) and negative (generating) accelerations from a standard Worldwide
Harmonized Light Vehicle Test Procedure (WLTP) drive cycle [258] play an important role
in battery charging and discharging bus currents.
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Figure 2. Electro-thermal model of lithium-ion battery cells, using MATLAB Simulink, for a passenger EV.

Figure 3 demonstrates the development of lithium-ion battery cells given in Figure 1.
The model uses a simscape library from MATLAB Simulink, where multi-domain compo-
nents (blue and orange lines indicate the electric and thermal connections physical system)
are modeled. The selected solver is a variable-step type with an absolute tolerance of
1 × 10−6, in which an adaptive zero-crossing algorithm is selected. Along with the battery
cell’s electrical components, such as resistors R0, R1, R2, Rp, Ep, and C1, other thermal-
oriented components like heat flow source, battery cell thermal mass, and sensors are
utilized in this model. In the employed battery model, each cell contains an internal resis-
tance of R0 = 0.0043 Ω, the main resistances of R1 = 1 mΩ, R2 = 0.1 Ω, and in the parasitic
branch resistance of Rp = 2e−11 Ω−1, the main branch capacitance is C1 = 0.001 mF. The
thermal model of each cell consists of a cell thermal mass of 400 J/kg/K which is inversely
proportional to the heat flow rate in the cell. The output of the battery is connected to a
DC/DC converter which also includes a thermal model to calculate the heat flow, and
its associated power loss, via a convective heat transfer block. In this simulation, the
average DC/DC converter temperature is 38 ◦C. The maximum DC bus voltage of 550 V
and maximum battery voltage of 260 V is reported. Additionally, the ratio of ampere-hour
capacity, Kt(T), is a lookup table gathered at a standard time rate for a range of operating
cell temperatures. The battery cell’s specification is given in Table 6.
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environment.

Table 6. Lithium-ion battery cell specifications.

Parameters Value Unit

Rated capacity 40 Ah
Rated voltage 12.8 V

Internal resistance at BoL 0.0151 Ω
Internal resistance at EoL 0.0154 Ω

Cut-off voltage 10 V
Rated discharge current 20 A

A quasi-Monte Carlo (QMC) simulation with Sobol sampling [259] is used for sensitiv-
ity analysis of several battery cell parameters to provide a simulation-based investigation
on aging effects. The sensitivity analysis is done for 5000 h of driving using the WLTP
drive cycle. Simulating QMC requires sampling generation through computed Sobol sen-
sitivity indices. In this study, the sample number is 100 for every cell temperature from
25–55 °C. The sensitivity function f (x) is defined as an n-dimensional unit hypercube,
assuming xu, as the |u|-dimensional vector, which contains variables xj. Using analysis
of variance (ANOVA) decomposition of f (x), more details can be found in [260], each
iteration computing as:

f (x) = ∑
u⊆(1,...,n)

fu(xu) (7)

where the partial and total variance of f (x) is given as:
σ2

u =
∫

[0,1]|u|
fu(xu)2dxu

σ2 =
∫

[0,1]|n|
f (x)2dxu − f 2

∅
(8)

Based on Sobal’s global sensitivity analysis, the indices to be calculated are:
Su = 1

σ2 ∑
v⊆u

σ2
v

Su = 1
σ2 ∑

v∩ u 6=∅
σ2

v
(9)
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The aging simulations are successfully done using an Intel i7-9700 CPU at 3.00 GHz,
with RAM of 32 GB and a 64-bit operating system. By using the parallel computing feature
of MATLAB Simulink, each simulation took 450 min.

3.3. Results and Discussion

A standard driving cycling profile is chosen to evaluate the life cycle of a LiFePO4 cell for
EVs. The European Union (EU) has developed a new profile known as WLTP. This drive cycle
has different average speeds such as low, medium, high, and extra high. The EU automobile
industry welcomes the shift to WLTP and has actively contributed to developing this new
test cycle. As a result of WLTP power demand, the simulations consist of a sequence of full
charge and discharge cycles between the voltage limits of the battery cell.

The battery cell aging simulation allows characterizing cell temperature and degradation
in-depth, providing the aging knee and thus offering useful information about the cell
performance tested under the requested vehicle’s power demand. The main parameters such
as capacity, battery cell, and life cycles are presented for the total driving time of five hours.

Capacity degradation for five-hour performance is of considerable interest because of
the impact of aging in batteries. Figure 4 demonstrates the variations of the equivalent cycle
number and capacity, where the level of impact varies with the ambient temperature. The
results show that the higher the ambient temperature, the higher the difference between
BoL and EoL performance. For example, the life cycle varies between 1100–2500 for the
range ambient temperature (25–65 ◦C) tested in this contribution. The capacity degradation
between 43–31 can also be reported for corresponding ambient temperatures of 25–65 ◦C.
For this graph, high-dimensional datasets with 3,000,000 operating points were generated.
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Figure 4. Equivalent cycles and battery cell capacity for a single lithium-ion battery cell considering
ambient temperature.

In this case study, the electro-thermal system is primarily based on irreversible heat
generation due to losses at the current collector and active cell materials. Also, the reversible
heat production originates from an entropy change resulting from the intercalation and
deintercalation of LiFePO4 cells. Figure 5 illustrates how the battery cell temperature
varies depending on the charge and discharge current changes, which arise due to the
power demand requested by the vehicle. The graph indicates that rationally higher cell
temperatures occur when the discharge current is higher. Under the WLTP cycle, the
cell temperature is mostly recorded below 65 ◦C. However, the highest is reported when
both charging and discharging currents are very high, which happens during the major
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accelerations and decelerations, also known as harsh driving environments. Note that a
natural air-cooling system is considered for generating this figure.
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air cooling.

To better determine the impacts of charging and discharging requested currents, a
global, randomized QMC sensitivity analysis was conducted (Figure 6). The different ambi-
ent temperatures eventually play a significant role in the battery cell operating temperature.
For this simulation, 500 randomized samples were generated, where every 100 samples
belong to one temperature category, e.g., 100 samples when the temperature remains 25 ◦C.
The results explain how the maximum cycle number can substantially increase when the
ambient temperature is higher. The dashed line area indicates the samples that critically
suppress the battery cell capacity while the battery cell capacity falls between 1–10 Ah.
Among them, most of the samples belong to 55–65 ◦C cell temperature. The changes in
both charging and discharging currents also affect the cycle number linearly until the aging
knee. The aging knee light blue dashed line separates the samples into two regions. In
the first region below the aging knee line, the battery cell’s fading power capability is
still linear; however, significant rises can be seen above the dashed line; primarily at the
high charging and discharging bus currents. This cycle number increase mechanism is
quantified based on the internal resistance increase (which is highly dependent on the cell
operating temperature) and capacity loss.
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4. Potential and Future Prospects: A Prediction-Based Study on BESS for EVs

The future trends of lithium-ion batteries for powering EVs are studied in this section.
Based on the historic databases reported by [261], short-term, medium-range forecasts are
presented using additive Winter’s method. The fitting accuracy measurers are given:

MAPE = 1
n

n
∑

t=1

∣∣∣ At−Ft
At

∣∣∣
MAD = 1

n

n
∑

i=1
|xi −m(X)|

MSD = 1
n

n
∑

i=1
|xi(t)− xi(0)|2

(10)

where MAPE is the mean absolute percentage error, MAD is the mean absolute deviation,
and MSD is the mean squared displacement. At is the actual value, Ft is the forecast value,
n is the number of times the summation iteration occurred, and xi is the dataset vector
where the i subscript shows the data point number. m(X) is the average value of the
dataset. The xi(t) vector is the ith data point at a time, and xi(0) is the ith datapoint at
the reference position. All the smoothing constants such as level, trend, and seasonal are
selected to reduce the MAPE, MAD, and MSD outputs.

Figure 7 indicates the past, current, and future trends of worldwide growing lithium-
ion battery demand for light-duty and heavy-duty EVs. The historic data from 2009–2019 is
provided by [261]. An additive winter method is used for future forecasting in this work.
As presented in Figure 7a,c, the lithium-ion (capacity) market will increase by 11% and 65%
between 2020–2025 for light-duty and heavy-duty EVs, respectively. The future short-term
predictions show, in Figure 7b,d, that the lithium-ion equivalent in tons of cell mass will rise
by 81% and 74% for both light-duty and heavy-duty EVs in the market between 2020–2025.
As presented, the demand will significantly increase for lithium-ion-powered EVs globally.
The results suggest that soon, the lithium-ion energy storage capacity for both lights- and
heavy-duty electric vehicles is expected to double. This confirms the pattern identified
by [262]. Therefore, in the current scenario, because of the higher demand for EVs, several
lithium-ion batteries which need to be produced to sustain the development of the market
are envisaged to grow quite significantly in the forthcoming years. Therefore, as suggested
by [247], the system’s capability to achieve large-scale deployment of ESSs will determine
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whether the automotive industry could satisfy the demand for electric vehicles. A significant
increase in the manufacturing capacity will be required at different levels of the supply
chain. This potential increase in the demand for storage capacity may reduce the cost of
batteries due to the advantages arising from learning curves and economies of scale; as
such, the increase can further boost the demand since battery packs are the most expensive
component in an electrified drivetrain. Reducing their cost may thus allow EVs to become
more affordable for more individuals. Therefore, the growth in EVs’ demand could further
contribute to this positive trend, accelerate the transition to e-mobility, and promote the
adoption of electrified means of transport. However, the sharp increase in demand is not
expected to last for a long period of time. The curve will reach the settling point as soon as
most of the vehicles in circulation are dismissed and substituted by electric ones.
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Figure 8 presents the expected demand for BEV and PHEV in different regions of the
globe between 2020 and 2025. Historic data between 2010–2020 are provided in [247]. From
the results obtained, the electric vehicle market will be characterized by a positive trend
in different markets. Based on the predictions, the worldwide market will grow by about
140% up to 2025. Europe is likely to experience an increase of approximately 103% and
110% in the sales for BEV and PHEV in the next five years. Once again, that implies that
the number of vehicles sold in 2019 will more than double in five years. Similarly, the US
demand will grow by approximately 135% for BEV and 114% for PHEV, almost tripling
the 2019 recorded data. BEVs with a 110% increase and PHEVs with a 132% will observe
a higher growth (increased percentage), but a lower total number of EVs in China, and
other countries/regions, especially if the results are compared to the country’s population.
However, despite the difference in the adoption rate between different countries, the
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market size and the availability of financial support to purchase the vehicles, the number
of vehicles sold will increase significantly considering the state of the art. There are reasons
to believe that this trend is reinforced because of continuous government support to
the transition to e-mobility. In fact, according to [247], environmental and sustainability
objectives currently drive the policy framework, and more governments have announced
strict measures to phase out traditional vehicles by 2050 [247,263]. However, the predicted
growth of EVs may be hampered by potential bottlenecks caused by the finite availability
of specialized materials required in battery manufacturing [264,265]. The natural scarcity
of the critical material, the demand from competing sectors, the geographical concentration
of resources, and the political instability of countries where resources are located pose a
series of challenges for automotive supply chains due to the increase in supply disruption
risk [266]. Therefore, future studies may assess whether production rates for material
extraction and manufacturing could sustain the expansion of the electric vehicle market in
different scenarios. In this context, it is paramount to consider battery aging patterns to
improve the accuracy of the estimate in the battery demand and the number of necessary
materials required.
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Similarly, the availability, accessibility, and capability of public charging infrastructures
may pose a threat to the large-scale adoption of BEVs, which could potentially revert this
trend. Despite this, requirements for the charging facilities, including the optimal number of
stations, locations, and charge schedules, are currently being investigated and countries are
planning the development of infrastructure. Delays in developing solid private and public
infrastructure could cause a severe setback and hinder the transition to the electrification
of road transports. Further studies are required to explore barriers to the development of
charging station infrastructures and their optimal integration in future transport, where
the charging demand will be increasing significantly.

5. Conclusions

High-energy modern batteries are enabling EVs to drive farther on a single charge. The
role of lithium-ion batteries is inevitable in the coming years, considering environmental
issues such as the shortage and recycling of raw materials. These limitations stress the
importance of the optimum selection and sizing of BESS. At the same time, battery size is
estimated to increase by 80 kWh to improve the range anxiety up to 400 km by 2030. The
supply of rare earth elements may become critical, such as lithium, cobalt, manganese, and
nickel. Upon reviewing current research on battery-powered EVs, the main conclusions
drawn are the following:

• Within the EV application operating temperature, the lithium-ion family batteries are,
i.e., LiMO2, LiMn2O4, and LiFePO4. They are currently the best candidates because
of their performance features, such as higher energy density, specific power, battery
efficiency, and life cycle. Despite the technical suitability, such batteries may result
in being more expensive compared to their alternatives. Therefore, advancements
in battery technology or manufacturing processes are required to reduce their cost.
LiFePO4 is the greenest and safest type; for instance, it does not produce oxygen, even
when completely decomposed due to heating. The proposed batteries in terms of
performance are LiNi1-x-yMnxCoyO2 because they can combine LiCoO2 and LiNiO2
and use much less Cobalt, making them safer.

• Among all modern rechargeable electromechanical batteries, the impact of tempera-
ture on capacity degradation and aging is unavoidable within the operation. For this
reason, NaNiCl2 batteries have shown a greater thermal runaway range compared to
other batteries. There is a gap in the literature on the thermal runaway of emerging
lithium-ion batteries such as LiNiCoAlO2, LiNixMnyCozO2, and LiCoO2 cathodes.

• While the life cycle plays an important role in BESS design requirements, e.g., the
US-advanced battery consortium defines a life cycle of 1000 cycles as one of the de-
sign requirements. In this paper, the aging effects and capacity degradation of a
lithium-ion battery pack were investigated. Considering the battery cell tempera-
ture, the simulation-based study considered the HEV to operate for five hours driv-
ing under the WLTP drive cycle. The recorded results reported capacity fading of
18.42% between 25–65 ◦C. The equivalent cycle number also rose by 19% for the same
range of ambient temperature. Additionally, the impact of charging/discharging
currents from the battery cell bus was presented using QMC simulations; the evalua-
tions compared the increase of cycles required to finish the five-hour driving cycle.
Higher temperatures resulted in a higher cycle number with consideration of the
capacity fading.

• Based on the predictions using additive Winter’s method, the growing global market
of EVs will increase by 140% in 2025. The lithium-ion market will increase by 11% and
65%, between 2020–2025, for light-duty and heavy-duty EVs. The future short-term
predictions also indicate that the lithium-ion cell production mass will rise by 81%
and 74% for both light-duty and heavy-duty EVs in the market between 2020–2025.

• Based on the predictions in this study, the worldwide EV market will grow by approx-
imately 140% up to 2025. Europe is likely to experience an increase of approximately
103% and 110% million in the sales for BEV and PHEV in the next five years. That
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implies that the number of vehicles sold in 2019 will more than double in five years.
Similarly, the US demand will grow by approximately 135% for BEV and 114% for
PHEV, almost tripling the 2019 recorded data. BEVs with a 110% increase and PHEVs
with a 132% increase will significantly grow in China, regardless of population density.

The aging analysis and other post-processing considerations play a critical role in
an optimum, sustainable, and cost-effective transport system. Improving the effective
life of electrochemical batteries can significantly replace environment-related detriments,
reducing emissions and production costs of new batteries with recovering market supply
chains and economic viability. While engineers and scientists are advancing the BESS’s
technology, more investigations are needed to ensure that this will not become a crucial
environmental liability. Although EVs’ positive environmental impacts are indisputable,
there are a few raised challenges, such as recycling, damaging local effects of uncontrolled
mining and refining, raw materials shortages (e.g., Cobalt), second-life battery utilization,
charging station infrastructure, and potential supply/demand mismatch. Sustainable
transport development is only reachable if all of these questions are answered, and further
research is thus required.
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Nomenclature

AC Alternative current
BoL Beginning of life
DoD Depth of discharge
DC Direct current
EV Electric vehicle
EoL End of life
ESS Energy storage system
GHG Greenhouse gas
HEV Hybrid electric vehicle
PHEV Plug-in hybrid electric vehicle
RUL Remaining useful life
NiMH Nickel-metal hybrid
SoC State of charge
SoH State of health
ICE Internal combustion engine
BESS Battery energy storage systems
ESS Energy storage systems
BEV Battery electric vehicle
LCA Life cycle assessment
FB Flow battery
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SB Secondary battery
LA Lead-acid
SLI Starting, lighting, and ignition
UPS Uninterruptible power supply
VRLA Valve regulated lead–acid
AGM Absorbent glass mat
WLTP Worldwide harmonized light vehicle test procedure
QMC Quasi-Monte Carlo
ANOVA Analysis of variance
BoL Beginning of life
EoL End of life
MAPE Mean absolute percentage error
MAD Mean absolute deviation
MSD Mean squared displacement
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