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Abstract: Aspergillus and Pseudomonas compete in nature, and are the commonest bacterial and fungal
pathogens in some clinical settings, such as the cystic fibrosis lung. Virus infections of fungi occur
naturally. Effects on fungal physiology need delineation. A common reference Aspergillus fumigatus
strain, long studied in two (of many) laboratories, was found infected with the AfuPmV-1 virus.
One isolate was cured of virus, producing a virus-free strain. Virus from the infected strain was
purified and used to re-infect three subcultures of the virus-free fungus, producing six fungal strains,
otherwise isogenic. They were studied in intermicrobial competition with Pseudomonas aeruginosa.
Pseudomonas culture filtrates inhibited forming or preformed Aspergillus biofilm from infected strains
to a greater extent, also seen when Pseudomonas volatiles were assayed on Aspergillus. Purified
iron-chelating Pseudomonas molecules, known inhibitors of Aspergillus biofilm, reproduced these
differences. Iron, a stimulus of Aspergillus, enhanced the virus-free fungus, compared to infected. All
infected fungal strains behaved similarly in assays. We show an important consequence of virus
infection, a weakening in intermicrobial competition. Viral infection may affect the outcome of
bacterial–fungal competition in nature and patients. We suggest that this occurs via alteration in
fungal stress responses, the mechanism best delineated here is a result of virus-induced altered
Aspergillus iron metabolism.

Keywords: Aspergillus; fungal virus; Pseudomonas; intermicrobial competition

1. Introduction

Viruses naturally infecting Aspergillus wild-type strains have been known since
1970 [1]. These viruses have double-stranded (ds) or single-stranded (ss) RNA genomes
and may be conventionally encapsidated. They do not have an extracellular phase in their
replication cycle but can be transmitted horizontally via hyphal fusion and vertically via
spore production. However, little is known about how they affect Aspergillus physiology
or virulence.

The virus family Polymycoviridae was initially reported in 2015 [2] and was officially
recognized by the International Committee on Taxonomy of Viruses in 2020 (https://
talk.ictvonline.org/; accessed on 5 April 2020). Polymycoviridae currently accommodate
one genus Polymycovirus and 10 species, including Aspergillus fumigatus polymycovirus
1. Members of the Polymycoviridae family and related viruses have usually four [2,3]
and up to eleven [4] dsRNA genomic segments. A majority of polymycoviruses are not
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conventionally encapsidated [2,3], although filamentous particles have been reported in
one case [5] and are infectious as dsRNA [2,5].

There has been extensive research in many laboratories, for decades, regarding in-
termicrobial interactions, particularly Pseudomonas–Aspergillus interactions (recently re-
viewed [6–13]), two microbes that coexist, and likely compete, in nature and in patients,
particularly persons with cystic fibrosis and immunocompromised hosts. A central facet
of the competition is the mutual battle to withhold iron from the competitor. The Pseu-
domonas siderophore and pyoverdin are its principal weapons used against Aspergillus in
iron-restricted liquid environments [14], along with the Pseudomonas Quinolone Signal
(PQS) [15] and pyocyanin, which is likely a more direct toxin in iron-rich environments [16].
Aspergillus counters the battle for iron with its own siderophores [17]. In a non-liquid
air environment, Pseudomonas can also generate volatiles that can inhibit Aspergillus [18].
Presently we studied one aspect of the possible effect of virus infection of Aspergillus
fumigatus on this intermicrobial interaction, using tools that have previously been quantita-
tively standardized.

AF293 is a very common A. fumigatus laboratory strain, and its genome has been fully
sequenced [19]. Two versions, one in the USA and one in the UK, separated by at least
10 years, were studied, and both were found to carry the same virus, Aspergillus fumigatus
polymycovirus 1 (AfuPmV-1) [2]. The UK strain was cured of AfuPmV-1, resulting in
virus-free and virus-infected isogenic lines as previously described [2]. To control for
differences found between infected and uninfected strains, the virus-cleared strain was
re-infected in three experiments with the same virus that was present in the original strain,
producing three re-infected strains, as previously described [2].

2. Materials and Methods

Isolates: The USA and UK AF293 strains were designated by the California Institute
for Medical Research (CIMR) # 10-53 and 18-95, respectively. A. fumigatus AF293 strain
(18-95) was cured from AfuPmV-1, using the protein synthesis inhibitor cycloheximide [2],
producing a strain now designated 18-42. AfuPmV-1 was purified by differential polyethy-
lene glycol precipitation and ultracentrifugation [2]. Purified AfuPmV-1 was re-introduced
in the virus-free Aspergillus by protoplast transfection [2]. This was done 3 times, producing
infected strains, designated CIMR 19-40 1A, 19-41 2A, and 19-42 3A. The presence or ab-
sence of AfuPmV-1 was confirmed by dsRNA extraction, Northern blotting, and RT-qPCR
as previously described [2] (Figure S1).

PAO1 and PA14 are extensively studied widely distributed laboratory reference P.
aeruginosa strains [16]. The use of all microbes in the CIMR laboratory is approved by the
CIMR Biological Use Committee (approval no. 001-03Yr.14, 001-05 Yr.1).

In brief, methods used for generating and testing Pseudomonas aeruginosa supernatants
and molecules on Aspergillus biofilms, as well as sources for materials, were as previously
described [14–17,20].

Materials: Pyoverdin, PQS (Pseudomonas Quinolone Signal, 2-heptyl-3-hydroxy-
4(1H)-quinolone), XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-car-
boxanilide inner salt), menadione, iron (FeCl3), and RPMI 1640 medium were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Trypticase soy agar (TSA) was purchased
(Lonza, Walkersville, MD, USA) and prepared per manufacturer instructions. RPMI 1640
agar was prepared: Briefly, 7.5 g Bacto Agar (Carolina Biological Supply Co., Burlington,
NC, USA) in 100 mL distilled water was autoclaved and mixed with 400 mL pre-warmed
RPMI-1640 medium.

Methods: P. aeruginosa supernatants were prepared as detailed previously [20]. Briefly,
P. aeruginosa (5 × 107 cells/mL) was incubated in RPMI 1640 medium with or without
addition of FeCl3 at 37 ◦C and 100 rpm for 24 h. Bacterial growth was measured at 600 nm,
using a spectrophotometer (Genesys 20, Thermo Fisher Scientific Inc., Waltham, MA, USA).
Bacterial cultures were centrifuged at 200× g for 30 min, at room temperature, and filtered
for sterility (0.22 micron).
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Plate assays for the determination of Pseudomonas effects on Aspergillus forming or
preformed biofilms forming biofilm assay: A. fumigatus conidia (2.5 × 104/mL) was seeded
in test substances in RPMI 1640 medium, in 96-well plates, at 37 ◦C, overnight (16 h).
Preformed biofilm assay: A. fumigatus conidia (2.5 × 104/mL) was seeded in RPMI 1640
medium, in 96-well plates, at 37 ◦C, for 24 h. The plates were washed with phosphate-
buffered saline, and test substances were added. Plates were incubated at 37 ◦C, overnight
(16 h).

All assays were evaluated by XTT metabolic assay [20,21]. Briefly, 150 microliters of
an XTT-menadione mixture was added to each test well and incubated at 37 ◦C, for one
hour. Supernatants from each well (100 microliters) were assayed, using a plate reader
(Vmax, Molecular Devices, San Jose, CA, USA) at 490 nm.

Assays for testing inhibition of planktonic Aspergillus growth, by Pseudomonas super-
natants or antifungal drugs, were as described [22]; Minimum Fungicidal Concentration
(MFC) was defined as ≥96% killing of the inoculum [23].

As in the manner of previous studies [18], the effect of Pseudomonas volatiles on
Aspergillus growth was assessed by cutting away a 3 mm–wide strip, with a scalpel, out of
the agar of an 8 cm diameter TSA agar plate, along a diameter, to separate the plate into 2
semicircular noncontiguous agar halves. The halves were inoculated with 10 microliters
of a 107/mL suspension, in RPMI1640 of Pseudomonas, or of Aspergillus conidia, and this
co-culture incubated for 72 h, at 37 ◦C, and then the Aspergillus colony area (πr2) was
measured. Each experiment involved 3 replicates.

Statistical analysis: Results were analyzed with Student’s t-test if two groups were
compared, and one-way analysis of variance (ANOVA) combined with Tukey’s post-test
for multiple comparisons. All data are expressed as the mean and standard deviation. Data
reported as percentages of the control value were compared with Student’s t-test after
arcsin transformation of the proportions; these data are presented as percentages. Assays
used 4–8 replicate wells for each group studied, for statistical purposes.

3. Results

Effect of virus infection on A. fumigatus physiology in the context of the assays to be
performed: To assist in interpretation of possible P. aeruginosa effects on A. fumigatus in the
assays selected to test such effects, we needed to assess A. fumigatus function in the absence
of P. aeruginosa, which is the A. fumigatus control we would use for assessing P. aeruginosa
effects. Seven experiments assessing A. fumigatus biofilm metabolism were performed
in the milieu to be used for later testing P. aeruginosa effects: RPMI 1640, in the plates,
temperature, etc., described. There were 5 to 17 replicates for each of the three A. fumigatus
strains (Af 18-42, virus-free, and isogenic controls, infected, 10-52 and 18-95) under study,
in each of the seven experiments (a total of 212 replicates). The mean ± SD for the XTT
assays, A490, for the seven experiments was 0.359 ± 0.12, 0.387 ± 0.13, and 0.455 ± 0.14,
for the three isolates, respectively. None of these is significantly different from the others,
p > 0.05.

Aside from metabolism (assessed by XTT), the other assay of P. aeruginosa effects
(below) involved effects of volatiles on A. fumigatus growth on TSA agar. As will be
reiterated, there were, again, not any differences found in the A. fumigatus controls (absence
of P. aeruginosa) under the same culture conditions, as described for those assays.

Effect of Pseudomonas planktonic supernatant on preformed Aspergillus biofilm: In
the first study with preformed Aspergillus biofilm (i.e., after 16 h, till 40 h culture), and
P. aeruginosa PAO1 planktonic supernatants, we found the virus-free preformed biofilm
resistant to Pseudomonas supernatant (Figure 1B). In contrast, the two infected strains were
significantly inhibited.
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Figure 1. Effect of Pseudomonas planktonic supernatant on preformed Aspergillus biofilm. We studied preformed Aspergil-
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Figure 1. Effect of Pseudomonas planktonic supernatant on preformed Aspergillus biofilm. We studied preformed Aspergillus
biofilm (i.e., 16–40 h culture) and Pseudomonas (PAO1) supernatants. The read-out is the XTT assay, to quantitate Aspergillus
metabolism. Data are presented as % of control (medium alone). (A). Diagram of methods. (B). We see the virus-free
preformed biofilm (left dark bar) is resistant to Pseudomonas supernatant. In contrast, the 2 infected strains (10-53 no. 1;
18-95 no. 2) are significantly inhibited. The virus-free Aspergillus strain even appears to be stimulated by the Pseudomonas
supernatant. (C). This shows a dose titration of the Pseudomonas supernatant (50% to 12.5%) effect, comparing the virus-free
Aspergillus (18-95) to that same strain, re-infected. The 3 re-infected Aspergillus strains (19-40 1A, 19-41 2A, and 19-42
3A) are re-infected nos. 1, 2, and 3, respectively. The 4 bars, black and gray, at the right are the virus-free Aspergillus,
and the stimulatory effect of Pseudomonas supernatant is again seen on the virus-free strain, at the lower dilutions. The
re-infected strains (all the remaining quartets of bars) are inhibited by Pseudomonas supernatant. All Aspergillus strains show
a dose-response.
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In a dose titration of Pseudomonas supernatant (Figure 1B), we compared the virus-
free Aspergillus to the three re-infected Aspergillus strains. The re-infected strains were
inhibited by Pseudomonas supernatant. These observations were confirmed in two addi-
tional experiments.

In addition, to study the effects of another Pseudomonas strain, we compared the effect
of supernatant of Pseudomonas strain PA14 on preformed Aspergillus biofilm (Figure 2). As
with PAO1, the effects were significantly stronger on the infected strains.
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Figure 2. Effect of Pseudomonas (PA14) planktonic supernatant on preformed Aspergillus biofilm. (A). Diagram of methods.
(B). All 3 Aspergillus strains are inhibited (XTT assay) at a 1:2 dilution of Pseudomonas supernatant (black bars), comparing to
their own controls (medium alone)). The virus-free Aspergillus is less inhibited compared to the infected isolates, compared
to 10-53 (left), and to 18-95 (right).

Effect of Pseudomonas planktonic supernatant on AF293-virus free or AF293-infected
biofilm formation: The effect of planktonic Pseudomonas (PAO1) supernatant on biofilm
formation (i.e., initial 16 h of culture) by A. fumigatus was studied (Figure 3). All iso-
lates are inhibited by Pseudomonas supernatant. The virus-free Aspergillus is significantly
inhibited less.
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Figure 3. Effect of Pseudomonas planktonic supernatant on AF293-virus free or AF293-infected biofilm formation. (A).
Diagram of methods. (B). Black bars are the result of treatment; gray bars are the control (medium alone) value, set at
100%. The 2 bars at the left are the virus-free Aspergillus. “Infected nos. 1 and 2” are the 2 infected strains, 18-95 and 10-53,
respectively; and the remainder the re-infected strains, as indicated (19-40 1A, 19-41 2A, and 19-42 3A are re-infected nos. 1, 2,
and 3, respectively). All isolates are inhibited by a 1:2 dilution of Pseudomonas PAO1 supernatant; the % inhibition compared
to their controls is indicated above the black bars. The virus-free Aspergillus is significantly less inhibited, comparing the
virus-free to the other isolates.
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A second experiment of this type was performed with PA14 supernatant. PA14 super-
natants proved to be much more inhibitory in these experiments with biofilm formation
than PAO1 supernatants, consistent with the reported greater virulence of PA14 compared
to PAO1 [24], owing to a mutation. At a 1:100 dilution, the two infected and the virus-free
strains were all greatly inhibited, to <25% of controls (p < 0.001). At a 1:500 dilution, all
three strains were inhibited ≤50% of controls, but the virus-free was inhibited significantly
less than either two infected strains (p < 0.05 compared to 18-95, and p < 0.001 compared to
10-53; the two infected strains were not significantly different from each other). At a 1:1000
dilution, none of the three Aspergillus strains was inhibited.

The effect of pyoverdine on Aspergillus strain pyoverdine is a Pseudomonas siderophores
that is inhibitory to Aspergillus [14]. We compared the effect of pyoverdine on preformed
Aspergillus biofilm (XTT assay) (Figure 4). The virus-free Aspergillus was significantly less
inhibited by pyoverdine. A similar difference was noted with 12.5 micromolar pyover-
dine (not shown); the two infected Aspergillus strains were inhibited more at this higher
concentration, and p < 0.001 compared to the virus-free.
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Figure 4. Effect of pyoverdine on Aspergillus strains. This figure compares the effect of pyoverdine, 1.25 micromolar, on
preformed Aspergillus biofilm (XTT assay). (A). Diagram of methods. (B). The virus-free Aspergillus (black bar, second bar
from left) is significantly less inhibited. “Infected nos. 1 and 2” are the two infected strains, 18-95 and 10-53, respectively.
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Effect of PQS on preformed Aspergillus biofilm: PQS is an important Pseudomonas
exoproduct that is involved in quorum sensing and the production of virulence factors,
and it also has iron-binding properties. It inhibits Aspergillus [15] under iron-restricted
conditions (e.g., RPMI1640 medium). We performed a dose-titration of PQS effect on
preformed Aspergillus biofilm metabolism (Figure 5). At every concentration, the two
virus-infected strains were significantly more inhibited than the virus-free.
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Figure 5. Effect of Pseudomonas Quinolone Signal (PQS) on preformed Aspergillus biofilm. This figure shows a dose-titration
of 100, 10, and 1 mcg/mL PQS on preformed Aspergillus biofilm metabolism. (A). Diagram of methods. (B). At every
concentration, the 2 virus-infected strains (“Infected nos. 1 and 2” are 18-95 and 10-53, respectively) are significantly more
inhibited than the virus-free, which is the black bar, second bar from the left, of each segment. Control, RPMI 1640 medium
with ethanol concentrations equivalent to that in PQS test reagent.
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Effect of Pseudomonas volatiles on Aspergillus strains with the assay method and media
described (see Methods): In studies with many Pseudomonas laboratory strains and clinical
isolates, and several Aspergillus isolates, we find Pseudomonas volatiles to be inhibitory to
Aspergillus [18]. The entities responsible appear to be small lipophilic organic molecules.

We here tested Aspergillus growth on agar in the presence of Pseudomonas growth
on the same plate, as described. In the absence of Pseudomonas, the virus-free and the
two virus-infected strains grew equally well on TSA agar. We found that the virus-free
Aspergillus was inhibited significantly less by Pseudomonas than the infected (Figure 6). The
experiment shown is representative of three experiments with identical results.
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Figure 6. Effect of Pseudomonas volatiles on Aspergillus strains. An Aspergillus isolate was inoculated on trypticase soy
agar (TSA) agar and sealed together with an inverted plate with Pseudomonas PAO1 growing on it; there was no direct
contact between the plates. There were 4 plates prepared for each Aspergillus–Pseudomonas combination; means and SD are
shown. The control is the same 2-plate apparatus, with no Pseudomonas on the inverted plate; two plates/Aspergillus isolate.
(A). Diagram of methods. (B). The 3 Aspergillus isolates’ growth in the absence of Pseudomonas were not different (colony
area) on TSA; thus, these growth results are merged and shown as “Control”. After ≥3 days of incubation, the virus-free
Aspergillus (left black bar) was inhibited significantly less than the infected (“Infected nos. 1 and 2” are 10-53 and 18-95,
respectively). The areas of growth here were measured after 72 h of co-exposure; prior to that, there were no statistically
significant differences, as all the Aspergillus colonies continued to slowly enlarge over time.
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Effect of iron on Aspergillus strains: Iron stimulates Aspergillus biofilm growth [25].
We examined a possible differential effect of FeCl3 on virus-free vs. virus-infected As-
pergillus preformed biofilm metabolism (XTT assay), over a range of iron concentrations
(Figure 7). Iron stimulated the virus-free strain to a significantly greater extent, at all
iron concentrations.
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Figure 7. Effect of iron on Aspergillus strains. Differential effect of FeCl3 on virus-free compared to virus-infected Aspergillus
preformed biofilm, XTT assay, over a range of iron concentrations. (A). Diagram of methods. (B). The 3 bars at the right
are the control in RPMI1640 without added iron. Within each triplet, from left to right, are the virus-free Aspergillus (the
black bars), and flanking the black bar each time, the infected Aspergillus strains (“infected nos. 1 and 2” are 10-53 and 18-95,
respectively). Iron stimulates the virus-free strain to a significantly greater extent, at all iron concentrations.

Effect of PAO1 planktonic filtrate on AF293-virus free or AF293-infected planktonic
growth: The differential effect of Pseudomonas on planktonic Aspergillus growth was
marginal (Supplementary Text and Figure S2), compared to the effects described above
(Figures 1 and 2) on Aspergillus biofilm.

Drug susceptibility: We compared the susceptibility of virus-free vs. virus-infected
Aspergillus strains to amphotericin B, voriconazole, and caspofungin and found no differ-
ences. The MICs and MFCs (mcg/mL) for the virus-free and virus-infected Aspergillus
strains were, for amphotericin B, 1 and >8, respectively; for caspofungin, 12.5 and >50; and
for voriconazole, ≤0.5 and >8.

4. Discussion

Fungal viruses have been described in 22 viral taxa, with five in the genus Aspergillus,
including members of the established families Chrysoviridae, Narnaviridae, Partitiviridae,
Polymycoviridae, and Totiviridae [26]. It has been estimated that 30–80% of fungal species are
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infected, and >100 fungal species [27,28]. Most mycoviruses are dsRNA, un-enveloped;
ssRNA viruses appear to be increasingly common [26,29,30]. They are less common in
teleomorphs [26]. Most are transmitted by cell-to-cell transmission, and most are vertically
transmitted via conidiospores [26,30,31]. Extracellular transmission [32] and transmission
via mycophagous insects have been described [33] for the only DNA mycovirus known
to date [34]. Most mycoviruses do not appear to integrate in the host genome, with the
exception of families Metaviridae and Pseudoviridae. The viruses tend to be latent, persist,
and are difficult to eliminate [26,30]. Multiple different virus infections in a fungus are
common [27], for example, the A. foetidus mycovirus complex [35–37]. Whereas the majority
of mycoviruses appears to cause no obvious phenotypic changes, nor a debilitating effect on
the host fungus, some mycoviruses are lytic, and some have been described that can cause
plaques in fungal lawns in vitro, and the dsRNA has been implicated [27,29,38]. Treatment
with an antifungal is one stimulus described that can trigger a lytic virus in Candida
albicans [38]. Fungal antiviral defense has been associated with RNA silencing [26,28].

All known mycovirus genomes encode for replication enzymes, such as RNA-dependent
RNA polymerase. Conversely, not all encode capsid polypeptides or are enclosed in tradi-
tional, spherical, or filamentous, protein capsids. This is the case for polymycoviruses and
related viruses [2,4], that can produce infections with only naked dsRNA [2,5,31]. In some
yeasts, such as Saccharomyces cerevisiae, mycoviruses encode protein toxins that kill other
fungi, in some by inhibiting glucan synthesis [29,39] or DNA synthesis [40]. Some fungal
viruses trigger or suppress production of fungal toxins harmful to mammalian species [31],
such as aflatoxin in A. flavus [1]. Fungal phytopathogens have been associated preferentially
with virus-free strains [27], and virus-induced hypovirulence has been utilized in the field
against Cryphonectria parasitica, the fungus causing chestnut blight [28]. There has been
interest in these viruses, as to what the effects on mammalian hosts might be, because of
the known immunological effects of dsRNA [29].

In Aspergillus, ~10–50% of isolates in a species have been described as infected [26].
Seven to 19% of A. fumigatus clinical isolates are virus-infected [41,42]. The viruses do
not appear to integrate in the host genome. Infection even across fungal genera has been
described in this group of viruses [1], and some Aspergillus viruses can produce infections
with only naked dsRNA [2,5,31].

Whereas the preponderance of evidence associates non-latent virus infection with
fungal hypovirulence, as is the case for a variant of AfuPmV-1 that has one additional
dsRNA element and was tested in a murine model [43], there is evidence in Aspergillus
that some viruses may increase virulence [1,31,44], or have no effect on virulence [1,44,45].
Other studies have indicated that viruses in two Aspergillus viral taxa have no effect on
antifungal drug susceptibility [45], as was the observation in our study.

In our study, we showed that an Aspergillus virus alters A. fumigatus phenotype. There
is evidence for an active competition between Aspergillus and Pseudomonas, a competition
that may occur in soil and water. As these two microbes are the most common fungal
and bacterial pathogens in many patient groups, the outcome of the competition could be
very important for the long-term welfare in the patients (summarized in References [6–13]).
We have studied here well-documented Pseudomonas weaponry against Aspergillus in
biofilm form, a competition that is likely most important to certain microbial residences,
such as in the lung, in immunocompromised hosts, and also, particularly, in persons
with cystic fibrosis. The studies employed well-described assays, in defined media, that
have previously quantitated Pseudomonas inhibition of Aspergillus [14–17,20]. The physical
microscopic correlates of the inhibition, as we have described metabolically, of Aspergillus
biofilm by these Pseudomonas products have recently been documented and detailed by
novel observational, computer-driven techniques [46]. Our studies here clearly indicate
that virus infection weakens A. fumigatus in intermicrobial competition.

The differences demonstrated in susceptibility to Pseudomonas were unrelated to
any underlying differences in metabolism or growth under the control conditions for
the assays. The two reference Aspergillus strains, which are infected, despite prolonged
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storage in, and multiple passes in vitro, in laboratories in different continents, showed
negligible differences in susceptibility to Pseudomonas. The virus-free Aspergillus under
those conditions grew slightly, but insignificantly, less well in the absence of Pseudomonas
than the infected. Had the virus-free grown better than infected, such as might be owing to
an impairing effect of infection, one could have considered that the virus-free was more
resistant to the predations of Pseudomonas merely because it grew better under the study
conditions, but the latter was not the case. We would emphasize that the demonstrated
equivalence of growth (in the absence of Pseudomonas) may not apply to all other growth
conditions; other growth conditions would need to be studied individually. Indeed, as
yet unpublished studies, with a related virus, in an entomopathogenic fungus, indicate
differences between that infected and uninfected fungus, with respect to growth, are
medium-dependent [47].

The differential effect of virus on iron-stimulated fungal growth, particularly when
coupled with the findings of effects of iron-chelating molecules, such as pyoverdine and
PQS, may be a clue that at least some of the resistance differences to Pseudomonas products
are linked to a virus-induced alteration in Aspergillus iron metabolism; iron metabolism
is key to Aspergillus physiology, as recently reviewed [48]. Subsequent to the findings
reported here, in studies in collaboration with other researchers, significant differences
in timing of, and amount of, siderophore production between these virus-infected and
uninfected isogenic Aspergillus strains were discovered, which would explain the strain
differences in response to iron-denying Pseudomonas products (R. Patil et al., submitted for
publication). It is also probable that virus infection weakens Aspergillus’ ability to respond
to any stresses, of which iron denial is one. The best evidence for that hypothesis is the
differential susceptibility to Pseudomonas volatiles, since small lipophilic organic molecules
appear to be the mechanism of such inhibition [18].

5. Conclusions

Our novel observations about altered susceptibility of a fungus, Aspergillus, to another
microbe, Pseudomonas, coupled with studies indicating fungal virulence may be depressed
by viral infection, and that some viruses may lyse fungi [27–29,38], might also have appli-
cations in the future for the design of viruses as antifungal treatment [30,31], analogous to
phage therapy of bacteria.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13040686/s1. Figure S1: Representative electrophoretic profiles of AF293 infected, virus-free,
and re-infected strains. Figure S2: Effect of PAO1 planktonic filtrate on AF293 virus-free or AF293
infected planktonic growth. Supplementary text.
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