JACC: BASIC TO TRANSLATIONAL SCIENCE © 2022 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ORIGINAL RESEARCH - CLINICAL

Determinants of Endogenous Fibrinolysis in Whole Blood Under High Shear in Patients With Myocardial Infarction

Rahim Kanji, MB, BS, ^{a,b} Ying X. Gue, MB, BS, PHD,^{b,c} Mohamed F. Farag, MB, BS, PHD,^{b,c} Neil H. Spencer, PHD,^d Nicola J. Mutch, BSc, PHD,^{e,*} Diana A. Gorog, MD, PHD^{a,b,c,*}

HIGHLIGHTS

- Hypofibrinolysis is a recently-recognized risk factor for recurrent cardiovascular events in patients with STEMI, but its mechanistic determinants are not well understood.
- In patients with STEMI, we show that the effectiveness of endogenous fibrinolysis in whole blood is related to fibrinogen, hs-CRP, and shear-induced platelet reactivity, the latter related to thrombin generation.
- Endogenous fibrinolysis in whole blood is only weakly related to plasma clot lysis in response to t-PA, indicating an important role for cellular components in determining fibrinolytic status.
- These findings strengthen the evidence for bidirectional crosstalk between coagulation and inflammation and provide mechanistic insights that could help guide pharmacological strategies to treat hypofibrinolysis, a potentially modifiable cardiovascular risk factor.

From the ^aFaculty of Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom; ^bCardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire, United Kingdom; ^cSchool of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom; ^dStatistical Services and Consultancy Unit, Hertfordshire Business School, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom; and the

ABBREVIATIONS AND ACRONYMS

ACS = acute coronary syndrome

LT = lysis time

MACE = major adverse cardiovascular events

OT = occlusion time

PAI = plasminogen activator inhibitor

PCI = percutaneous coronary intervention

STEMI = ST-segment elevation myocardial infarction

t-PA = tissue plasminogen activator

vWF = von Willebrand factor

SUMMARY

Hypofibrinolysis is a recently-recognized risk factor for recurrent cardiovascular events in patients with STsegment elevation myocardial infarction (STEMI), but the mechanistic determinants of this are not well understood. In patients with STEMI, we show that the effectiveness of endogenous fibrinolysis in whole blood is determined in part by fibrinogen level, high sensitivity C-reactive protein, and shear-induced platelet reactivity, the latter directly related to the speed of thrombin generation. Our findings strengthen the evidence for the role of cellular components and bidirectional crosstalk between coagulatory and inflammatory pathways as determinants of hypofibrinolysis. (J Am Coll Cardiol Basic Trans Science 2022;7:1069-1082) © 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ess efficient endogenous fibrinolysis, as evidenced by prolonged lysis time (LT) in vitro, is a recently recognized risk factor for recurrent thrombotic events in patients with acute coronary syndrome (ACS).^{1,2} In health, an effective endogenous fibrinolytic system can counter prothrombotic drivers to prevent lasting arterial thrombotic occlusion.³ Until recently, assessment of endogenous fibrinolysis relied on the measurement of circulating soluble biomarkers such as tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1, which provided weak correlation with the occurrence of atherothrombotic events.⁴ However, a more recently available global test of endogenous fibrinolysis, which employs whole blood, has been shown to be a strong predictor of re-

sidual cardiovascular risk in patients with ACS. In earlier work from our group, in the RISK-PPCI (RIsk stratification in patients with STEMI undergoing Primary Percutaneous Coronary Intervention) study, patients with ST-segment elevation myocardial infarction (STEMI) who exhibited prolonged endogenous fibrinolysis (LT \geq 2,500 seconds) in whole blood in vitro, showed a 9-fold increased risk of subsequent major adverse cardiovascular events (MACE), compared with those with shorter endogenous LT.5 The enhanced risk of MACE occurred despite optimal contemporary treatments with primary percutaneous coronary intervention (PCI) and antithrombotic medication. In another important substudy of the PLATO (PLATelet inhibition and patient Outcomes) trial, assessment of citrated plasma from ACS patients showed that plasma clot LT, measured using a turbidimetric assay (a measure of clot density), was predictive of 1-year cardiovascular death and spontaneous myocardial infarction.⁶ After adjusting for cardiovascular risk factors, each 50% increase in plasma clot LT was associated with a 1.17-fold increase in the risk of cardiovascular death or spontaneous myocardial infarction, with those patients in the highest quartile of LT showing a 1.48-fold higher rate of adverse events compared with those with more effective lysis. Current antiplatelet medications used in patients with ACS are highly effective at inhibition of platelet reactivity⁷; however, these medications do not appear to affect endogenous fibrinolysis.^{5,7}

It is clear that we require a better understanding of the pathomechanism behind the prolonged endogenous fibrinolysis exhibited by some patients with ACS, which may identify potential avenues to target with pharmacotherapy. In this study, we assessed endogenous fibrinolysis in whole blood of patients with ACS and aimed to relate this to plasma clot lysis, platelet reactivity under high shear, fibrinogen level, and markers of thrombin generation and inflammation.

METHODS

We performed a prespecified subgroup analysis of the RISK-PPCI study, which was a prospective, observational, single-center study in 496 patients presenting with STEMI.⁵ The study, already reported earlier,

Manuscript received April 4, 2022; revised manuscript received May 24, 2022, accepted May 24, 2022.

^eAberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom. *Drs Mutch and Gorog contributed equally to this work and are joint senior authors.

The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors' institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the Author Center.

showed that prolonged endogenous fibrinolysis was highly predictive of recurrent MACE (HR: 9.10, 95% CI: 5.29-15.75; P < 0.001), driven by cardiovascular death and myocardial infarction, particularly within 30 days.⁵ Delayed fibrinolysis remained strongly predictive of MACE after adjustment for conventional risk factors (HR: 8.03; 95% CI: 4.28-15.03; P < 0.001).

The aim of this substudy was to provide mechanistic insight into the determinants of endogenous fibrinolysis in patients with ACS. The study was approved by the National Research Ethics Service and the UK Health Research Authority (NCT02562690) and was performed in accordance with the Declaration of Helsinki and Good Clinical Practice.

STUDY DESIGN. This was a retrospective analysis using frozen citrated plasma samples from the RISK-PPCI study. In the main study, 496 patients had endogenous whole blood LT measured at the point of hospital admission and frozen citrated plasma samples stored at -80 °C for subsequent analysis. To identify a subgroup of 129 representative patients across a range of LTs, the 496 patients in the RISK-PPCI study were divided into quartiles (Q) based on whole blood endogenous thrombolysis time (LT) at presentation: Q1 622-1,410 seconds; Q2 1,411-2,250 seconds; Q3 2,251-3,768 seconds; Q_4 3,769-6,000 seconds. From each quartile, 32 patients were selected at random (total of 129 patients), and additional analyses were performed to evaluate the relationship between whole blood LT with plasma clot LT, fibrin level, thrombin generation, and shear-induced thrombotic occlusion time (OT).

PATIENT POPULATION. For the RISK-PPCI study, consecutive eligible patients presenting with STEMI to our Heart Attack Centre with a view to primary PCI were recruited. We enrolled adults (age \geq 18 years) with a presumed diagnosis of STEMI based on clinical presentation and ECG criteria. Patients receiving oral anticoagulation, those with known coagulation disorders, sepsis, platelet count <100 × 10⁹/L, hemoglobin <80 g/L, active malignancy, or inability to take dual antiplatelet therapy, as well as those previously enrolled in the study, were excluded.

A delayed consent strategy was used with ethical approval. Patients who died before consent could be obtained were excluded. Surviving patients were subsequently approached for consent. All participants gave written informed consent. In addition to routine blood tests upon arrival, an extra blood sample was taken to assess baseline thrombotic status through the same blood draw. Patients received standard-of-care antiplatelet therapy and underwent emergency angiography and primary PCI as clinically indicated. Antiplatelet therapy consisted of aspirin 300 mg and either clopidogrel 600 mg or ticagrelor 180 mg orally in the ambulance or emergency department upon diagnosis. Patients receiving clopidogrel prearrival received additional ticagrelor 180 mg loading peri-primary PCI, which was continued postprocedure. Time from antiplatelet therapy loading to assessment of endogenous fibrinolysis in whole blood was <30 minutes.

BLOOD SAMPLING. Nonfasting blood samples taken immediately upon arrival to the Heart Attack Centre, after dual antiplatelet therapy loading, before heparin or glycoprotein IIb/IIIa inhibitor administration, and before primary PCI, were taken from a 6-F radial or femoral sheath, which was flushed with nonheparinized saline before insertion. A 2-syringe technique was employed, using the first 5 mL for routine tests and the second sample for thrombotic status assessment. The sample for thrombotic status assessment was immediately introduced into the Global Thrombosis Test for point-of-care analysis, and a simultaneous citrated sample was spun at 2,300 g for 10 minutes to yield platelet-poor plasma and stored at -80 °C for subsequent analysis.

ASSESSMENT OF THROMBOTIC STATUS. Blood samples were analyzed immediately with the Global Thrombosis Test as a point-of-care test. In the subsequent assessment of citrated plasma, investigators were blinded to the results of the endogenous fibrinolysis in whole blood.

Global thrombosis test. The Global Thrombosis Test (Thromboquest Ltd) assesses both platelet reactivity and endogenous fibrinolysis from native, nonanticoagulated whole blood, and the principle of the technique has previously been described.⁸ The instrument measures the time taken for shear-induced occlusive thrombus formation (OT), and in the second phase of the test, measures the time to achieve spontaneous lysis of thrombi created during the first phase. The instrument was positioned in the catheterization laboratory, ready to use. The native blood sample taken from the patient was immediately introduced into the GTT cartridge in the instrument within 15 seconds of withdrawal, and the automated measurement began. Once introduced into the cartridge, blood flows through a conical plastic tube, passing through small gaps adjacent to 2 sequential beads. As blood flows through the gaps adjacent to the upper bead, the resulting initial high shear stress (180 dynes/cm²) causes platelet activation. Immediately downstream in the low shear zone between the beads, the activated platelets aggregate, thrombin is generated, and eventually, the growing microthrombi occlude the gaps adjacent to the second bead, reducing the flow rate and finally arresting flow. The instrument measures the time (d) between consecutive blood drops at the exit of the conical part of the tube, which gradually increases as thrombi start to occlude the gaps adjacent to the second bead and at an arbitrary point (d \geq 15 seconds), the instrument records and displays OT (seconds). The restart of blood flow following occlusion is caused by spontaneous thrombolysis (LT, seconds). If lysis does not occur until 6,000 seconds following OT (LT cutoff time), "no lysis" is recorded.

The intra-assay and interassay coefficients of variation (CV) for OT and LT were assessed in 10 patients with stable cardiovascular disease on repeated sampling (48 hours apart) and also running samples in parallel. The intra-assay CV was 6% for OT and 8% for LT, and the interassay CV was 7% for OT and 9% for LT. Plasma clot lysis. Plasma clot lysis was assessed using a turbidimetric technique as previously described.⁹ Briefly, thawed plasma in the presence and absence of t-PA (Genetech) was prepared in 10 mmol/L Tris pH 7.5, 140 mmol/L NaCl, 0.01% Tween 20. Aliquots were added in triplicate to a microtiter plate containing an activation mix of thrombin, Ca²⁺, and phospholipids. The plate was incubated at 37 °C and read continuously every 1 minute for 4 hours at 405 nm. Final concentrations of reactants were as follows; plasma 30%; t-PA 300 pmol/L; thrombin 0.1 U/ mL; phospholipids 16 μmol/L; CaCl₂ 10.6 mmol/L.

Thrombin generation. Thrombin generation in patient samples was quantified using the calibrated automated thrombogram (Thrombinoscope, Diagnostica Stago) method.¹⁰ Plasma (80 µL) was dispensed in triplicate into round 96-well plates (Immulon 2HB, Dynex) and the plate warmed to 37 °C for 5 minutes before addition of the starting reagent (20 µL/well) containing PPP low reagent (Diagnostica Stago), 2.5 mmol/L fluorogenic substrate (Z-Gly-Gly-Arg-AMC.HCl) and 16.6 mmol/L CalCl₂. Measurements were taken every minute for 1 hour in a Fluoroscan Ascent fluorometer (Thermo Labsystems, Thermo Fisher Scientific). Data were analyzed using the thrombinoscope software (Synpase Bv) producing standard parameters including lag time, velocity index, peak thrombin generation, and endogenous thrombin potential.

DATA COLLECTION AND FOLLOW-UP. During the index admission, case notes and electronic records were examined to allow contemporaneous completion of study-specific case record forms. Patients were followed up at 30 days in person and at 6 and 12 months by telephone and by accessing case notes.

STUDY ENDPOINTS. The primary endpoint of the RISK-PPCI study was the occurrence of MACE, defined as the composite of cardiovascular death, nonfatal myocardial infarction including stent thrombosis (defined according to the Academic Research Consortium criteria), or stroke.⁵ For all endpoints, source documents were obtained, and the diagnosis was verified by 2 independent clinicians (MS, DAG) blinded to thrombotic status results.

STATISTICAL ANALYSIS. Continuous data are presented as median (25th and 75th percentile [Q1-Q3]) and categorical data as count (percentage). Differences between dichotomous variables were assessed using the chi-square test, and differences between continuous variables using the Kruskal-Wallis and Mann-Whitney U tests, with the Bonferroni correction applied for multiple pairwise comparisons. Correlations between continuous variables were assessed using Spearman's rank correlation coefficient. Receiver-operator characteristic (ROC) curves and Kaplan-Meier curves were constructed, and Cox analyses were performed to determine the prognostic value of plasma clot lysis, thrombin generation, and platelet reactivity, presented as HRs with 95% CIs. These were compared with the prognostic value of endogenous whole blood fibrinolysis obtained in the RISK-PPCI study.⁵ Binary logistic regression was used in both univariate and multivariable analyses to assess the relationship of clinical and laboratory variables to endogenous fibrinolysis, and is presented as OR with 95% CIs. We verified the logistic model assumption by confirming linearity, plotting the log odds against the variables of interest (hs-CRP, fibrinogen, creatinine, hemoglobin). Kaplan-Meier estimates of MACE at 1 year were calculated. Statistical analyses were performed with SPSS version 26 (IBM Corp). All statistical tests were 2-sided, with P <0.05 taken to indicate statistical significance.

RESULTS

The clinical and laboratory characteristics of patients, according to the quartiles of whole blood endogenous fibrinolysis time, are shown in **Table 1**. Patients in each quartile were well-matched for established cardiovascular risk factors aside from smoking habit, which was more prevalent among patients with longer fibrinolysis times.

In the RISK-PPCI study, the optimal cutpoint for whole blood endogenous fibrinolysis time for the prediction of MACE was 2,500 seconds. Table 2 shows the clinical and laboratory characteristics of patients from our cohort split by this LT cutpoint. Patients with prolonged fibrinolysis time more frequently had

TABLE 1 Summary of Clinical and Biochemical Characteristics of Patients Grouped by Quartiles According to Whole Blood Endogenous LT							
	LT Q1	LT Q ₂	LT Q ₃	LT Q₄	P Value		
Median LT (range), s	1,196 (622-1,410)	1,808 (1,411-2,250)	3,217 (2,251-3,768)	5,941 (3,769-6,000)			
Age, y	66 (53-72)	67 (59-75)	73 (58-82)	62 (53-76)	0.150		
Male	23 (72)	25 (78)	27 (84)	26 (79)	0.687		
BMI, kg/m ²	27.0 (23.7-30.1)	25.7 (23.5-27.7)	26.5 (23.9-29.9)	25.6 (23.7-29.3)	0.710		
Smoking	10 (31)	13 (41)	6 (19)	17 (52)	0.042		
Diabetes	5 (16)	5 (16)	8 (25)	9 (27)	0.530		
Hypertension	18 (56)	15 (47)	13 (40)	16 (48)	0.662		
Hyperlipidemia ^a	11 (34)	12 (38)	13 (41)	17 (52)	0.522		
FH premature CAD	14 (44)	14 (44)	7 (23)	10 (30)	0.207		
Prior MI	3 (9)	4 (13)	5 (16)	6 (18)	0.741		
Prior PCI	4 (13)	3 (9)	5 (16)	6 (18)	0.741		
Prior CABG	1 (3)	0 (0)	2 (6)	1 (3)	0.406		
CKD ^b	2 (7)	0 (0)	1 (3)	3 (9)	0.209		
PAD	3 (9)	3 (9)	2 (6)	0 (0)	0.638		
CVA	0 (0)	2 (6)	2 (6)	2 (6)	0.314		
Clopidogrel loading	20 (65)	24 (80)	24 (77)	21 (72)	0.532		
Ticagrelor loading	11 (35)	6 (20)	7 (23)	8 (28)	0.532		
Laboratory markers							
Hemoglobin, g/L	138 (132-149)	145 (135-159)	141 (113-156)	139 (126-148)	0.263		
Leukocyte count	9.8 (8.6-12.4)	11.7 (8.2-13.9)	10.2 (7.7-13.0)	13.2 (9.8-14.7)	0.635		
Neutrophil count	7.6 (5.6-10.0)	9.3 (5.8-10.2)	7.1 (5.7-10.7)	9.4 (7.4-10.5)	0.909		
Platelets, ×10 ⁹ /L	215 (191-267)	261 (225-300)	233 (210-264)	259 (214-305)	0.813		
NLR	0.77 (0.64-0.82)	0.77 (0.70-0.81)	0.76 (0.67-0.82)	0.73 (0.65-0.81)	0.746		
PLR	22.5 (18.3-28.4)	23.3 (18.3-27.9)	23.7 (19.5-28.8)	21.1 (17.3-28.5)	0.856		
SII	176 (152-208)	184 (146-221)	1,677 (151-210)	193 (148-233)	0.920		
INR	1.0 (1.0-1.1)	1.0 (1.0-1.0)	1.0 (1.0-1.1)	1.0 (0.9-1.1)	0.430		
aPTT, s	24.9 (21.7-29.4)	25.9 (22.9-30.0)	25.3 (22.4-29.5)	27.3 (23.8-29.7)	0.545		
Fibrinogen, g/L	3.6 (3.1-4.4)	4.0 (3.4-4.6)	4.0 (3.1-5.0)	4.4 (3.8-6.0)	0.033		
hs-CRP, mg/L	3 (2-10)	3 (1-5)	6 (2-28)	11 (2-81)	0.017		
Creatinine, µmol/L	74 (66-101)	81 (62-90)	103 (84-124)	89 (79-109)	0.008		
Total cholesterol, mmol/L	5.3 (4.0-6.3)	5.1 (4.2-6.1)	4.3 (3.8-5.6)	5.2 (4.4-6.1)	0.120		
LDL, mmol/L	2.7 (2.0-4.2)	3.5 (2.7-4.1)	2.7 (2.0-3.6)	3.2 (2.5-3.8)	0.274		
Shear-induced platelet reactivity							
OT, s	390 (307-512)	338 (270-424)	317 (186-534)	288 (186-420)	0.154		
Plasma clot lysis							
Max absorbance at 405 nm	0.42 (0.34-0.56)	0.40 (0.32-0.50)	0.45 (0.34-0.58)	0.46 (0.35-0.66)	0.380		
Fold increase in max absorbance	1.33 (0.99-1.54)	1.15 (0.92-1.46)	1.34 (1.17-1.61)	1.51 (1.09-2.14)	0.051		
50% clot lysis time, min	92.0 (76.4-118.3)	87.0 (72.0-126.4)	86.0 (77.0-130.0)	103.6 (90.3-167.6)	0.217		
Fold increase in 50% clot lysis time	1.16 (0.84-1.31)	1.08 (0.90-1.37)	1.05 (0.94-1.45)	1.21 (0.94-1.62)	0.613		
Thrombin generation		/	(
Lag time, min	7.0 (5.4-8.4)	6.0 (5.1-7.8)	5.9 (5.6-7.2)	8.0 (6.2-9.0)	0.010		
Peak, nm	194 (129-231)	173 (143-255)	174 (133-274)	146 (92-208)	0.275		
Velocity index, nmol/L/min	41.6 (26.6-58.1)	40.5 (20.9-81.7)	50.2 (24.4-73.1)	25.8 (18.5-46.6)	0.252		
ETP, nM/min	1,524 (1,113-1,720)	1,456 (1,109-1,818)	1,442 (1,063-1,833)	1,509 (1,192-1,742)	0.996		

Values are median (Q1-Q3) or n (%), unless otherwise indicated. The Kruskal-Wallis test and chi-square tests were used for statistical analysis of continuous and dichotomous variables, respectively. **Bold** values indicate statistical significance (P < 0.05). ^aHyperlipidemia was defined as a total cholesterol >6.5 mmol/L on admission in the absence of lipid-lowering medication, or a documented history of hyperlipidemia in the case notes. ^bCKD was defined as glomerular filtration rate (GFR) <60 mL/min/1.73 m² on admission and either present on at least 1 further measurement a minimum of 3 months earlier, or a clear documentation in the case notes.

aPTT = activated partial thromboplastin time; BMI = body mass index; CABG = coronary artery bypass grafting; CAD = coronary artery disease; CKD = chronic kidney disease; CVA = cerebrovascular accident; FH = family history of premature coronary artery disease; hs-CRP = high sensitivity C-reactive protein; ETP = endogenous thrombin potential; INR = International Normalized Ratio; LDL = low-density lipoprotein; MI = myocardial infarction; NLR = neutrophil-to-leuccyte ratio; OT = occlusion time; PAD = peripheral arterial disease; PCI = percutaneous coronary intervention; PLR = platelet-to-leuccyte ratio; Q = quartile; SII = systemic immune-inflammation index.

higher creatinine, high sensitivity C-reactive protein (hs-CRP), and fibrinogen on admission, and had lower hemoglobin (but still within the normal range) when compared with patients with a shorter whole blood fibrinolysis time. Using binary logistic regression, a univariable analysis of all of the variables listed in **Table 2** was conducted to assess relationship with high LT (\geq 2,500 seconds). Only hemoglobin (OR: 0.98;

 TABLE 2
 Summary of Clinical and Biochemical Characteristics of Patients With High

 (≥2,500 S) and Low (<2,500 S) Whole Blood LT</td>

Age, y66 (55-72)69 (56-81)0.115Male54 (77)47 (80)0.730BMI, kg/m²26.6 (23.9-29.0)25.5 (23.7-29.4)0.557Smoking23 (33)23 (39)0.469Diabetes11 (16)16 (27)0.131Hypertension35 (50)27 (46)0.631Hypertipidemia24 (34)29 (49)0.087FH premature CAD29 (41)10 (77)0.346Prior MI8 (11)10 (17)0.346Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.2274CKD3 (4)3 (5)0.228CKD3 (4)3 (5)0.224CKD3 (4)3 (5)0.426CKD3 (4)3 (5)0.426CKD3 (4)3 (5)0.426CKD3 (4)13 (24)0.499Laporatori markers11 (4 (134-156)13 (24)		LT <2,500 s (n = 70)	LT ≥2,500 s (n = 59)	P Value
Male54 (77)47 (80)0.730BMI, kg/m²26.6 (23.9-29.0)25.6 (23.7-29.4)0.557Smoking23 (33)23 (39)0.469Diabetes11 (16)16 (27)0.131Hypertension35 (50)27 (46)0.631Hypertipidemia24 (34)29 (49)0.087FH premature CAD29 (41)16 (28)0.103Angina5 (7)9 (16)0.346Prior MI8 (11)10 (17)0.346Prior CABG1 (1)3 (5)0.221CKD3 (4)3 (5)0.224CVA2 (3)4 (7)0.242Clopidogrel loading48 (71)41 (75)0.409Tragelor loading48 (71)41 (75)0.409Laboratory markers111 (4.3+156)139 (120-150)0.011Leukcycte count11.4 (8.9-13.6)11.1 (9.4+13.6)0.820Neutrophil count8.7 (6.1-0.3)7.8 (6.0-10.6)0.828Platelets, ×10°/L238 (201-305)254 (227-294)0.669NLR0.77 (0.68-0.81)0.741 (6.70-82)0.797PLR22.7 (18.3-27)21.9 (18.0-28.7)0.791Fibrinogen, g/L3.7 (3.1-4.6)4.4 (3.7-5.9)0.791HST24.9 (19.2-8.9)26.5 (2.3.3.00)0.714Fibrinogen, g/L3.7 (3.1-4.6)4.4 (3.5-5.7)0.701HST24.9 (2.1-6)8.3 (2-10.4)0.701Fibrinogen, g/L5.1 (4.2-6.1)4.9 (4.2-5.7)0.701HST3.7 (3.1-	Age, y	66 (55-72)	69 (56-81)	0.115
BMI, kg/m² 26.6 (23.9-29.0) 25.6 (23.7-29.4) 0.557 Smoking 23 (33) 23 (39) 0.469 Diabetes 11 (16) 16 (27) 0.113 Hypertension 35 (50) 27 (46) 0.631 Hypertipidemia 24 (34) 29 (49) 0.087 FH premature CAD 29 (41) 16 (28) 0.103 Angina 5 (7) 9 (16) 0.311 Prior CI 8 (11) 10 (17) 0.346 Prior CABG 1 (1) 3 (5) 0.226 CKD 3 (4) 3 (5) 0.237 PAD 6 (9) 2 (3) 0.240 CVA 2 (3) 4 (7) 0.409 Ticagretor loading 19 (28) 13 (24) 0.588 Laboratory markers 111 (9.4-13.6) 0.710 0.801 Hemoglobin, g/L 14 (134-156) 139 (120-150) 0.801 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 Platelets, ×10°/L 2.8 (201-305) 2.	Male	54 (77)	47 (80)	0.730
Smoking23 (33)23 (39)0.469Diabetes11 (16)16 (27)0.131Hypertension35 (50)27 (46)0.603Hypertipidemia24 (34)29 (49)0.031Hypertipidemia29 (41)16 (28)0.103Angina5 (7)9 (16)0.311Prior MI8 (11)10 (17)0.346Prior CL8 (11)10 (17)0.346Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.226CKD3 (2)4 (7)0.282Choidogrel loading19 (28)13 (20-150)0.011Laboratory markers114 (34-156)139 (120-150)0.011Leukocyte count11.4 (8.9-13.6)111 (9.4-13.6)0.820Nutrophil count8.7 (6.1-10.3)7.8 (6.0-10.6)0.841Platelets, ×10°/L238 (201-305)254 (227-24)0.691NLR0.77 (16.8-27.9)21.9 (18.0-28.7)0.701NR1.0 (1.0-1.1)1.0 (1.0-1.0)0.61NR1.0 (1.0-1.1)1.0 (1.0-1.0)0.61NR1.0 (1.0-1.1)1.0 (1.0-1.0)0.61NR1.0 (1.0-1.1)1.	BMI, kg/m ²	26.6 (23.9-29.0)	25.6 (23.7-29.4)	0.557
Diabetes11 (16)16 (27)0.131Hypertension35 (50)27 (46)0.631Hypertension24 (34)29 (49)0.631Hypertension29 (41)16 (28)0.131Fh premature CAD29 (41)16 (28)0.131Prior MI8 (11)10 (17)0.346Prior CI8 (11)10 (17)0.346Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.224CVA2 (3)4 (7)0.232Clopidogrel loading48 (71)41 (75)0.409Ticagrelor loading19 (28)13 (24)0.588Laboratory markers111 (9.4-13.6)0.8200.821Leukocyte count11.4 (83-13.6)111 (9.4-13.6)0.820Nuetrophil count8.7 (6.1-10.3)7.8 (6.0-10.6)0.828Platelets, ×10 ⁹ /L238 (201-305)254 (227-294)0.669NLR0.77 (0.68-0.81)0.74 (0.67-0.82)0.761NLR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647Platelets, ×10 ⁹ /L23.7 (3.1-4.6)4.4 (3.7-5.9)0.71SII1.7 (64-82)38 (72-10.4)0.701Fibrinogen, g/L3.7 (3.1-4.6)4.4 (3.7-5.9)0.314LDL, mmol/L2.9 (2.4-2.5)4.9 (4.2-5.7)0.341LDL, mmol/L2.9 (2.4-4.2)2.9 (2.4-3.6)0.716Ford increase in max absorbance1.29 (0.96-1.53)1.37 (1.31-1.78)0.771Ford increase in sol% clot yist im1.01 (0.91.5)	Smoking	23 (33)	23 (39)	0.469
Hypertension35 (50)27 (46)0.681Hypertipidemia24 (34)29 (49)0.087FH premature CAD29 (41)16 (28)0.131Angina5 (7)9 (16)0.131Prior MI8 (11)10 (17)0.346Prior PCI8 (11)10 (17)0.346Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.226CKD6 (9)2 (3)0.224CVA2 (3)4 (7)0.282Clopidogrel loading48 (7)41 (75)0.409Ticagrelor loading19 (28)13 (24)0.588Laboratory markers11.1 (9.413.6)0.8200.821Leukocyte count11.4 (8.9-13.6)1.11.9 (4.13.6)0.820Neutophil count8.7 (6.1-10.3)7.8 (6.0-10.4)0.820NLR0.77 (0.68-0.81)0.74 (0.67-0.82)0.689Platelets, ×10 ⁹ /L238 (201-305)254 (227-294)0.669NLR0.77 (1.68-2.79)21.9 (18.0-28.7)0.791SI10 (1.0 -1.1)1.0 (1.0 -1.0)0.647APTT, S24.9 (21.9-28)26.5 (23.3-30.0)0.314Fibrinogen, g/L3.7 (3.1-4.6)8.3 (2.10.4)0.710Nach complic5.1 (2.4.2.1)4.4 (3.7-5.9)0.791Fold increase inmax dasorbance1.29 (0.92-5.5)0.7410.710Fold increase in max dasorbance1.29 (0.92-5.5)0.44 (0.35-0.5)0.51Fold increase in ax dasorbance1.29 (0.92-5.5)1.37 (Diabetes	11 (16)	16 (27)	0.113
Hyperlipidemia24 (34)29 (49)0.087FH premature CAD29 (41)16 (28)0.103Angina5 (7)9 (16)0.131Prior MI8 (11)10 (17)0.346Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.873PAD6 (9)2 (3)0.224CVA2 (3)4 (7)0.282Clopidogrel loading19 (28)13 (24)0.588Laboratory markers111 (48-913.6)139 (120-150)0.011Leukocyte count114 (48-156)139 (120-150)0.821Neutrophil count8.7 (6.1-10.3)7.8 (6.0-10.6)0.828Platelets, ×10 ⁹ /L22.8 (201-305)254 (227-294)0.695SII176 (149-217)172 (154-223)0.975SII176 (149-217)172 (154-223)0.975SII176 (149-217)172 (154-223)0.376INR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647APTT, 524.9 (21.9-28.9)25.5 (23.3-3.0.0)0.314Fibrinogen, g/L3.7 (3.1-4.6)4.4 (3.7-5.9)0.371INR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647INR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647INR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647Fibrinogen, g/L3.7 (3.1-4.6)4.4 (3.7-5.9)0.314Fibrinogen, g/L7.7 (6.8-2.8)3.12 (18.3-2.0)0.314Fibrinogen, g/L7.1 (6.4-89)8.3 (2.10.4)0.511INR <t< td=""><td>Hypertension</td><td>35 (50)</td><td>27 (46)</td><td>0.631</td></t<>	Hypertension	35 (50)	27 (46)	0.631
FH premature CAD29 (41)16 (28)0.103Angina5 (7)9 (16)0.131Prior MI8 (11)10 (17)0.346Prior PCI8 (11)10 (17)0.346Prior CABG1(1)3 (5)0.226CKD3 (4)3 (5)0.226CKD2 (3)4 (7)0.282Cloidogrel loading48 (7)41 (7)0.282Cloidogrel loading148 (7)31 (20)0.501Laboratory markers111 (94.13.6)0.8200.821Hemoglobin, g/L144 (134-156)139 (120-150)0.821Neutrophil count8.7 (6.1-10.3)7.8 (6.0-10.6)0.828Neutrophil count8.7 (6.1-10.3)7.8 (6.0-10.6)0.828Platelets, × 10 ⁹ /L22.7 (18.8-27.9)2.9 (18.0-28.7)0.975SII176 (149-217)172 (154-223)0.676NLR0.77 (0.68-0.81)0.74 (0.67-0.82)0.376Phir, S24.9 (21.9-28.9)2.5 (23.3-3.00)0.314Fbirnogen, g/L3.7 (3.1-4.6)4.4 (3.7-5.9)0.316INR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647Fold increase indu/L5.1 (4.2-6.1)4.9 (4.2-5.7)0.316Int optic2.9 (2.4-2.2)2.9 (2.4-3.2)0.921Int optic2.9 (2.4-2.2)2.9 (2.4-3.2)0.921Int optic2.9 (2.4-2.2)2.9 (2.4-3.2)0.921Int optic2.9 (2.4-2.2)2.9 (2.4-3.2)0.921Int optic2.9 (2.4-2.2)2.9 (2.4-2.2) <t< td=""><td>Hyperlipidemia</td><td>24 (34)</td><td>29 (49)</td><td>0.087</td></t<>	Hyperlipidemia	24 (34)	29 (49)	0.087
Angina 5 (7) 9 (16) 0.131 Prior MI 8 (11) 10 (17) 0.346 Prior PCI 8 (11) 10 (17) 0.346 Prior CABG 1 (1) 3 (5) 0.873 PAD 6 (9) 2 (3) 0.224 CVA 2 (3) 4 (7) 0.282 Clopidogrel loading 48 (71) 41 (75) 0.409 Ticagrelor loading 19 (28) 13 (24) 0.588 Laboratory markers 11.1 (9.413.6) 0.820 0.820 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.820 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.820 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.614 Hibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.0314 Fibrinogen, g/L 2.16-6 8 (2-32) 0.021 NTR	FH premature CAD	29 (41)	16 (28)	0.103
Prior MI8 (11)10 (17)0.3461Prior PCI8 (11)10 (17)0.3461Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.2781PAD6 (9)2 (3)0.2281CVA2 (3)4 (7)0.2882Clopidogrel loading498 (7)41 (75)0.409Ticagrelor loading19 (28)13 (24)0.588Laboratory markers </td <td>Angina</td> <td>5 (7)</td> <td>9 (16)</td> <td>0.131</td>	Angina	5 (7)	9 (16)	0.131
Prior PCI8 (11)10 (17)0.346Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.873PAD6 (9)2 (3)0.224CVA2 (3)4 (7)0.282Clopidogrel loading48 (7)41 (75)0.409Ticagrelo loading19 (28)13 (24)0.888Laboratory markersHemoglobin, g/L144 (134-156)139 (120-150)0.011Leukocyte count11.4 (8.9-13.6)11.1 (9.4-13.6)0.820Neutrophil count8.7 (6.1-10.3)7.8 (6.0-10.6)0.828Platelets, ×10 ⁹ /L238 (201-305)254 (227-294)0.669NLR0.77 (0.68-0.81)0.74 (0.67-0.82)0.871PLR22.7 (18.8-27.9)21.9 (18.0-28.7)0.975SII176 (149-217)172 (154-223)0.679JINR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647APTT, S24.9 (21.9-28.9)26.5 (23.3-30.0)0.314Fibrinogen, g/L3.7 (3.1-4.6)4.4 (3.7-5.9)0.010hs-CRP, mg/L2 (1-6)8 (2-32)0.020Total cholesterol, mmol/L3 (34 (282-438)312 (183-524)0.301ILDL, mol/L2.9 (0.96-1.53)1.37 (1.3-1.78)0.975Jow club lysis0.42 (0.32-0.55)0.44 (0.35-0.59)0.617Fold increase in max absorbance1.29 (0.96-1.53)1.37 (1.3-1.78)0.071Srow club lysis1.37 (1.3-1.78)9.95 (81.0-135.3)0.118Fold increase	Prior MI	8 (11)	10 (17)	0.346
Prior CABG1 (1)3 (5)0.226CKD3 (4)3 (5)0.873PAD6 (9)2 (3)0.224CVA2 (3)4 (7)0.282Clopidogrel loading48 (7)41 (75)0.409Ticagrelor loading19 (28)13 (24)0.588Laboratory markers111 (9.4-13.6)139 (120-150)0.812Laboratory markers11.4 (8.9-13.6)111 (9.4-13.6)0.820Neutrophil count8.7 (6.1-0.3)7.8 (6.0-10.6)0.828Platelets, x10 ⁹ /L238 (201-305)254 (227-294)0.669NLR0.77 (0.68-0.81)0.74 (0.67-0.82)0.841PLR22.7 (18.8-27.9)21.9 (18.0-28.7)0.975SII176 (149-217)172 (154-223)0.769INR1.0 (1.0-1.1)1.0 (1.0-1.0)0.647PTT, 524.9 (21.9-28.9)26.5 (23.3-30.0)0.314Fibrinogen, g/L21 (6-6)8 (2-32)0.002Foren, mg/L21 (6-6)8 (2-32)0.002Total cholesterol, mmol/L51 (4.2-6.1)4.9 (4.2-5.7)0.341LDL, mmol/L2.9 (2.4-4.2)2.9 (2.4-3.6)0.719Fold increase in Sow hor spin0.42 (0.32-055)0.44 (0.35-059)0.261Fold increase in Sow hor spin1.29 (0.96-153)1.37 (1.1-1.78)0.077Sow clot lysis time, min0.42 (0.32-055)0.44 (0.35-0.59)0.617Fold increase in Sow hor spin1.29 (0.96-153)1.37 (1.1-31.78)0.077Sow clot lysis time, min	Prior PCI	8 (11)	10 (17)	0.346
CKD 3 (4) 3 (5) 0.873 PAD 6 (9) 2 (3) 0.224 CVA 2 (3) 4 (7) 0.282 Clopidogrel loading 48 (7) 41 (75) 0.409 Ticagrelor loading 19 (28) 13 (24) 0.588 Laboratory markers 1 111 (9.4-13.6) 0.001 Leukocyte count 11.4 (8.9-13.6) 111 (9.4-13.6) 0.828 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 Platelets, ×10 ⁹ /L 238 (201-305) 254 (227-294) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.314 Fibrinogen, g/L 3.7 (3.1-46.) 4.4 (3.7-5.9) 0.019 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.019 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 </td <td>Prior CABG</td> <td>1 (1)</td> <td>3 (5)</td> <td>0.226</td>	Prior CABG	1 (1)	3 (5)	0.226
PAD 6 (9) 2 (3) 0.224 CVA 2 (3) 4 (7) 0.282 Clopidogrel loading 48 (7) 41 (75) 0.409 Ticagrelor loading 19 (28) 13 (24) 0.588 Laboratory markers 13 (201) 0.581 Laboratory markers 11.1 (9.4-13.6) 0.011 Leukocyte count 11.4 (8.9-13.6) 11.1 (9.4-13.6) 0.828 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.761 SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.641 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.311 Isbrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.0131 Ibbrinogen, g/L 2.1 (-6.1) 8.2 (32.1) 0.311	CKD	3 (4)	3 (5)	0.873
CVA 2 (3) 4 (7) 0.282 Clopidogrel loading 48 (7) 41 (75) 0.409 Ticagrelor loading 19 (28) 13 (24) 0.588 Laboratory markers 13 (20) 0.581 Laboratory markers 11.1 (9.4-13.6) 10.91 (0.4) 0.820 Neutrophil count 8.7 (6.1-0.3) 7.8 (6.0-10.6) 0.820 Neutrophil count 8.7 (6.1-0.3) 7.8 (6.0-10.6) 0.820 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.761 SII 176 (149-217) 172 (154-223) 0.769 SINR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, \$ 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.0101 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.021 Ital cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 Ital cholesterol, mmol/L 5.1 (4.2-6.1)	PAD	6 (9)	2 (3)	0.224
Clopidogrel loading 48 (71) 41 (75) 0.409 Ticagrelor loading 19 (28) 13 (24) 0.588 Laboratory markers 144 (134-156) 139 (120-150) 0.011 Leukocyte count 11.4 (8.9-13.6) 11.1 (9.4-13.6) 0.820 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 Platelets, ×10 ⁹ /L 238 (201-305) 254 (227-294) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.761 SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.321 I.DL, mmo/L 2 (16-6) 8 (2-32) 0.021 I.Dt, mmo/L 3.1 (42-6.1) 4.9 (4.2-5.7) 0.341 I.D_L, mmo/L 2.9 (2.4-2.6) 0.321 0.716 J.D	CVA	2 (3)	4 (7)	0.282
Ticagrelor loading 19 (28) 13 (24) 0.588 Laboratory markers	Clopidogrel loading	48 (71)	41 (75)	0.409
Laboratory markers Itakenoglobin, g/L 144 (134-156) 139 (120-150) 0.011 Leukocyte count 11.4 (8.9-13.6) 11.1 (9.4-13.6) 0.820 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 Platelets, ×10 ⁹ /L 238 (201-305) 254 (227-294) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, 5 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.002 Foreatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 334 (282-438) 312 (183-524) 0.007 Fold increase in max absorbance 1.29 (0.96-1.53)	Ticagrelor loading	19 (28)	13 (24)	0.588
Hemoglobin, g/L 144 (134-156) 139 (120-150) 0.011 Leukocyte count 11.4 (8.9-13.6) 11.1 (9.4-13.6) 0.820 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 Platelets, ×10 ⁹ /L 238 (201-305) 254 (227-294) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.764 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.002 forcatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 334 (282-438) 312 (183-524) 0.309 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.31-1.78)	Laboratory markers			
Leukocyte count 11.4 (8.9-13.6) 11.1 (9.4-13.6) 0.820 Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 Platelets, ×10 ⁹ /L 238 (201-305) 254 (227-294) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.002 Creatinine, µmol/L 2 (1-6) 8 (2-32) 0.002 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 312 (183-524) 0.309 Plasma clot lysis 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.3-1.58) 0.501	Hemoglobin, g/L	144 (134-156)	139 (120-150)	0.011
Neutrophil count 8.7 (6.1-10.3) 7.8 (6.0-10.6) 0.828 Platelets, ×10 ⁹ /L 238 (201-305) 254 (227-294) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, S 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.002 Creatinine, µmol/L 2 (1-6) 8 (2-32) 0.002 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.791 Shear-induced platelet reactivity 2.9 (2.4-3.2) 0.309 0.309 Plasma clot lysis 312 (183-524) 0.309 0.311 Chol increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 Fold increase in so% clot lysis time 1.10 (0.90-1.35) 1.08 (0.94-1.56)	Leukocyte count	11.4 (8.9-13.6)	11.1 (9.4-13.6)	0.820
Platelets, ×10 ⁹ /L 238 (201-305) 254 (227-294) 0.669 NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.002 Creatinine, µmol/L 2 (1-6) 8 (2-32) 0.002 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LD, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.791 Shear-induced platelet reactivity 2.9 (2.4-3.6) 0.302 OT, s 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.071 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.501 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501	Neutrophil count	8.7 (6.1-10.3)	7.8 (6.0-10.6)	0.828
NLR 0.77 (0.68-0.81) 0.74 (0.67-0.82) 0.841 PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.019 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.020 Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.031 Total cholesterol, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 OT, s 334 (282-438) 312 (183-524) 0.301 Plasma clot lysis 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.071 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Fold increase in 50% clot lysis time 1.11 (0.90-1.35)	Platelets, ×10 ⁹ /L	238 (201-305)	254 (227-294)	0.669
PLR 22.7 (18.8-27.9) 21.9 (18.0-28.7) 0.975 SII 176 (149-217) 172 (154-223) 0.669 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.019 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.002 Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.031 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.319 Plasma clot lysis 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 GN clot lysis time, min 9.10 (73.8-117.5) 9.9.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.504 Lag time, min 6.1 (5.2-7.	NLR	0.77 (0.68-0.81)	0.74 (0.67-0.82)	0.841
SII 176 (149-217) 172 (154-223) 0.769 INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.019 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.002 Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 OT, s 334 (282-438) 312 (183-524) 0.709 Plasma clot lysis 1.29 (0.96-1.53) 1.37 (1.31-7.8) 0.071 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.31-1.78) 0.711 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Fold increase in 50% clot lysis time	PLR	22.7 (18.8-27.9)	21.9 (18.0-28.7)	0.975
INR 1.0 (1.0-1.1) 1.0 (1.0-1.0) 0.647 APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.019 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.002 Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.314 Plasma clot lysis 334 (282-438) 312 (183-524) 0.307 Fold increase in max absorbance 1.29 (0.96-1.53) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Hrombin generation 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.0561 Lag time, m	SII	176 (149-217)	172 (154-223)	0.769
APTT, s 24.9 (21.9-28.9) 26.5 (23.3-30.0) 0.314 Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.019 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.002 Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.310 OT, s 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Hrombin generation 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.0617 Peak, nm	INR	1.0 (1.0-1.1)	1.0 (1.0-1.0)	0.647
Fibrinogen, g/L 3.7 (3.1-4.6) 4.4 (3.7-5.9) 0.019 hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.002 Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.301 OT, s 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.071 Fold increase in 50% clot lysis time 111 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Peak, nm 187 (145-244) 157 (110-217) 0.086	APTT, s	24.9 (21.9-28.9)	26.5 (23.3-30.0)	0.314
hs-CRP, mg/L 2 (1-6) 8 (2-32) 0.002 Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.301 Plasma clot lysis 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.5) 0.511 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.061 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-65.6) 0.0498 ET	Fibrinogen, g/L	3.7 (3.1-4.6)	4.4 (3.7-5.9)	0.019
Creatinine, µmol/L 71 (64-89) 83 (72-104) 0.003 Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.300 Plasma clot lysis 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.071 Fold increase in max absorbance 1.10 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Fold increase in 50% clot lysis time 111 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-65.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.444 <td>hs-CRP, mg/L</td> <td>2 (1-6)</td> <td>8 (2-32)</td> <td>0.002</td>	hs-CRP, mg/L	2 (1-6)	8 (2-32)	0.002
Total cholesterol, mmol/L 5.1 (4.2-6.1) 4.9 (4.2-5.7) 0.341 LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 2.9 (2.4-3.6) 0.300 OT, s 334 (282-438) 312 (183-524) 0.300 Plasma clot lysis 0.44 (0.35-0.59) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.071 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.3-1.50) 0.501 Fold increase in 50% clot lysis time 110 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 1 1.10 (0.90-1.35) 1.08 (0.94-1.56) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-65.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.444	Creatinine, µmol/L	71 (64-89)	83 (72-104)	0.003
LDL, mmol/L 2.9 (2.4-4.2) 2.9 (2.4-3.6) 0.719 Shear-induced platelet reactivity 07, s 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 312 (183-524) 0.309 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 1 1.42 (1.52-7.8) 6.9 (5.8-9.0) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.068 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-65.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.444	Total cholesterol, mmol/L	5.1 (4.2-6.1)	4.9 (4.2-5.7)	0.341
Shear-induced platelet reactivity 07, s 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis 912 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Max absorbance at 405 nm 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.31-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.067 Thrombin generation 1 1.22 (1.52-7.8) 6.9 (5.8-9.0) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	LDL, mmol/L	2.9 (2.4-4.2)	2.9 (2.4-3.6)	0.719
OT, s 334 (282-438) 312 (183-524) 0.309 Plasma clot lysis	Shear-induced platelet reactivity			
Plasma clot lysis Max absorbance at 405 nm 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 50% clot lysis time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	OT, s	334 (282-438)	312 (183-524)	0.309
Max absorbance at 405 nm 0.42 (0.32-0.55) 0.44 (0.35-0.59) 0.261 Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 50% clot lysis time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	Plasma clot lysis			
Fold increase in max absorbance 1.29 (0.96-1.53) 1.37 (1.13-1.78) 0.077 50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	Max absorbance at 405 nm	0.42 (0.32-0.55)	0.44 (0.35-0.59)	0.261
50% clot lysis time, min 91.0 (73.8-117.5) 99.5 (81.0-135.3) 0.118 Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation 1.11 (0.90-1.35) 6.9 (5.8-9.0) 0.067 Lag time, min 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	Fold increase in max absorbance	1.29 (0.96-1.53)	1.37 (1.13-1.78)	0.077
Fold increase in 50% clot lysis time 1.11 (0.90-1.35) 1.08 (0.94-1.56) 0.501 Thrombin generation	50% clot lysis time, min	91.0 (73.8-117.5)	99.5 (81.0-135.3)	0.118
Thrombin generation 6.1 (5.2-7.8) 6.9 (5.8-9.0) 0.067 Lag time, min 6.1 (52-7.8) 6.9 (5.8-9.0) 0.067 Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	Fold increase in 50% clot lysis time	1.11 (0.90-1.35)	1.08 (0.94-1.56)	0.501
Lag time, min6.1 (5.2-7.8)6.9 (5.8-9.0)0.067Peak, nm187 (145-244)157 (110-217)0.086Velocity index, nmol/L/min41.6 (26.6-63.3)28.0 (18.7-67.6)0.098ETP, nM/min1,524 (1,113-1,814)1,418 (1,064-1,754)0.445	Thrombin generation			
Peak, nm 187 (145-244) 157 (110-217) 0.086 Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	Lag time, min	6.1 (5.2-7.8)	6.9 (5.8-9.0)	0.067
Velocity index, nmol/L/min 41.6 (26.6-63.3) 28.0 (18.7-67.6) 0.098 ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	Peak, nm	187 (145-244)	157 (110-217)	0.086
ETP, nM/min 1,524 (1,113-1,814) 1,418 (1,064-1,754) 0.445	Velocity index, nmol/L/min	41.6 (26.6-63.3)	28.0 (18.7-67.6)	0.098
	ETP, nM/min	1,524 (1,113-1,814)	1,418 (1,064-1,754)	0.445

Values are median (Q1-Q3) or n (%). **Bold** values indicate statistical significance (P < 0.05). ETP = endogenous thrombin potential; other abbreviations as in Table 1.

> 95% CI 0.96-0.99; P = 0.011), creatinine (OR: 1.02; 95% CI: 1.00-1.03; P = 0.009), fibrinogen (OR: 1.50; 95% CI: 1.11-2.02; P = 0.008), hs-CRP (OR: 1.04; 95% CI: 1.01-1.07; P = 0.012) were significantly associated. However, on multivariable analysis, only creatinine was an independent predictor of prolonged whole blood LT (OR: 1.02; 95% CI: 1.00-1.03; P = 0.035).

RELATIONSHIP BETWEEN WHOLE BLOOD ENDOGENOUS FIBRINOLYSIS AND PLASMA CLOT LYSIS. Whole blood endogenous fibrinolysis time was weakly correlated with 50% plasma clot LT (r = 0.195; P = 0.032) and with fold increase in maximal absorbance (r = 0.199; P = 0.027) (**Figure 1**). There was no relationship between whole blood endogenous fibrinolysis and plasma clot lysis measures of fold increase in 50% clot lysis or maximum absorbance (Supplemental Table 1).

RELATIONSHIP BETWEEN WHOLE BLOOD LYSIS AND THROMBIN GENERATION. There was no relationship between whole blood LT and any of the markers of thrombin generation, including lag time, peak thrombin generation, endogenous thrombin potential, or velocity index (**Tables 1 and 2**, **Supplemental Table 1**). Although when grouped by quartiles of LT, there appeared to be a difference in lag time to thrombin generation, a relationship between lag time and endogenous fibrinolysis was not observed when examining lysis as a continuous variable.

RELATIONSHIP AMONG SHEAR-INDUCED THROMBOTIC OT, WHOLE BLOOD LYSIS, AND PLASMA CLOT LYSIS. The clinical and laboratory characteristics of patients according to the quartiles of whole blood shearinduced OT are shown in **Table 3**. Occlusion time was weakly inversely correlated with whole blood LT (r = -0.200; P = 0.026) (Figure 2) but was not related to plasma clot lysis (r = 0.104; P = 0.264).

RELATIONSHIP AMONG SHEAR-INDUCED THROMBOTIC OT AND THROMBIN GENERATION, COAGULATION, AND INFLAMMATORY MARKERS. Shear-induced platelet reactivity (shorter OT) was associated with more rapid thrombin generation, correlating with shorter lag time (r = 0.233; P = 0.026), increased velocity index (r = -0.263; P = 0.012), and higher peak (r = -0.261; P = 0.012), but was not related to endogenous thrombin potential (**Figures 3 and 4**, Supplemental **Table 2**). Shear-induced platelet reactivity was not related to hematological, coagulation, or inflammatory markers (**Table 3**). hs-CRP correlated weakly with endogenous thrombin potential (r = 0.220; P = 0.045).

RELATIONSHIP AMONG MARKERS OF COAGULATION, INFLAMMATION, AND MEASURES OF FIBRINOLYSIS. Whole blood endogenous fibrinolysis time correlated with fibrinogen level (r = 0.300; P = 0.001) and hs-CRP (r = 0.236; P = 0.011), but was not related to other markers of coagulation or inflammation (**Tables 1 and 2**). Hs-CRP also correlated with fibrinogen level (r = 0.631; P < 0.001), plasma clot lysis (r = 0.269; P = 0.005), fibrin clot density (r = 0.367; P = 0.001), and weakly with endogenous thrombin potential (r = 0.220; P = 0.045). Fibrinogen level correlated weakly with plasma clot LT (r = 0.194; P = 0.041) and moderately with fibrin clot density (r = 0.545; P < 0.001).

COMPARISON OF ENDOGENOUS FIBRINOLYSIS, PLASMA CLOT LYSIS ASSAY, SHEAR-INDUCED PLATELET REACTIVITY, AND THROMBIN GENERATION FOR THE PREDICTION OF **RECURRENT MACE.** ROC curve analysis of the subgroup of RISK-PPCI patients included here showed that endogenous fibrinolysis assessed using whole blood was the best predictor of recurrent MACE (area under the ROC curve [AUC]: 0.649), and reflected the results obtained in the main study (AUC: 0.776).⁵ Specifically, in the subgroup of patients included here, for the prediction of MACE, endogenous fibrinolysis was superior to 50% plasma clot LT (AUC: 0.561), plasma clot maximal turbidity (AUC: 0.563), whole blood OT (AUC: 0.385), peak thrombin generation (AUC: 0.478), endogenous thrombin potential (AUC: 0.506), and thrombin lag time (AUC: 0.616) (Supplemental Table 3). Applying the cutpoint of 2,500 seconds for whole blood endogenous fibrinolysis time (determined by Youden's index from main study⁵) to our current cohort, revealed that patients with whole blood fibrinolysis time \geq 2,500 seconds had a 3.6-fold higher risk of MACE (95% CI: 1.5-8.5; P = 0.002), driven predominantly by cardiovascular death, compared with patients with fibrinolysis time <2,500 seconds (Figure 5, Supplemental Table 4). We considered competing events, in particular noncardiovascular death, and this occurred with similar frequency in patients with LT \geq 2,500 and <2,500 seconds such that we feel this cannot account for the different MACE rate observed.

In contrast, although plasma clot LT (using a cutpoint of 78.5 minutes derived from Youden's index) could differentiate between patients with and without MACE using the log-rank test (**Figure 5**), this was not significant on Cox regression (P = 0.057) (Supplemental Table 4). Whole blood OT (using a cutpoint of 602 seconds derived from Youden's index) was not able to differentiate between patients with and without MACE (Supplemental Table 4), and a model assessing the combination of whole blood LT and whole blood OT for the prediction of MACE, using the cutpoints defined in the previous text, failed to provide incremental risk prediction for MACE over and above that of whole blood LT alone (Supplemental Table 5).

DISCUSSION

Our results indicate that the effectiveness of endogenous fibrinolysis in whole blood is determined in part by fibrinogen level, inflammation, and shearinduced platelet aggregation (OT). Further, plasma

clot lysis in response to t-PA is only weakly correlated with endogenous fibrinolysis observed in whole blood, suggesting that the main determinants of endogenous fibrinolysis are cellular components. Although LT is not directly related to thrombin generation, shear-induced thrombotic occlusion is related to the speed and magnitude of thrombin generation.

RELATIONSHIP AMONG ENDOGENOUS FIBRINOLYSIS, FIBRINOGEN, AND HS-CRP LEVEL. Endogenous fibrinolysis in whole blood appears to correlate with elevated fibrinogen level in our study. Although the relationship between whole blood lysis and fibrinogen level is not previously described, it is supported by prior work showing that higher plasma fibrinogen levels are associated with more compact fibrin clots,^{11,12} and the latter in turn have been associated with impaired lysis in response to t-PA.^{13,14}

We show an inverse relationship between the effectiveness of endogenous fibrinolysis in whole

TABLE 3 Summary of Clinical and Biochemical Characteristics of Patients Grouped by Quartiles According to Whole Blood OT								
	OT Q ₁	OT Q ₂	OT Q3	OT Q₄	P Value			
Median OT (range), s	179 (62-268)	299 (270-332)	397 (333-463)	546 (468-723)				
Age, y	71 (60-80)	67 (53-77)	63 (53-71)	70 (51-82)	0.240			
Male	26 (84)	26 (84)	23 (72)	22 (71)	0.425			
BMI, kg/m ²	26.0 (23.7-28.7)	24.5 (22.6-27.5)	27.8 (24.3-30.3)	25.7 (23.7-29.0)	0.252			
Smoking	9 (29)	9 (29)	15 (47)	12 (39)	0.384			
Diabetes	8 (26)	3 (10)	8 (25)	6 (19)	0.358			
Hypertension	18 (58)	15 (48)	13 (40)	14 (45)	0.561			
Hyperlipidemia ^a	16 (52)	11 (35)	8 (25)	15 (48)	0.116			
FH premature CAD	10 (32)	13 (42)	12 (39)	9 (29)	0.703			
Prior MI	4 (13)	7 (23)	2 (6)	4 (13)	0.324			
Prior PCI	6 (19)	6 (19)	2 (6)	3 (10)	0.302			
Prior CABG	1 (3)	1 (3)	1 (3)	1 (3)	1.000			
CKD ^b	1 (3)	0 (0)	2 (6)	3 (10)	0.209			
PAD	1 (3)	4 (13)	2 (6)	1 (3)	0.394			
CVA	2 (6)	1 (3)	2 (6)	1 (3)	0.870			
Clopidogrel loading	22 (73)	22 (73)	25 (83)	16 (55)	0.118			
Ticagrelor loading	6 (20)	8 (27)	5 (17)	13 (45)	0.070			
Laboratory markers								
Hemoglobin, g/L	142 (129-154)	146 (134-162)	144 (132-153)	134 (113-152)	0.275			
Leukocyte count,	10.6 (8.7-15.2)	11.2 (8.1-13.1)	9.8 (8.2-12.8)	11.7 (9.4-13.2)	0.657			
Neutrophil count,	8.9 (6.3-10.8)	9.1 (6.4-10.8)	7.9 (5.4-9.5)	7.5 (6.1-9.7)	0.404			
Platelets, ×10 ⁹ /L	255 (216-277)	235 (200-317)	260 (215-316)	225 (191-269)	0.168			
NLR	0.77 (0.72-0.82)	0.77 (0.68-0.82)	0.72 (0.63-0.79)	0.73 (0.68-0.79)	0.195			
PLR	21.9 (17.8-29.2)	22.6 (17.9-27.8)	23.6 (20.4-29.0)	22.3 (19.1-28.7)	0.663			
SII	183 (156-219)	191 (146-224)	1,182 (155-226)	161 (131-197)	0.271			
INR	1.0 (1.0-1.1)	1.0 (1.0-1.1)	1.0 (1.0-1.1)	1.0 (1.0-1.0)	0.918			
aPTT, s	26.5 (24.5-28.1)	26.1 (23.9-29.8)	23.2 (21.7-29.4)	27.9 (22.8-30.9)	0.220			
Fibrinogen, g/L	4.0 (3.5-4.4)	3.7 (3.2-4.6)	4.1 (3.0-5.1)	4.4 (3.5-6.1)	0.342			
hs-CRP, mg/L	3 (1-8)	3 (1-10)	5 (1-12)	14 (2-41)	0.057			
Creatinine, µmol/L	100 (71-126)	84 (71-99)	83 (72-97)	82 (62-100)	0.468			
Total cholesterol, mmol/L	5.2 (4.4-6.3)	4.8 (3.9-5.9)	5.2 (4.3-5.9)	4.6 (3.9-6.1)	0.522			
LDL, mmol/L	3.5 (2.7-4.1)	2.6 (1.8-3.7)	3.0 (2.2-4.1)	2.9 (2.3-3.8)	0.356			
Whole blood endogenous fibrinolysis								
LT, s	3,219 (1,775-6,000)	1,850 (1,329-3,123)	1,917 (1,336-2,489)	2,200 (1,199-3,326)	0.041			
Plasma clot lysis								
Max absorbance at 405 nm	0.40 (0.35-0.53)	0.48 (0.41-0.61)	0.42 (0.31-0.58)	0.44 (0.32-0.62)	0.622			
Fold increase in max absorbance	1.28 (1.01-1.45)	1.40 (1.14-1.68)	1.18 (1.04-1.59)	1.40 (0.97-1.68)	0.609			
50% clot lysis time, min	87.0 (73.6-110.0)	96.0 (74.5-120.0)	100.0 (82.5-133.3)	92.5 (73.5-143.3)	0.518			
Fold increase in 50% clot lysis time	1.07 (0.89-1.32)	1.17 (0.94-1.52)	1.15 (0.96-1.37)	1.11 (0.87-1.59)	0.881			
Thrombin generation								
Lag time, min	5.7 (5.2-7.2)	6.0 (5.4-7.7)	6.7 (5.8-8.1)	7.8 (5.7-9.8)	0.078			
Peak, nm	226 (160-284)	171 (101-238)	185 (135-239)	140 (88-196)	0.027			
Velocity index, nmol/L/min	66.9 (29.8-90.3)	38.2 (19.6-58.0)	38.5 (20.4-67.2)	26.2 (13.7-45.4)	0.021			
ETP, nM/min	1,649 (1,296-1,845)	1,508 (1,046-1,788)	1,462 (1,252-1,832)	1,405 (1,030-1,759)	0.541			

Values are median (Q1-Q3) or n (%). The Kruskal-Wallis test and chi-square tests were used for statistical analysis of continuous and dichotomous variables, respectively. **Bold** values indicate statistical significance (P < 0.05). ^aHyperlipidemia was defined as a total cholesterol >6.5 mmol/L on admission in the absence of lipid-lowering medication, or a documented history of hyperlipidemia in the case notes. ^bCKD was defined as GFR <60 mL/min/1.73 m² on admission and either present on at least 1 further measurement a minimum of 3 months earlier, or a clear documentation in the case notes.

Abbreviations as in Table 1.

blood and hs-CRP levels, as well as between fibrinogen and hs-CRP. Our data strongly support the increasing evidence pointing to a complex bidirectional crosstalk between inflammation and coagulation pathways.^{15,16} Exposure of blood to TF, either through plaque rupture or TF release from circulating monocytes, results in activation of coagulation, resulting in thrombin and ultimately fibrin generation, as well as platelet activation. These coagulation factors have additional inflammatory effects. Binding

(Kruskal-Wallis test; P = 0.154). There is a relationship at the extremes of LT (ie, Q1 and Q4, Mann-Whitney *U* test P = 0.030) which is biologically plausible and relevant. *P < 0.05.

of tissue factor, thrombin, and other activated coagulation proteases to specific protease activated receptors (PARs) on inflammatory cells may induce the release of proinflammatory cytokines and chemokines, which can further modulate coagulation and fibrinolysis.¹⁵⁻¹⁷ Thrombin activation of PAR-1 on endothelial cells and fibroblasts can stimulate the production of monocyte chemoattractant protein-1, tumor necrosis factor (TNF)- α , interleukin (IL)-1 β , IL-6, expression of P- and E-selectin, and PAI-1. Thrombin activation of PAR-1 and -4 on platelets results in release of PAI-1. Thrombin activates the endothelium to result in t-PA and urokinase typeplasminogen activator (uPA) release, stimulating fibrinolysis. TNF- α can modulate the expression of major components of the fibrinolytic system, with its stimulatory effect on PAI-1 and down-regulation of t-PA expression in endothelial cells being most significant. IL-6, produced predominantly by macrophages and monocytes, is the chief stimulator of the production of most acute phase proteins, including inducing the hepatic synthesis of CRP. Fibrinogen can also directly stimulate expression of proinflammatory cytokines (such as TNF- α and IL-1 β) on mononuclear cells and induce production of chemokines (including IL-8 and monocyte chemoattractant protein-1) by endothelial cells and fibroblasts.¹⁷

The main inhibitor of fibrinolysis in the circulation is PAI-1, and increased levels have been linked to myocardial infarction.¹⁸⁻²⁰ Although platelets contain the major pool of circulating PAI-1, released following platelet stimulation,²¹ PAI-1 is also synthesized by other cells, predominantly endothelial cells.²² Not only are high CRP levels associated with elevated PAI-1 levels in a number of conditions such as sepsis, inflammation, and myocardial infarction, but in experimental models, proinflammatory cytokines liberated during inflammation, including CRP, IL-6, and TNF-a, directly influence PAI-1 synthesis.^{21,23-25} Incubation of human aortic endothelial cells with CRP induces a time- and dose-dependent increase in PAI-1 expression and activity²⁵ and reduction in t-PA activity,²⁶ showing a direct effect on fibrinolytic status. Furthermore, activated platelets have been shown to convert pentameric CRP to the monomeric form, which promotes platelet capture of neutrophils.²⁷ Our findings support a direct functional relationship between PAI-1 and CRP and are supported by earlier data showing a correlation between CRP and plasma clot LT.6

DIFFERENCES BETWEEN FIBRINOLYSIS ASSESSED WITH THE GLOBAL THROMBOSIS TEST AND PLASMA **CLOT LYSIS.** It is important to appreciate the fundamental differences between these 2 techniques in reflecting the effectiveness of fibrinolysis. In the Global Thrombosis Test, nonanticoagulated whole blood is used, and LT reflects the spontaneous restart of flow after occlusive thrombus formation, ie, endogenous fibrinolysis. On the other hand, the clot lysis assay employs citrated plasma, which is recalcified and clotting initiated with thrombin. Lysis is only achieved by addition of exogenous t-PA. Indeed, in the absence of added plasminogen activator, these clots are exceptionally stable to fibrinolytic degradation. In physiological systems, plasminogen activators including t-PA and uPA are supplied by cells. The endothelium is the main source of t-PA, but it

circulates at low concentrations, mostly in complex with its primary inhibitor, PAI-1.^{28,29} uPA is synthesized by cells of fibroblast-type morphology but also epithelial cells,³⁰ monocytes, and macrophages.^{31,32} Therefore, in a system that is devoid of cells, such as the plasma clot lysis assay, the quiescence of the fibrinolytic system is maintained by the excess of inhibitors, primarily PAI-1 and α_2 -antiplasmin. Importantly, the use of whole blood in the GTT allows a more global assessment of fibrinolysis in blood, incorporating contributions from platelets, leukocytes, and erythrocytes. It is therefore not surprising that the correlation between the result of the GTT and the clot lysis assay was relatively weak.

RELATIONSHIP AMONG ENDOGENOUS FIBRINOLYSIS, SHEAR-INDUCED THROMBOTIC OCCLUSION, AND THROMBIN GENERATION. Our results indicate that endogenous fibrinolysis is directly related to the degree of shear-induced platelet aggregation, which correlates with the speed and the magnitude of thrombin generation. More rapid thrombin generation is associated with faster thrombotic occlusion at high shear, and the latter is related to the effectiveness of endogenous fibrinolysis. The observed relationship between thrombin generation in plasma and thrombotic occlusion at high shear is not surprising, given the fundamental role of the platelet surface in the generation of thrombin³³ and, furthermore, that thrombin is the most potent platelet agonist. However, given the significant contribution of the platelet surface in the promotion and regulation of thrombin generation and fibrin formation, it may not be surprising that we did not show a relationship between thrombin generation measured in plasma and endogenous fibrinolysis as measured in whole blood. In the Global Thrombosis Test, blood is subjected to a high shear rate, which is responsible for occlusive thrombus formation. In coronary arteries with severe luminal narrowing, pathological shear rates in excess of 10,000 seconds⁻¹ are observed, which create a markedly prothrombotic milieu.^{34,35} Although platelet aggregation is determined by $\alpha_{IIb}\beta_3$ -dependent interactions under low shear conditions, von Willebrand Factor (vWF)dependent interactions predominate at high shear rates,^{35,36} and enhanced shear-induced platelet aggregation associated with increased vWF concentration has been documented in patients with myocardial infarction.³⁷ Whether inhibition of high-shear induced thrombosis may also favorably impact endogenous fibrinolysis requires investigation.

POSSIBLE CONTRIBUTION OF CELLULAR COMPONENTS TO ENDOGENOUS FIBRINOLYSIS IN WHOLE BLOOD. Our findings support the concept that cellular components are the main determinants of the effectiveness of fibrinolysis. Platelets are not only structural components of arterial thrombi; the platelet surface also plays a central role in the promotion and regulation of thrombin generation, in what has been termed the cell-based model of coagulation.38 In this model, initiation of coagulation takes place on tissue factorbearing cells, leading to activation of platelets and cofactors (amplification), which sets the stage for large-scale thrombin generation on the platelet surface.³⁸ Thus, platelets control thrombin generation, enhance fibrin formation, and regulate clot retraction. Although platelets are well-recognized as powerhouses of coagulation, their regulation of fibrinolysis is less well defined. Indeed, they are known to harbor high concentrations of PAI-1 and other serpins, such as C1-inhibitor and protease nexin 1, that can inhibit fibrinolytic activity, with platelet activation leading to PAI-1 release.³⁹ Platelet PAI-1 is considered to be less active than plasma PAI-1, but its abundance means that it accounts for 50% of the circulating pool. We have recently shown that thrombi formed at high shear incorporate less t-PA and plasminogen but increased PAI-1, enhancing resistance to degradation.⁴⁰ The interaction of platelets with the fibrin matrix is key to the process of clot retraction, which is mechanistically coupled to fibrinolysis.⁴¹

However, plasminogen binding to platelets⁴² and other cells including monocytes and neutrophils⁴³ is also well documented and with cell-bound plasmin protected from inhibition by α_2 -antiplasmin, plasminogen activation on the cell surface is more efficient at augmenting fibrinolysis.⁴³ Although the inverse relationship between OT at high shear and endogenous fibrinolysis in our study supports the concept that platelets make the most important cellular contribution to resistance to lysis, the importance of other cellular components should not be underestimated. Neutrophils contribute to fibrinolysis through the release of elastase and additional membrane proteolytic activity, which aid early plasminmediated fibrinolysis,44 and monocytes are rich in the receptor for uPA, promoting plasminogen activation. Extracellular nucleic acids and histones present in neutrophil extracellular traps promote coagulation through the binding of platelets, factor XII, vWF, and fibrinogen^{45,46} and the expression of tissue factor.⁴⁷

RELATIONSHIP BETWEEN WHOLE BLOOD FIBRINOLYSIS TIME AND HEMOGLOBIN. Although patients with LT \geq 2,500 seconds had a slightly lower hemoglobin level than those with LT <2,500 seconds, the hemoglobin level in both groups was within the normal range. This may be a manifestation of renal impairment, reflected by the higher creatinine levels in patients with longer LT. Although the history of chronic kidney disease was not different between patients with LT \geq 2,500 or <2,000 seconds, many of our patients presented for the first time with STEMI with no prior creatinine measurement available, and it is possible that the slightly lower hemoglobin and higher creatinine in patients with LT \geq 2,500 seconds represents a higher prevalence of chronic kidney disease.

THROMBOSIS/FIBRINOLYSIS MARKERS AS PREDICTORS OF CARDIOVASCULAR RISK. Within the constraints of the small sample size, our analysis shows that whole blood endogenous LT is superior to plasma clot lysis,

high shear-induced platelet reactivity, and markers of thrombin generation in predicting outcome in ACS patients. This is supported by prior work in ACS patients showing that prolonged whole blood endogenous fibrinolysis time was associated with an HR of $4.2,^{48}$ whereas increased plasma clot LT was associated with HR = 1.29^6 for the occurrence of recurrent cardiovascular events.

The relationship between prolonged endogenous fibrinolysis time on admission and the occurrence of MACE may relate not only to hypofibrinolysis, but also to inflammation.

The correlation between hs-CRP and endogenous fibrinolysis and the close correlation between hs-CRP and fibrinogen levels reflect the close relationship

lysis time <2,500 and ≥2,500 seconds (log rank P = 0.001; HR: 3.6 [95% CI: 1.5-8.5; P = 0.002]) and **(B)** 50% plasma clot lysis time (measured in 121 patients [in 8 patients, stored plasma was insufficient for analysis]) <78.5 and ≥78.5 minutes (log rank P = 0.037; HR: 4.1 [95% CI: 0.96-17.2; P = 0.057]).

between inflammation and coagulation/fibrinolysis pathways.

STUDY LIMITATIONS. The sample size of our cohort is relatively small, but is sufficient to provide indications of relationships among markers of lysis, thrombin generation, and shear-induced thrombus formation in vitro. Importantly, we have taken only peripheral blood samples, and the markers measured in peripheral blood may not reflect the true pathophysiology of microenvironment at the site of the culprit coronary lesion in these STEMI patients. Furthermore, we cannot truly separate out the measures of fibrinolysis, including fibrinogen level, from inflammatory processes reflected by hs-CRP, and the crosstalk between these pathways is further supported by our findings. Although patients in the quartiles of LT were generally well-matched, smokers were over-represented among those with the longest LT, which may be causative or a confounder. Our study is too small to draw conclusions about the relationship between LT and clinical variables because of the small sample size, but this has been evaluated in a larger cohort previously.⁵ Although our study is not powered to assess the sensitivity of fibrinolysis markers to predict cardiovascular events, the finding of a strong relationship between endogenous fibrinolysis and MACE and a weaker relationship between plasma clot lysis and MACE mirrors earlier results from larger cohorts.^{5,28}

CONCLUSIONS

The effectiveness of endogenous fibrinolysis in whole blood is related to fibrinogen and hs-CRP levels and shear-induced platelet reactivity, the latter being directly related to thrombin generation. Further, plasma clot lysis in response to tissue-plasminogen activator is only weakly related to endogenous fibrinolysis observed in whole blood, indicating an important role for cellular components in determining fibrinolytic status. Our data strengthen the evidence for a strong bidirectional crosstalk between coagulatory and inflammatory pathways. These mechanistic insights could help guide pharmacological strategies to treat hypofibrinolysis.

ACKNOWLEDGMENTS The authors would like to thank Mrs M. Donnarumma and Mrs L. Robertson for their strong technical support in performing plasma clot lysis and thrombin generation assays.

FUNDING SUPPORT AND AUTHOR DISCLOSURES

This work was supported in part by a grant from Alpha MD, London, United Kingdom. Dr Mutch was supported by the British Heart Foundation PG/15/82/31721 and Friends of Anchor. Dr Gorog has received institutional research grants from Bayer, Medtronic, Alpha MD, and Boehringer Ingelheim; has received speaker's fees from AstraZeneca and Boehringer Ingelheim; and is related through family to a company director in Thromboquest Ltd, but neither she, nor her spouse or children, have financial involvement or equity interest in and they have received no financial assistance, support, or grants from the aforementioned. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. ADDRESS FOR CORRESPONDENCE: Prof Diana A. Gorog, Faculty of Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, United Kingdom. E-mail: d.gorog@ imperial.ac.uk.

PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: The clinical outcome of an arterial thrombotic stimulus is determined by the relative balance between prothrombotic drivers on the one hand, and the effectiveness of the natural thrombolytic (fibrinolytic) processes on the other hand. Impaired endogenous fibrinolysis is a recently recognized independent risk factor for adverse car-diovascular events in patients with acute coronary syndromes, but its mechanistic determinants are not well understood. In this study, we show that the effectiveness of endogenous fibrinolysis in whole blood is related in part to fibrinogen levels, inflammation, and shear-induced platelet reactivity. Furthermore, we show that plasma clot lysis is only weakly related to fibrinolysis in whole blood, suggesting an important role for cellular components in determining fibrinolytic status.

TRANSLATIONAL OUTLOOK: Because impaired fibrinolysis is a strong cardiovascular risk factor, improving fibrinolytic status is highly desirable, but we do not know how to modulate it pharmacologically. Our findings provide evidence for bidirectional crosstalk between coagulation and inflammation, and also demonstrate the importance of cellular components, especially high shear-induced platelet reactivity, as a determinant of fibrinolysis. This indicates the need for research to investigate novel ways to improve hypofibrinolysis, considering anti-inflammatory and antiplatelet approaches. Identification of individuals with hypofibrinolysis and subsequent favorable modification of this could reduce residual cardiovascular risk.

REFERENCES

1. Gorog DA, Lip GYH. Impaired spontaneous/ endogenous fibrinolytic status as new cardiovascular risk factor? JACC review topic of the week. *J Am Coll Cardiol.* 2019;74(10):1366-1375.

2. Kietsiriroje N, Ariëns R, Ajjan R. Fibrinolysis in acute and chronic cardiovascular disease. *Semin Thromb Hemost.* 2021;47(5):490-505.

3. Okafor ON, Gorog DA. Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. *J Am Coll Cardiol*. 2015;65(16): 1683-1699.

4. Krychtiuk KA, Speidl WS, Giannitsis E, et al. Biomarkers of coagulation and fibrinolysis in acute myocardial infarction: a joint position paper of the Association for Acute CardioVascular Care and the European Society of Cardiology Working Group on Thrombosis. *Eur Hear J Acute Cardiovasc Care*. 2021;10(3):343-355.

5. Farag M, Spinthakis N, Gue YX, et al. Impaired endogenous fibrinolysis in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention is a predictor of recurrent cardiovascular events: the RISK PPCI study. *Eur Heart J.* 2018;14(40):295-305.

6. Sumaya W, Wallentin L, James SK, et al. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: a PLATO substudy. *Eur Heart J.* 2018;39(13):1078-1085.

7. Spinthakis N, Farag M, Gue YX, Srinivasan M, Wellsted DM, Gorog DA. Effect of P2Y12 inhibitors on thrombus stability and endogenous fibrinolysis. *Thromb Res.* 2019;173:102-108.

8. Sharma S, Farrington K, Kozarski R, et al. Impaired thrombolysis: a novel cardiovascular risk factor in end-stage renal disease. *Eur Heart J*. 2013;34(5):354-363.

9. Mutch NJ, Thomas L, Moore NR, Lisiak KM, Booth NA. TAFIa, PAI-1 and alpha-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J. *Thromb Haemost*. 2007;5(4):812–817.

10. Hemker HC, Giesen P, Al Dieri R, et al. Calibrated automated thrombin generation measurement in

clotting plasma. *Pathophysiol Haemost Thromb*. 2003;33(1):4–15.

11. Ariëns R. Fibrin(ogen) and thrombotic disease. *J Thromb Haemost*. 2013;11(Suppl 1):294–305.

12. Collet J, Allali Y, Lesty C, et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. *Arterioscler Thromb Vasc Biol.* 2006;26(11):2567-2573.

13. Undas A, Ariëns R. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. *Arterioscler Thromb Vasc Biol.* 2011;31(12):e88–e99.

14. Neergaard-Petersen S, Larsen S, Grove E, Kristensen S, Ajjan R, Hvas A. Imbalance between Fibrin Clot Formation and Fibrinolysis Predicts Cardiovascular Events in Patients with Stable Coronary Artery Disease. *Thromb Haemost*. 2020;120(1):75–82.

15. Levi M, van der Poll T, Büller HR. Bidirectional relation between inflammation and coagulation. *Circulation*. 2004;109(22):2698–2704.

16. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. *Circ Res.* 2016;118(9):1392-1408.

17. Medcalf RL. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. *J Thromb Haemost.* 2007;5(Suppl 1):132–142.

18. Hamsten A, de Faire U, Walldius G, et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. *Lancet*. 1987;2(8549):3-9.

19. Juhan-Vague I, Pyke S, Alessi M, Jespersen J, Haverkate F, Thompson S. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities. *Circulation*. 1996;94(9):2057-2063.

20. Hamsten A, Wiman B, de Faire U, Blombäck M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. *N Engl J Med*. 1985;313(25): 1557–1563.

21. Morrow GB, Whyte CS, Mutch NJ. A serpin with a finger in many PAIs: PAI-1's central function in thromboinflammation and cardiovascular disease. *Front Cardiovasc Med.* 2021;8:653655.

22. van Mourik JA, Lawrence DA, Loskutoff DJ. Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells. *J Biol Chem.* 1984;259(23):14914-14921.

23. Kruithof EK, Mestries JC, Gascon MP, Ythier A. The coagulation and fibrinolytic responses of baboons after in vivo thrombin generation—effect of interleukin 6. *Thromb Haemost*. 1997;77(5):905-910. 24. van der Poll T, Levi M, Büller HR, et al. Fibrinolytic response to tumor necrosis factor in healthy subjects. *J Exp Med*. 1991;174(3):729-732.

25. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and athero-thrombosis. *Circulation.* 2003;107(3):398-404.

26. Singh U, Devaraj S, Jialal I. C-reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells: evidence that C-reactive protein is a procoagulant. *Arterioscler Thromb Vasc Biol.* 2005;25(10):2216-2221.

27. Filep JG. Platelets affect the structure and function of C-reactive protein. *Circ Res.* 2009;105(2):109–111.

28. Stalder M, Hauert J, Kruithof EK, Bachmann F. Release of vascular plasminogen activator (v-PA) after venous stasis: electrophoretic-zymographic analysis of free and complexed v-PA. *Br J Haematol.* 1985;61(1):169–176.

29. Booth N, Walker E, Maughan R, Bennet B. Plasminogen activator in normal subjects after exercise and venous occlusion: t-PA circulates as complexes with C1-inhibitor and PAI-1. *Blood*. 1987;69(6):1600-1604.

30. Larsson LI, Skriver L, Nielsen LS, Grøndahl-Hansen J, Kristensen P, Danø K. Distribution of urokinase-type plasminogen activator immunoreactivity in the mouse. *J Cell Biol.* 1984;98(3):894–903.

31. Manchanda N, Schwarttz B. Lipopolysaccharide-induced modulation of human monocyte urokinase production and activity. *J Immunol.* 1990;145(12):4174–4180.

32. Grau E, Moroz LA. Fibrinolytic activity of normal human blood monocytes. *Thromb Res.* 1989;53(2):145-162.

33. Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. *Arterioscler Thromb Vasc Biol.* 2002;22(9):1381–1389.

34. Sakariassen KS. Thrombus formation on apex of arterial stenoses: the need for a fluid high shear stenosis diagnostic device. *Future Cardiol*. 2007;3(2):193-201.

35. Rana A, Westein E, Niego B, Hagemeyer CE. Shear-dependent platelet aggregation: mechanisms and therapeutic opportunities. *Front Car-diovasc Med.* 2019;6:141.

36. Ikeda Y, Handa M, Kawano K, et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. *J Clin Invest.* 1991;87(4):1234-1240.

37. Mazzucato M, Cozzi MR, Pradella P, Ruggeri ZM, De Marco L. Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under high flow. *Blood*. 2004;104(10):3221-3227.

38. Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. *Arterioscler Thromb Vasc Biol.* 2002;22(9):1381–1389.

39. Morrow GB, Whyte CS, Mutch NJ. Functional plasminogen activator inhibitor 1 is retained on the activated platelet membrane following platelet activation. *Haematologica*. 2020;105(12):2824–2833.

40. Whyte CS, Mostefai HA, Baeten KM, et al. Role of shear stress and tPA concentration in the fibrinolytic potential of thrombi. *Int J Mol Sci.* 2021;22(4):2115.

41. Samson AL, Alwis I, Maclean JAA, et al. Endogenous fibrinolysis facilitates clot retraction in vivo. *Blood*. 2017;130(23):2453–2462.

42. Whyte CS, Swieringa F, Mastenbroek TG, et al. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. *Blood.* 2015;125(16):2568-2578.

43. Miles L, SB H, Baik N, Andronicos N, Castellino F, Parmer R. Plasminogen receptors: the sine qua non of cell surface plasminogen activation. *Front Biosci.* 2005;10:1754–1762.

44. Adams SA, Kelly SL, Kirsch RE, Robson SC, Shephard EG. Role of neutrophil membrane proteases in fibrin degradation. *Blood Coagul Fibrinolysis.* 1995;6(8):693-702.

45. Kannemeier C, Shibamiya A, Nakazawa F, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. *Proc Natl Acad Sci U S A*. 2007;104(15):6388–6393.

46. Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil extracellular traps. *Arterioscler Thromb Vasc Biol.* 2019;39(9): 1724–1738.

47. Stakos DA, Kambas K, Konstantinidis T, et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. *Eur Heart J.* 2015;36(22): 1405-1414.

48. Saraf S, Christopoulos C, Salha I Ben, Stott DJ, Gorog DA. Impaired endogenous thrombolysis in acute coronary syndrome patients predicts cardiovascular death and nonfatal myocardial infarction. *J Am Coll Cardiol.* 2010;55(19):2107-2115.

KEY WORDS fibrinolysis, myocardial infarction, platelet function, thrombosis

APPENDIX For supplemental tables, please see the online version of this paper.