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A B S T R A C T 

Open clusters are key coe v al structures that help us understand star formation, stellar evolution and trace the physical properties 
of our Galaxy. In the past years, the isolation of open clusters from the field has been heavily alleviated by the access to accurate 
large-scale stellar parallaxes and proper motions along a determined line of sight. Still, there are limitations regarding their 
completeness since large-scale studies rely on optical wavelengths. Here, we extend the open clusters sequences towards fainter 
magnitudes complementing the Gaia photometric and astrometric information with near-infrared data from the VVV surv e y. 
We performed a homogeneous analysis on 37 open clusters implementing two coarse-to-fine characterization methods: extreme 
deconvolution Gaussian mixture models coupled with an unsupervised machine learning method on eight-dimensional parameter 
space. The process allowed us to separate the clusters from the field at near-infrared wavelengths. We report an increase of 
∼47 per cent new member candidates on average in our sample (considering only sources with high membership probability 

p � 0.9). This study is the second in a series intended to reveal open cluster near-infrared sequences homogeneously. 

Key words: methods: data analysis – stars: evolution – Galaxy: open clusters and associations: individual. 
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 I N T RO D U C T I O N  

ith the advancement of large-scale photometric and state-of-the-art 
strometric instruments, the field of open clusters has been revisited 
n recent years with significant progress mainly in two aspects: 
ccounting for large cluster samples while ensuring a uniform 

patial distribution of the clusters and homogeneity in terms of 
bservations and data processing. Building upon the first large-scale 
eminal works on open clusters (Dias et al. 2002 ; Kharchenko et al.
013 ) and the Gaia satellite releases ( Gaia DR1/DR2/EDR3, Gaia 
ollaboration 2016 , 2018 , 2021 ), sev eral authors hav e revisited the
haracterization of open clusters following a plethora of techniques 
eading to the most complete and accurate cluster membership 
etermination scenario to date (among others Cantat-Gaudin et al. 
018 , 2019 , 2020 ; Castro-Ginard et al. 2018 , 2019 , 2020 ; Miret-
oig et al. 2019 ; Oli v ares et al. 2019 ; Cantat-Gaudin & Anders
020 ; Galli et al. 2020 ; Dias et al. 2022 ; Tarricq et al. 2022 ). What
s more, recently, Jackson et al. ( 2020 , 2022 ) have built upon the
inematic space, including spectroscopic information from the GES 

nternal data releases 5 and 6, to assign membership probabilities on 
ore than 60 open clusters. 
There is, ho we ver, a front in which the field is still lacking a

roper analysis. Since most of the large-scale studies have been 
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one at optical wavelengths, the near-infrared picture of the open 
lusters have been analysed either on specific single cluster studies 
e.g. Bonatto et al. 2006 ; Rangwal et al. 2019 ; Bisht et al. 2020a , b )
r under the scrutiny of specific stellar populations (among others 
auerhan, Van Dyk & Morris 2011 ; Borissova et al. 2016 , 2018 ,

020 ; de la Fuente et al. 2021 ). In the case of studies with a moderate
umber of clusters (Bica & Bonatto 2005 ; Santos-Silva & Gregorio-
etem 2012 ; Kharchenko et al. 2016 ), the available near-infrared
ata were the Two Micron All-Sky Survey (2MASS, Skrutskie et al.
006 ). In dense fields, such studies lead to source confusion issues. 
The work presented here follows on from Pe ̃ na Ram ́ırez et al.

 2021 , hereafter PR21 ) where refined open cluster census via Gaia
R2, 2MASS data, and high-quality multi-epoch near-infrared data 

rom the VISTA Variables in the V ́ıa L ́actea Surv e y (VVV, Minniti
t al. 2010 ) was combined to provide membership probabilities for
ix open clusters based on their three-dimensional kinematics and 
heir near-infrared photometry. Here, we refine the methodology 
nd extend the study to a new sample of 37 open clusters on the
VV footprint. 
We present the data set used for the membership analysis in Sec-

ion 2 . The methodology implemented to select the cluster members
nd the deri v ation of the membership probabilities is co v ered in
ection 3 . Section 4 presents our main findings unveiling the open
luster near-infrared sequences of 37 open stellar clusters down to 
 s ∼ 14 . 0 mag, and a summary and conclusions are outlined in
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Table 1. Literature-based parameters (Cantat-Gaudin et al. 2020 ; Kounkel, Co v e y & Stassun 2020 ) for our cluster sample. Columns 2–11 contain the spatial 
location, proper motion, parallax, age, extinction, and the number of members with a membership probability above or equal the 90 per cent. 

Name α δ μα∗ μδ � log(Age/yr) a log(Age/yr) b A v 
a A v 

b Number 
[deg] [deg] [mas yr −1 ] [mas yr −1 ] [mas] [mag] [mag] p ≥ 0.9 

Alessi Teutsch 8 180.649 −60.935 − 6.625 ± 0.136 1.630 ± 0.136 0.967 ± 0.049 8.07 7.95 ± 0.12 0.49 0.67 ± 0.10 229 
ASCC 88 256.886 −35.564 0.919 ± 0.164 − 3.282 ± 0.142 1.097 ± 0.060 8.39 7.88 ± 0.22 1.45 1.71 ± 0.15 69 
BH 202 253.779 −40.947 − 1.869 ± 0.125 − 3.802 ± 0.110 0.551 ± 0.052 8.58 8.74 ± 0.19 1.84 2.10 ± 0.19 19 
Basel 18 201.967 −62.306 − 5.008 ± 0.080 − 2.050 ± 0.096 0.508 ± 0.057 7.44 7.72 ± 0.18 0.65 1.25 ± 0.19 14 
Hogg 21 251.414 −47.747 − 0.937 ± 0.132 − 2.206 ± 0.102 0.366 ± 0.060 7.95 8.03 ± 0.37 1.54 2.16 ± 0.29 7 
Lynga 6 241.218 −51.960 − 1.866 ± 0.144 − 2.757 ± 0.098 0.383 ± 0.050 6.49 7.71 ± 0.34 3.51 4.08 ± 0.26 3 
Lynga 9 245.170 −48.523 − 2.559 ± 0.177 − 2.415 ± 0.124 0.359 ± 0.073 8.80 8.72 ± 0.26 2.50 3.36 ± 0.33 216 
NGC 4103 181.628 −61.245 − 6.184 ± 0.117 0.075 ± 0.107 0.473 ± 0.053 7.32 7.68 ± 0.15 0.85 0.95 ± 0.12 190 
NGC 4349 186.048 −61.866 − 7.827 ± 0.159 − 0.296 ± 0.119 0.490 ± 0.036 8.50 8.49 ± 0.09 1.01 1.18 ± 0.12 11 
NGC 4463 187.466 −64.800 − 5.326 ± 0.090 − 0.435 ± 0.094 0.523 ± 0.041 7.46 7.76 ± 0.15 1.53 1.43 ± 0.12 28 
NGC 4609 190.582 −62.995 − 4.870 ± 0.127 − 1.045 ± 0.146 0.660 ± 0.053 7.91 7.72 ± 0.23 0.88 1.20 ± 0.13 163 
NGC 5269 206.147 −62.907 − 4.490 ± 0.078 − 1.918 ± 0.075 0.460 ± 0.036 8.12 8.41 ± 0.15 0.99 1.50 ± 0.12 8 
NGC 5316 208.516 −61.883 − 6.297 ± 0.099 − 1.515 ± 0.119 0.665 ± 0.055 8.22 8.28 ± 0.19 0.92 1.08 ± 0.22 246 
NGC 5381 210.205 −59.578 − 6.034 ± 0.116 − 2.932 ± 0.122 0.379 ± 0.052 8.55 8.59 ± 0.25 1.62 1.90 ± 0.24 213 
NGC 5606 216.946 −59.632 − 4.880 ± 0.082 − 2.897 ± 0.103 0.374 ± 0.040 7.26 7.47 ± 0.14 1.69 1.82 ± 0.09 16 
NGC 5715 220.859 −57.578 − 3.487 ± 0.123 − 2.324 ± 0.114 0.435 ± 0.045 8.73 8.66 ± 0.19 1.68 2.15 ± 0.17 95 
NGC 5925 231.847 −54.515 − 4.319 ± 0.163 − 5.142 ± 0.150 0.679 ± 0.050 8.69 8.47 ± 0.15 1.34 1.64 ± 0.13 239 
NGC 5999 238.046 −56.482 − 3.389 ± 0.094 − 4.216 ± 0.097 0.326 ± 0.039 8.30 8.54 ± 0.12 1.40 1.50 ± 0.15 78 
NGC 6134 246.953 −49.161 2.184 ± 0.211 − 4.483 ± 0.184 0.846 ± 0.062 8.99 8.91 ± 0.15 0.87 1.45 ± 0.18 664 
NGC 6192 250.077 −43.355 1.653 ± 0.190 − 0.188 ± 0.138 0.571 ± 0.058 8.38 8.34 ± 0.15 1.57 2.06 ± 0.14 390 
NGC 6204 251.538 −47.027 − 0.690 ± 0.189 − 0.596 ± 0.182 0.805 ± 0.064 7.97 7.95 ± 0.19 1.13 1.51 ± 0.15 113 
NGC 6268 255.524 −39.721 0.908 ± 0.125 − 0.781 ± 0.119 0.634 ± 0.073 8.30 8.47 ± 0.10 1.19 1.56 ± 0.11 34 
NGC 6568 273.192 −21.612 0.593 ± 0.144 − 1.377 ± 0.131 0.936 ± 0.043 8.94 8.72 ± 0.10 0.67 1.08 ± 0.13 60 
NGC 6583 273.962 −22.143 1.303 ± 0.103 0.110 ± 0.097 0.413 ± 0.045 9.08 8.95 ± 0.14 1.52 2.37 ± 0.32 101 
Pismis 19 217.666 −60.889 − 5.460 ± 0.142 − 3.247 ± 0.210 0.255 ± 0.086 8.92 8.94 ± 0.21 3.66 3.84 ± 0.26 296 
Ruprecht 121 250.436 −46.159 − 1.073 ± 0.137 − 2.569 ± 0.116 0.462 ± 0.041 8.25 8.51 ± 0.30 2.54 2.39 ± 0.26 138 
Ruprecht 128 266.063 −34.879 1.889 ± 0.169 − 1.262 ± 0.137 0.498 ± 0.070 8.98 9.01 ± 0.16 1.92 3.82 ± 0.41 83 
Ruprecht 130 266.900 −30.098 0.477 ± 0.116 − 1.795 ± 0.102 0.389 ± 0.041 8.60 8.77 ± 0.28 2.76 2.83 ± 0.26 20 
Ruprecht 134 268.184 −29.537 − 1.653 ± 0.085 − 2.432 ± 0.100 0.391 ± 0.057 9.22 8.28 ± 0.18 1.15 2.79 ± 0.40 10 
Teutsch 84 256.090 −42.070 − 1.738 ± 0.246 − 1.109 ± 0.244 0.406 ± 0.160 9.02 8.83 ± 0.21 3.48 3.88 ± 0.21 108 
Trumpler 25 261.125 −39.006 0.358 ± 0.150 − 2.120 ± 0.132 0.402 ± 0.059 8.36 8.65 ± 0.23 2.47 2.75 ± 0.30 284 
Trumpler 26 262.126 −29.487 − 0.873 ± 0.129 − 3.082 ± 0.095 0.623 ± 0.064 8.40 8.33 ± 0.15 1.78 2.24 ± 0.20 16 
Trumpler 29 265.347 −40.158 0.489 ± 0.122 − 2.308 ± 0.101 0.673 ± 0.063 7.71 7.93 ± 0.16 0.72 0.92 ± 0.15 51 
Trumpler 30 269.182 −35.298 1.243 ± 0.131 − 2.189 ± 0.117 0.707 ± 0.071 8.64 8.37 ± 0.10 0.81 1.25 ± 0.13 66 
UFMG 1 236.593 −56.792 − 1.630 ± 0.089 − 3.196 ± 0.110 0.360 ± 0.054 8.43 – 2.38 – 2 
UFMG 2 237.585 −55.961 − 4.425 ± 0.143 − 3.048 ± 0.125 0.357 ± 0.082 9.11 – 2.86 – 132 
UFMG 3 238.115 −55.419 − 1.037 ± 0.118 − 2.225 ± 0.120 0.461 ± 0.061 8.29 – 2.25 – 23 

Note. a Values from Cantat-Gaudin & Anders ( 2020 ). b Values from Kounkel et al. ( 2020 ). 
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ection 5 . Appendix A shows a set of plots per each of the clusters
tudied. 

 OBSERVA  T I O NA L  DA  TA  

.1 Open cluster sample 

e selected a set of 37 clusters out of the list of clusters reco v ered
rom the literature and revisited by Cantat-Gaudin et al. ( 2018 ) and
antat-Gaudin & Anders ( 2020 ) using an unsupervised membership
ssignment ensemble (see Section 3 ). These clusters fall within
he VVV footprint, with a known considerable distance and age
pan, and were located at first instance through the coordinates
nd distances reported by Cantat-Gaudin & Anders ( 2020 ). The
urv e ys involv ed are all-sk y, and therefore our spatial co v erage within
he VVV footprint is homogeneous, and the photometric ones are
nly constrained by magnitude completeness. Table 1 presents the
luster names and their fundamental parameters reco v ered from the
iterature. 
NRAS 513, 5799–5813 (2022) 
.2 Multidimensional data sets 

e kept our original purpose as outlined in PR21 : to identify each
pen cluster sequence with the most e xtensiv e dynamical range
ossible in the near-infrared. We have access to the brightest sources
sing 2MASS photometry in the J , H , and K s bandpasses. For fainter
argets we exploited the dynamic range of the VVV surv e y in the J ,
 , and K s bandpasses. 
The VVV surv e y, and its temporal and spatial e xtension the

VVX, are ESO Public Surv e ys targeting the inner disc and
he bulge of the Milky Way. The VVV and VVVX utilize the
ISTA telescope and its main imager, the VISTA InfraRed CAMera

VIRCAM, Emerson, McPherson & Sutherland 2006 ), to obtain
ulti-epoch, infrared photometry. Observations taken with VISTA

re reduced at the Cambridge Astronomy Surv e y Unit (CASU;
t tp://casu.ast .cam.ac.uk/) as part of the VISTA Data Flow System
VDFS; Irwin et al. 2004 ). The latest data release uses v1.5 of their
ipeline. At the bright end the VVV surv e y manages ∼[11.0, 11.0,
1.5, 12.0, 11.0] mag in [ Z , Y , J , H , K s ], at which point detector
on-linearity brings photometric errors o v er 0.1 mag. At the faint

http://casu.ast.cam.ac.uk/
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nd it reaches ∼[18.5, 18.0, 17.5, 16.5, 16.0] mag in those same
andpasses, at which point sky noise is the limiting factor for a
ypical observing sequence. More details about the performance and 
hotometric properties of the data can be obtained in Gonz ́alez- 
ern ́andez et al. ( 2018 ). 
Regarding astrometric measurements, we also combined data from 

wo surv e ys. F or the brightest sources, the near-infrared photometric
ata sets were combined with astrometric information using a 
re-computed nearest-neighbour, proper motion aware, cross-match 
etween 2MASS and the latest release of Gaia 1 to retrieve J , H ,
nd K s magnitudes from 2MASS and the five-parameter astrometric 
olution from Gaia EDR3 (right ascension, declination, proper 
otions in right ascension and declination, and parallax es). F or

he faintest sources, we relied on preliminary data from the VVV 

nfrared Astrometric Catalogue version 2 (VIRAC2; Smith et al. 
n preparation; see Smith et al. 2018 for details of v1). VIRAC2
sed PSF fitting to obtain astrometry and photometry of sources in 
VV observations and VVVX observations of the original VVV 

rea. The preliminary VIRAC2 data used in this work was calibrated 
strometrically against Gaia DR2 (taking into account Gaia proper 
otions and parallaxes), and photometrically against the catalogues 

f Alonso-Garc ́ıa et al. ( 2018 ). Individual detections were mapped
o unique stars using a bespoke pipeline, which involved an iterative 
rocess of five-parameter astrometric solution fitting and remapping 
ntil convergence. 
As in PR21 , our final working product is an astronomical data set in

ight dimensions (five astrometric parameters and three photometric 
nes, J , H , and K s ) for each cluster co v ering an area of five times
heir published r50 value. 2 In the 2MASS/VVV magnitude o v erlap, 
ources present in both catalogues are combined photometrically 
ith an optimal inverse variance weighting. In the VVV/ Gaia o v erlap 

he astrometric parameters of duplicated stars were also combined 
sing an inverse variance weighted average. Since the magnitude 
ange is broad, there is a significant difference in precision between 
he sources, from the brightest to the faintest. On the bright end, the
ominal uncertainty reaches the Gaia precisions of 0.02–0.03 mas 
yr −1 ) in parallax and proper motions (Gaia Collaboration 2021 ), 
hile at K s ∼ 15.0 mag, the uncertainties are under ∼1.0 mas (yr −1 )

n parallax and proper motions. 

 M E T H O D O L O G Y  

he analysis used to determine membership probability here is 
imilar to that described in PR21 ; ho we ver, the cluster tagging and
heir sequence determination have changed in some key aspects to 
ackle a broader mix of cluster ages, distances, and shapes. In our
revious work, we applied the Gaussian Mixture Model (GMM; 
.g. Everitt et al. 2011 ) technique to isolate the clusters from the
eld as a first instance. This technique is based on the assumption

hat the star’s distribution within an o v erdensity can be described
y a superposition of multi v ariate Gaussian distributions (de Souza 
t al. 2017 ). Nevertheless, the technique does not account for the
ncertainties on the parameter space at work. As noted by Jaehnig, 
ird & Holley-Bockelmann ( 2021 ) it is ideal for a GMM to fit an

ntrinsic, underlying distribution rather than noisy discrete data. In 
hat line, we implemented the method developed by Bovy, Hogg & 
 Using the Q3C software: Koposov & Bartunov ( 2006 ). 
 The r 50 value from Cantat-Gaudin & Anders ( 2020 ) is the radius (in degrees) 
rom the cluster centre that encompasses 50 per cent of the members identified 
y the authors. 

i  

s  

c

3

oweis ( 2011 ) in which the observed measurements are deconvolved 
rom their uncertainties and fitting the intrinsic distribution with 
 GMM. The Extreme Deconvolution Gaussian Mixture Model 
XDGMM) has been implemented successfully for the identification 
nd characterization of specific open clusters (Oli v ares et al. 2019 ;
rice-Whelan et al. 2019 ; Jaehnig et al. 2021 ), globular clusters
Vasiliev & Baumgardt 2021 ), and even supernova and host galaxy
opulations (Holoien, Marshall & Wechsler 2017 ). 
The clusters were initially identified purely from their published 

oordinates, proper motions, and parallaxes as on Cantat-Gaudin & 

nders ( 2020 ). All the subsequent analyses co v ered the entire area
f study (5 × r50) per cluster. Once spatially identified each cluster
 α, δ parameter space), the XDGMM was implemented in the three-
imensional parameter space of proper motions and parallaxes ( μα∗, 
δ , � ). In the pre-processing stage, we remo v ed clear outlier sources

n the proper motion space by discarding sources with μα∗ or μδ

easurements more than 10 σ from the cluster proper motion. The 
entral parallax values and their uncertainties were recorded for each 
luster. At this stage, we also discard the sources with photometric
ncertainties abo v e the 0.5 mag in J and K s to remo v e ob vious
purious sources. We used the ASTROML (Vanderplas et al. 2012 )
nd Bovy et al. ( 2011 ) implementations developed by Holoien et al.
 2017 ). 3 XDGMM takes into account the full covariance matrix
epresentation on μα∗, μδ , and � where we considered 10 Gaussian
omponents (and their respectiv e co variance matrices) to describe 
he abo v e-mentioned parameter space. This approach giv es us results
nsensitive to the exact number of Gaussians, as long as it is large
nough to disentangle the background from the members. 

For selecting the Gaussian component that traces the open cluster, 
e followed the prescription given in Jaehnig et al. ( 2021 ) to obtain

he differential entropy information metric (Ahmed & Gokhale 
989 ). It is related to the components covariance as in PR21 but
xtended to account for the dimension of the parameter space, 
herefore giving us a measure of how compact a distribution is
ithin a volume. The component with the lowest differential entropy, 

.e. the most compact Gaussian component, was selected as the 
luster component. XDGMM resampling calculates the individual 
embership probabilities via bootstrap. We recompute component 

ssignments for each star for a total of 200 iterations. Only sources
ith membership probability ( p ≥ 0.9) to the selected cluster 

omponent were considered to our refinement stage. 
At this point, the coherent motion of the conglomerates is assured

ince the input data were already clustered in the three-dimensional 
roper motion-parallax parameter space ( μα∗, μδ , � ). Therefore, 
ur refinement stage was focused on group stars according to their
patial and photometric distribution using the J , H , K s photometry,
nd the spatial positions. To do so, we employed the Unsupervised
hotometric Membership Assignment in Stellar Clusters UPMASK 

Krone-Martins, A. & Moitinho, A. 2014 ) on each cluster component. 
his approach has been successfully applied to identify and charac- 

erize open clusters (Cantat-Gaudin et al. 2018 , 2019 ; PR21 ) and
lso accounts for the uncertainties in the explored parameter space. 
e used the K-MEANS clustering (Forgy 1965 ) partition algorithm 

ith a large k to the data set size guaranteeing at least 25 objects per
roup. For testing whether the distribution of stars within each group
s more concentrated than what is expected for a random fluctuation
n a uniform distribution, we use the total length of a minimum
panning tree (e.g. Graham & Hell 1985 ) and we iterate 100 times per
luster field. At each iteration, the photometry data were randomly 
MNRAS 513, 5799–5813 (2022) 
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Figure 1. Number of high-probability members (membership probabilities p ≥ 90 per cent) per studied cluster in reverse alphabetical order. The black points 
represent the number density of members from the literature (Cantat-Gaudin & Anders 2020 ). The red points represent the number densities we are reporting 
here. The horizontal axis is in logarithmic scale. 
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ampled from the probability distribution function of each star’s
ositional parameters while taking into account uncertainties for
ach variable. The clustering score (i.e. membership probabilities)
or a given source is derived directly from the number of iterations
uring which it was a member of a concentrated group and can also
e interpreted as a membership probability. 
Our final membership probabilities are then based on the eight-

imensional parameter space ( α, δ, μα∗, μδ , � , J , H , K s ) information
f each star and their associated nominal uncertainties. The figures in
ppendix A show the near-infrared sequence for all the explored

lusters, together with their spatial distributions and proper motions.
he full membership list per cluster is available in electronic form

see Section 6 ). 

 DISCUSION  

.1 Cluster parameters 

s pointed out in PR21 , data-driven and unbiased membership
robabilities are required to derive a reliable list of cluster members
nd pursue further studies. High-precision characterization of star
luster’s fundamental parameters, such as age, distance, reddening,
nd total mass, depends on the quality of the cluster membership
etermination. Therefore, we need data sets that are as diverse as
hey are accurate. The decontamination of background interlopers

ust ensure that no additional biases are imposed and that whatever
luster members remain are robust and representative of the cluster
tself. 
NRAS 513, 5799–5813 (2022) 
Using only sources with a membership probability larger than
r equal to 90 per cent, we hav e rederiv ed the median spatial
osition, proper motion, and parallax for each cluster. We used
he mean absolute deviation (from the median), or MAD values
Feigelson & Jogesh 2012 ), to estimate the dispersion of those
arameters. The offset between our recalculated central positions
nd those from literature are minimal and range from −0.04 to
.04 arcmin. We obtained average proper motion values that agree
ithin the uncertainties with the values published in the literature.
he same applies to the parallax values. 
Due to the levity of interstellar extinction in the near-infrared, we

an in this study map the cluster sequences better than the previous
ork based on optical data. From the 37 clusters analysed, the

iterature reports 4435 high-probability members. Here, we surpass
hat number, reaching a total of 9357 high-probability members.
herefore, we report an increase of ∼47 per cent new candidate
embers on average in our sample. This number is in total agreement
ith the increase of new member candidates reported in PR21 . The

mpro v ement in quality of the near-infrared sequences of the clusters
s evident compared with the a vailable near -infrared pass-bands of
he 2MASS surv e y. Fig. 1 sho ws the dif ference in the number of high-
robability members on the studied clusters. As can be seen, most
f the clusters show an increase in their populations except for two
lusters (NGC 6134 and NGC 6192, where we identify less sources
t intermediate magnitudes but increasing the number of highly
robable members towards fainter magnitudes). It is important to
ote that the 90 per cent threshold compared with literature members
elies on fairly similar methodological procedures. We present in
ig. 2 the colour–magnitude diagrams of the clusters with the

art/stac1296_f1.eps
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Figure 2. K s versus J − K s colour–magnitude diagrams of the selected open stellar clusters. UFGM 2 and NGC 4349 are the clusters most highly impacted by 
this study (largest number of new highly probable members). The opposite for ASCC 88 and Ruprecht 130. The black dots correspond to the Cantat-Gaudin & 

Anders ( 2020 ) members with reported probability p ≥ 90 per cent. whereas the high-probability members presented here are represented with red circles. The 
text on the plots shows the cluster name. 
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Figure 3. K s versus J - K s colour–magnitude diagrams for NGC 4349 and 
ASCC 88. The theoretical isochrones are located based on the cluster 
parameters from Cantat-Gaudin et al. ( 2020 ), Kounkel et al. ( 2020 ), and 
this work o v er our catalogue members as black points. 
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ighest and lowest change in number density of high-probability 
embers. For the most impacted clusters, we report 348 new high- 

robability members for UFGM 2, whereas for NGC 4349 at near- 
nfrared wavelengths, we change from 11 highly probable members 
o 316. On the contrary, for ASCC 88, we report an addition of only
1 high-probability members, and for Ruprecht 130, the addition of 
6 new high-probability members on a very diluted cluster sequence. 
ll the cluster sequences are available on Appendix A . 
For each cluster, we compare the absolute sequences in the VISTA 

hotometric system to the models of PARSEC-COLIBRI (Marigo 
t al. 2017 ). We selected the model corresponding to the age derived
y Cantat-Gaudin et al. ( 2020 ). We applied the distance modulus and
he reddening vector based on the distance and the median extinction 
 V from the same study. The reddening vector was transformed 

o A K s 
using A K s 

/A V = 0 . 11802 4 , assuming the total-to-selective
xtinction ratios R J and R K s 

of Gonz ́alez-Fern ́andez et al. ( 2018 ) for
ISTA data. Similarly, we have placed the model tied to the cluster
arameters reported by (Kounkel et al. 2020 ). 
Our reference studies, Cantat-Gaudin et al. ( 2020 ) and Kounkel 

t al. ( 2020 ), used artificial neural networks to derive ages, dis-
ances, and extinctions per cluster. This technique maps the input 
bservables to the target output quantities (age, extinction, and 
istance modulus/log d) through a series of nodes. The nodes are 
rranged in layers that communicate among themselves through 
on-linear functions. The mentioned studies differ in the artificial 
eural network architecture, i.e. the way the nodes and the layers 
re designed refers to the neural network architecture. In the case of
antat-Gaudin et al. ( 2020 ) they used a rectified linear unit (ReLU,

ee their fig. 2), whereas the work of Kounkel et al. ( 2020 , see their
ppendix A) uses a convolutional artificial neural network based on 
he MNIST model (Hoffer, Hubara & Soudry 2018 ). Their trained 
odel (Auriga 5 ) is publicly available and considers inputs that were 

cattered by the errors as statistically comparable. Each realization 
rom the neural network on the same data set is independent (Olney
t al. 2020 ), making it possible to measure scatter between them;
herefore, it reports uncertainties on the output parameters. 

The resulting isochrones (plotted in orange and blue in the 
gures of Section A ) are not al w ays well aligned with our observed
equences. Therefore, we run the Auriga artificial neural network 
n our highly probable members per cluster. 100 iterations of 
ach cluster were passed through the Auriga model to generate the 
arameter errors. We also present the isochrones using the updated 
uriga distance and age determinations and adjusting the reddening. 
 ht tp://st ev.oapd.inaf.it/cgi-bin/cmd 
 https://github.com/mk ounk el/Auriga 

o
T  

a  

S  
he result is presented as red isochrones in Fig. 3 for NGC 4349
nd ASCC 88 as an example; the complete figure set can be found
n Section A . The derived age, distance, reddening, and extinction
alues are presented in Table 2 . 

Adding the new high-probability members helps the isochrone 
odels to trace most of the cluster sequences better. As noted in
R21 , for the vast majority of the clusters, even the fainter end of

he sequences matches the theoretical isochrones. Since we are still 
n the stellar regime at those magnitudes and for the range of cluster
ges explored, we do not expect deviations due to the uncertainties
n the models. That indicates a low rate of interlopers across the
hole magnitude range co v ered in this study. In various cases

BH 202, Lynga 9, NGC 4349, NGC 5381, NGC 5715, NGC 5999,
GC 6568, UFMG 1, UFGM 2), it is reproduced the phenomenon

ound in PR21 for NGC 6259, where we identify a group of high-
robability members at K ∼ 11 mag. Most sources are not identified
s high-probability members at optical wavelengths. On the other 
and, the isochrone location for all Ruprecht clusters plus Teutsch 84
nd Trumpler 26 is rather poor compared with the outlined cluster
equences. As discussed below, this is partly induced by the very
ispersed sequences with large error bars on distance, extinction, 
nd age. All the clusters mentioned earlier are also located in the IV
alactic quadrant (Sagittarius-Carina (Sag-Car) and Scutum arms). 
ecently, Poggio et al. ( 2021 ) made a comparison between their
ap of density variations (built with upper main-sequence stars, 

pen clusters, and classical Cepheids) and the Galactic models of 
aylor & Cordes ( 1993 ) and Reid et al. ( 2019 ). In quadrant IV, the
uthors find a possible inter-arm gap between Sag-Car and the inner
cutum arm. This inter-arm would be closer to the Sun than Taylor &
MNRAS 513, 5799–5813 (2022) 
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Table 2. Derived parameters of our cluster sample. Columns 2–10 contain the spatial location, distance, extinction, age, reddening, mass, and the number of 
members with a membership probability abo v e or equal the 90 per cent derived in this study. 

Name α δ d A v log(Age/yr) E( J − K s ) A K s M Number 
[deg] [deg] [pc] [mag] [mag] [mag] [M �] p ≥ 0.9 

Alessi Teutsch 8 180 .650 − 60 .93 999 ± 19 0.67 ± 0.04 8.51 ± .08 0 .10 0 .08 453 ± 14 399 
ASCC 88 256 .900 − 35 .58 950 ± 27 2.13 ± 0.07 8.60 ± 0.12 0 .32 0 .26 123 ± 3 84 
BH 202 253 .792 − 40 .94 1877 ± 53 2.29 ± 0.07 8.31 ± 0.10 0 .35 0 .28 489 ± 96 336 
Basel 18 201 .979 − 62 .33 2160 ± 96 1.31 ± 0.06 7.16 ± 0.12 0 .20 0 .16 170 ± 17 77 
Hogg 21 251 .380 − 47 .73 2837 ± 104 2.13 ± 0.05 7.40 ± 0.11 0 .32 0 .26 367 ± 231 168 
Lynga 6 241 .220 − 51 .96 2569 ± 127 4.42 ± 0.11 7.39 ± 0.10 0 .67 0 .53 587 ± 118 238 
Lynga 9 245 .173 − 48 .52 2394 ± 87 3.26 ± 0.08 8.51 ± 0.10 0 .50 0 .39 799 ± 25 429 
NGC 4103 181 .634 − 61 .24 2051 ± 92 1.20 ± 0.05 7.72 ± 0.11 0 .18 0 .14 893 ± 16 438 
NGC 4349 186 .091 − 61 .86 2234 ± 45 1.59 ± 0.08 8.11 ± 0.11 0 .24 0 .19 636 ± 56 395 
NGC 4463 187 .473 − 64 .80 2064 ± 48 1.85 ± 0.07 7.84 ± 0.14 0 .28 0 .22 254 ± 8 127 
NGC 4609 190 .554 − 62 .99 1512 ± 33 1.32 ± .06 7.96 ± 0.08 0 .20 0 .16 466 ± 6 306 
NGC 5269 206 .146 − 62 .91 2106 ± 66 1.72 ± 0.07 7.74 ± 0.14 0 .26 0 .21 211 ± 7 105 
NGC 5316 208 .508 − 61 .88 1507 ± 32 1.04 ± 0.04 8.23 ± 0.05 0 .16 0 .12 603 ± 32 429 
NGC 5381 210 .209 − 59 .58 2777 ± 82 2.03 ± 0.09 8.20 ± 0.13 0 .31 0 .24 876 ± 58 453 
NGC 5606 216 .932 − 59 .64 2717 ± 122 2.14 ± 0.10 6.85 ± 0.12 0 .33 0 .26 282 ± 38 94 
NGC 5715 220 .874 − 57 .57 2279 ± 54 2.58 ± 0.07 8.17 ± 0.12 0 .39 0 .31 349 ± 11 173 
NGC 5925 231 .806 − 54 .52 1470 ± 27 1.89 ± 0.07 8.40 ± 0.10 0 .29 0 .23 517 ± 19 344 
NGC 5999 238 .058 − 56 .49 3106 ± 101 2.12 ± 0.06 7.69 ± 0.10 0 .32 0 .25 856 ± 33 300 
NGC 6134 246 .941 − 49 .16 1141 ± 36 1.49 ± 0.05 8.93 ± 0.05 0 .23 0 .18 681 ± 19 594 
NGC 6192 250 .085 − 43 .35 1844 ± 57 2.32 ± 0.07 8.17 ± 0.09 0 .35 0 .28 633 ± 46 400 
NGC 6204 251 .543 − 47 .02 1218 ± 47 1.56 ± 0.14 8.37 ± 0.18 0 .24 0 .19 288 ± 22 231 
NGC 6268 255 .528 − 39 .71 1699 ± 47 1.56 ± 0.07 8.21 ± 0.09 0 .24 0 .19 422 ± 13 257 
NGC 6568 273 .198 − 21 .62 1033 ± 19 1.44 ± 0.07 8.53 ± 0.06 0 .22 0 .17 283 ± 14 196 
NGC 6583 273 .960 − 22 .14 2607 ± 80 2.87 ± 0.07 8.61 ± 0.08 0 .44 0 .35 420 ± 17 204 
Pismis 19 217 .670 − 60 .89 3194 ± 182 3.76 ± 0.15 8.81 ± 0.12 0 .57 0 .45 955 ± 130 563 
Ruprecht 121 250 .428 − 46 .17 2524 ± 176 2.78 ± 0.14 7.37 ± 0.32 0 .42 0 .33 1194 ± 100 416 
Ruprecht 128 266 .064 − 34 .88 2062 ± 111 3.04 ± 0.11 7.86 ± 0.19 0 .46 0 .37 346 ± 20 150 
Ruprecht 130 266 .900 − 30 .09 3092 ± 184 3.91 ± 0.08 7.29 ± 0.10 0 .60 0 .47 243 ± 24 56 
Ruprecht 134 268 .181 − 29 .54 1939 ± 165 2.66 ± 0.12 8.31 ± 0.27 0 .40 0 .32 331 ± 32 151 
Teutsch 84 256 .097 − 42 .06 3083 ± 160 5.36 ± 0.14 7.53 ± 0.15 0 .82 0 .64 562 ± 7 184 
Trumpler 25 261 .125 − 39 .01 2238 ± 108 3.01 ± 0.10 8.26 ± 0.17 0 .46 0 .36 1172 ± 229 666 
Trumpler 26 262 .122 − 29 .48 1679 ± 72 2.43 ± 0.06 7.52 ± 0.14 0 .37 0 .29 321 ± 14 134 
Trumpler 29 265 .343 − 40 .14 1582 ± 50 1.30 ± 0.05 7.93 ± 0.09 0 .20 0 .16 331 ± 20 200 
Trumpler 30 269 .176 − 35 .30 1336 ± 26 1.63 ± 0.06 8.18 ± 0.09 0 .25 0 .20 304 ± 30 171 
UFMG 1 236 .599 − 56 .79 2841 ± 134 2.92 ± 0.11 8.03 ± 0.16 0 .44 0 .35 475 ± 11 189 
UFMG 2 237 .590 − 55 .96 2326 ± 76 3.55 ± 0.11 8.63 ± 0.09 0 .54 0 .43 909 ± 62 520 
UFMG 3 238 .124 − 55 .41 2044 ± 58 2.87 ± 0.08 8.00 ± 0.22 0 .44 0 .35 389 ± 47 208 
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ordes ( 1993 ) and Reid et al. ( 2019 ) models suggest. Alternatively,
he authors mentioned the possibility of an additional branch off the
ag-Car arm. Given this scenario, we a v oid manually reallocating

he cluster sequences on that specific region, and a dedicated study
ill address the phenomenon in future work. 
Since our membership determination isolates a unique compact

aussian distribution among the field, we rule out the inclusion of
ther known clusters and cluster candidates in the surv e yed cluster
rea. Moreo v er, giv en that the cluster-selected Gaussian component
as allowed full covariance, we did not restrict the study to a specific

luster shape. Recent studies have explored the open cluster shapes
 xtensiv ely in our Galaxy (Hu, Zhang & Esamdin 2021 ; Pang et al.
021 ), leaving evident the enormous diversity of cluster forms. 
The following presents the comparison of our results with those

n the literature. For the broad comparison of our results with the
iterature, we have focused on the studies of Cantat-Gaudin et al.
 2020 ) and Kounkel et al. ( 2020 ). We must first point out that our
embership probabilities are ske wed to wards high values since we

dopt only the highest members probabilities from the XDGMM pro-
edure as input to the spatial/photometric membership refinement.
he o v erall parameter comparison can be seen in Fig. 4 . The bulk of
NRAS 513, 5799–5813 (2022) 

i  
he Auriga ages ranges from 14 to 870 Myr. Only NGC 5606 reports a
oung age of about 7 Myr where the Auriga model can o v erestimate
he age. As can be seen, the most discrepant ages are linked to
he most extinct clusters or to those where there is no agreement
mong published values (e.g. Ruprecht 130, Ruprecht 134, Lynga 6,
eutsch 84, ASCC 88). For sources below ∼100 Myr we report
ounger ages with the inclusion of the newly identified members.
n terms of extinction values, the most distant clusters have the most
istinct values, which is expected given the near-infrared nature of
ur data set. The general trend is that we report larger extinction
alues than those available in the literature by about 0.5 mag. We
o v er cluster distances ranging from about 0.9 to 3.2 kpc. We found
arger distance values for those clusters beyond ∼2.5 kpc. The o v erall
istance v alues dif fer for the clusters with the literature’s most sig-
ificant uncertainties (e.g. Ruprecht 130, Ruprecht 134, Pismis 19). 

.2 Cluster total mass 

ollowing the methodology outlined on PR21 , each cluster’s density
rofile was integrated to obtain the total number of stars contained
n the cluster’s main sequence. We determined the completeness



The VVV open cluster project II 5805 

Figure 4. Difference between cluster literature values (age, extinction, distance) and the calculated parameters presented here. The filled circles relate to 
Cantat-Gaudin et al. ( 2020 ) values, filled diamonds to those from Kounkel et al. ( 2020 ). The symbols are colour coded based on the explored parameters. 
UFGM 1, UFGM 2, and UFGM 3 are not included. 
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agnitude for each cluster as the faintest magnitude at which the 
umber of sources per interval of magnitude does not deviate from an
ncreasing distribution. Assuming the central values of Kroupa mass 
unction (Kroupa 2001 ) and the PARSEC-COLIBRI isochrone on the 
ederived Auriga parameters, we extended the counting, adding all 
he masses of stars down to the stellar/substellar frontier (0.08 M �).
he evolved sources out from the main sequence were also linked 

o the best-fitting position on the corresponding isochrone. The 
embership probability of each source weighted the mass values. 
The studied clusters have total masses in the range ∼120–

000 M �, and the values are presented in Table 2 . The adopted
ncertainties consider the density profiles with and without weighting 
he mass values by each source’s membership probability. 

 C O N C L U S I O N S  

his study unveils the near-infrared sequences of 37 open clusters 
ocated between ∼0.9 and ∼3.2 kpc. We employed a data-driven 
pproach tailored towards disentangling the cluster population from 

eld stars. The cluster members search comprises two main steps: 
 distribution-aware tagging of the central values and uncertainties 
n the astrometric space and a cluster membership assignment 
ased on positional and photometric similarity. Our methodology 
as allowed us to disentangle the cluster populations from their 
ense backgrounds. Our study increased cluster membership by 
47 per cent on average; this increase in efficiency at recovering
luster members builds up our knowledge on the near-infrared 
luster sequences. The measured physical parameters of the clusters 
enerally agree with the literature v alues. Ho we ver, we update their
xtinction values and total masses by unveiling a large portion of
he low-to-intermediate-mass population with a native near-infrared 
ata-driven approach. In the near future a similar method can be
pplied to large samples of clusters to be optically disco v ered by the
era Rubin telescope (LSST Science Collaboration et al. 2009 ). 
The so-called Gaia revolution has changed the picture of our 

alaxy in just a few years. Now we count in the thousands the number
f o v erdensities in our Galaxy that diverse machine learning methods
ave tagged as open clusters. Here, we show that the synergies with
ther instruments/data sets, such as photometry and astrometry from 

ISTA, allow us to unveil the near-infrared counterpart of each 
tudied cluster. We have taken advantage of high-quality parallaxes 
nd deep near-infrared photometry, and machine learning methods to 
nable us to obtain clean near-infrared colour–magnitude diagrams 
rom which astrophysical parameters can be inferred. 
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The VVV open cluster project II 5807 

Figure A1. Left: Spatial distribution of the cluster members. Centre-left: K s versus J - K s colour–magnitude diagram of the studied open stellar clusters. The black 
dots correspond to the Cantat-Gaudin & Anders ( 2020 ) members with reported probability p ≥ 90 per cent, whereas the sources presented here are represented 
with red circles. Centre-right: K s versus J - K s colour–magnitude diagrams along with the theoretical isochrones located based on the cluster parameters from 

Cantat-Gaudin & Anders ( 2020 ), Kounkel et al. ( 2020 ), and this work o v er our catalogue members as black points. All the sequences preserved a common scale. 
Right: Members proper motion distribution colour-coded based on their parallax value. Mean proper motions in right ascension and declination are plotted with 
dotted lines. Only sources with membership probabilities p ≥ 90 per cent are shown in all the diagrams. The text on the plots shows the cluster name. 
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Figure A2. Same as Fig. A1 . 
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Figure A3. Same as Fig. A1 . 
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Figure A4. Same as Fig. A1 . 
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Figure A5. Same as Fig. A1 . 
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Figure A6. Same as Fig. A1 . 
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Figure A7. Same as Fig. A1 . 
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