Show simple item record

dc.contributor.authorNishimura, Nobuya
dc.contributor.authorFischer, Tobias
dc.contributor.authorThielemann, Friedrich-Karl
dc.contributor.authorFroehlich, Carla
dc.contributor.authorHempel, Matthias
dc.contributor.authorKaeppeli, Roger
dc.contributor.authorMartinez-Pinedo, Gabriel
dc.contributor.authorRauscher, T.
dc.contributor.authorSagert, Irina
dc.contributor.authorWinteler, Christian
dc.date.accessioned2013-04-16T07:29:47Z
dc.date.available2013-04-16T07:29:47Z
dc.date.issued2012-10-10
dc.identifier.citationNishimura , N , Fischer , T , Thielemann , F-K , Froehlich , C , Hempel , M , Kaeppeli , R , Martinez-Pinedo , G , Rauscher , T , Sagert , I & Winteler , C 2012 , ' Nucleosynthesis in core-collapse supernova explosions triggered by a quark-hadron phase transition ' , The Astrophysical Journal , vol. 758 , no. 1 , 9 . https://doi.org/10.1088/0004-637X/758/1/9
dc.identifier.issn0004-637X
dc.identifier.urihttp://hdl.handle.net/2299/10413
dc.description.abstractWe explore heavy-element nucleosynthesis in the explosion of massive stars that are triggered by a quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. The present study is based on general-relativistic radiation hydrodynamics simulations with three-flavor Boltzmann neutrino transport in spherical symmetry, which utilize a quark-hadron hybrid equation of state based on the MIT bag model for strange quark matter. The quark-hadron phase transition inside the stellar core forms a shock wave propagating toward the surface of the proto-neutron star. This shock wave results in an explosion and ejects neutron-rich matter from the outer accreted layers of the proto-neutron star. Later, during the cooling phase, the proto-neutron star develops a proton-rich neutrino-driven wind. We present a detailed analysis of the nucleosynthesis outcome in both neutron-rich and proton-rich ejecta and compare our integrated nucleosynthesis with observations of the solar system and metal-poor stars. For our standard scenario, we find that a "weak" r-process occurs and elements up to the second peak (A similar to 130) are successfully synthesized. Furthermore, uncertainties in the explosion dynamics could barely allow us to obtain the strong r-process which produces heavier isotopes, including the third peak (A similar to 195) and actinide elements.en
dc.format.extent13
dc.format.extent1095802
dc.language.isoeng
dc.relation.ispartofThe Astrophysical Journal
dc.subjectCOMPACT STARS
dc.subjectMATTER
dc.subjectsupernovae: general
dc.subjectR-PROCESS NUCLEOSYNTHESIS
dc.subjectMASSIVE STARS
dc.subjectSTAR MERGERS
dc.subjectnuclear reactions, nucleosynthesis, abundances
dc.subjectHYDRODYNAMICS
dc.subjectEQUATION
dc.subjectstars: neutron
dc.subjectdense matter
dc.subjectEJECTA
dc.subjectNEUTRINO-DRIVEN WINDS
dc.subjectEVOLUTION
dc.titleNucleosynthesis in core-collapse supernova explosions triggered by a quark-hadron phase transitionen
dc.contributor.institutionCentre for Astrophysics Research
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1088/0004-637X/758/1/9
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record