Show simple item record

dc.contributor.authorEichler, M.
dc.contributor.authorArcones, A.
dc.contributor.authorKelic, A.
dc.contributor.authorKorobkin, O.
dc.contributor.authorLanganke, K.
dc.contributor.authorMarketin, T.
dc.contributor.authorMartinez-Pinedo, G.
dc.contributor.authorPanov, I.
dc.contributor.authorRauscher, T.
dc.contributor.authorRosswog, S.
dc.contributor.authorWinteler, C.
dc.contributor.authorZinner, N. T.
dc.contributor.authorThielemann, F. K.
dc.date.accessioned2015-09-07T11:28:44Z
dc.date.available2015-09-07T11:28:44Z
dc.date.issued2015-07-15
dc.identifier.citationEichler , M , Arcones , A , Kelic , A , Korobkin , O , Langanke , K , Marketin , T , Martinez-Pinedo , G , Panov , I , Rauscher , T , Rosswog , S , Winteler , C , Zinner , N T & Thielemann , F K 2015 , ' The Role of Fission in Neutron Star Mergers and Its Impact on the r-Process Peaks ' , The Astrophysical Journal , vol. 808 , no. 1 , 30 . https://doi.org/10.1088/0004-637X/808/1/30
dc.identifier.issn0004-637X
dc.identifier.otherPURE: 9193299
dc.identifier.otherPURE UUID: cef21356-d8e9-4570-9799-b0a600063203
dc.identifier.otherScopus: 84940101917
dc.identifier.urihttp://hdl.handle.net/2299/16381
dc.description.abstractComparing observational abundance features with nucleosynthesis predictions of stellar evolution or explosion simulations, we can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. We test the abundance features of r-process nucleosynthesis calculations for the dynamical ejecta of neutron star merger simulations based on three different nuclear mass models: The Finite Range Droplet Model, the (quenched version of the) Extended Thomas Fermi Model with Strutinsky Integral, and the Hartree-Fock-Bogoliubov mass model. We make use of corresponding fission barrier heights and compare the impact of four different fission fragment distribution models on the final r-process abundance distribution. In particular, we explore the abundance distribution in the second r-process peak and the rare-earth sub-peak as a function of mass models and fission fragment distributions, as well as the origin of a shift in the third r-process peak position. The latter has been noticed in a number of merger nucleosynthesis predictions. We show that the shift occurs during the r-process freeze-out when neutron captures and β-decays compete and an (n,γ)-(γ,n) equilibrium is no longer maintained. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of β-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.en
dc.format.extent13
dc.language.isoeng
dc.relation.ispartofThe Astrophysical Journal
dc.subjectabundancesstars: neutron
dc.subjectnuclear reactions
dc.subjectnucleosynthesis
dc.subjectSpace and Planetary Science
dc.subjectAstronomy and Astrophysics
dc.titleThe Role of Fission in Neutron Star Mergers and Its Impact on the r-Process Peaksen
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.contributor.institutionScience & Technology Research Institute
dc.description.statusPeer reviewed
rioxxterms.versionAM
rioxxterms.versionofrecordhttps://doi.org/10.1088/0004-637X/808/1/30
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record