Show simple item record

dc.contributor.authorGaczkowski, B.
dc.contributor.authorPreibisch, T.
dc.contributor.authorStanke, T.
dc.contributor.authorKrause, M.~G.~H.
dc.contributor.authorBurkert, A.
dc.contributor.authorDiehl, R.
dc.contributor.authorFierlinger, K.
dc.contributor.authorKroell, D.
dc.contributor.authorNgoumou, J.
dc.contributor.authorRoccatagliata, V.
dc.date.accessioned2017-07-05T15:57:55Z
dc.date.available2017-07-05T15:57:55Z
dc.date.issued2015-12-01
dc.identifier.citationGaczkowski , B , Preibisch , T , Stanke , T , Krause , M G H , Burkert , A , Diehl , R , Fierlinger , K , Kroell , D , Ngoumou , J & Roccatagliata , V 2015 , ' Squeezed between shells? The origin of the Lupus I molecular cloud. APEX/LABOCA, Herschel, and Planck observations ' , Astronomy & Astrophysics , vol. 584 , A36 . https://doi.org/10.1051/0004-6361/201526527
dc.identifier.issn0004-6361
dc.identifier.otherBibtex: urn:d6ee6ccca39400564cbbca6d207aadf6
dc.identifier.otherORCID: /0000-0002-9610-5629/work/63687367
dc.identifier.urihttp://hdl.handle.net/2299/18785
dc.descriptionB. Gaczkowski et al., “Squeezed between shells? The origin of the Lupus I molecular cloud APEX/LABOCA, Herschel, and Planck observations”, Astronomy & Astrophysics, Vol. 584, December 2015. This version of record is available online at: https://doi.org/10.1051/0004-6361/201526527 Reproduced with Permission from Astronomy and Astrophysics, © ESO, 2015
dc.description.abstractContext. The Lupus I cloud is found between the Upper Scorpius (USco) and the Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. Aims. We want to study how collisions of large-scale interstellar gas flows form and influence new dense clouds in the ISM. Methods. We performed LABOCA continuum sub-mm observations of Lupus I that provide for the first time a direct view of the densest, coldest cloud clumps and cores at high angular resolution. We complemented these data with Herschel and Planck data from which we constructed column density and temperature maps. From the Herschel and LABOCA column density maps we calculated probability density functions (PDFs) to characterize the density structure of the cloud. Results. The northern part of Lupus I is found to have, on average, lower densities, higher temperatures, and no active star formation. The center-south part harbors dozens of pre-stellar cores where density and temperature reach their maximum and minimum, respectively. Our analysis of the column density PDFs from the Herschel data show double-peak profiles for all parts of the cloud, which we attribute to an external compression. In those parts with active star formation, the PDF shows a power-law tail at high densities. The PDFs we calculated from our LABOCA data trace the denser parts of the cloud showing one peak and a power-law tail. With LABOCA we find 15 cores with masses between 0.07 and 1.71 M⊙ and a total mass of ≈8 M⊙. The total gas and dust mass of the cloud is ≈164 M⊙ and hence ~5% of the mass is in cores. From the Herschel and Planck data we find a total mass of ≈174 M⊙ and ≈171 M⊙, respectively. Conclusions. The position, orientation, and elongated shape of Lupus I, the double-peak PDFs and the population of pre-stellar and protostellar cores could be explained by the large-scale compression from the advancing USco H I shell and the UCL wind bubble.en
dc.format.extent14
dc.format.extent4121442
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysics
dc.subjectstars: formation, stars: protostars, ISM: bubbles, ISM: clouds, dust, extinction
dc.titleSqueezed between shells? The origin of the Lupus I molecular cloud. APEX/LABOCA, Herschel, and Planck observationsen
dc.contributor.institutionCentre for Astrophysics Research (CAR)
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1051/0004-6361/201526527
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record