An Extreme Starburst in the Core of a Rich Galaxy Cluster at z = 1.7
Author
Webb, T.
Noble, A.
DeGroot, A.
Wilson, G.
Muzzin, A.
Bonaventura, N.
Cooper, M.
Delahaye, A.
Foltz, R.
Lidman, C.
Surace, J.
Yee, H.~K.~C.
Chapman, S.
Dunne, L.
Geach, J.
Hayden, B.
Hildebrandt, H.
Huang, J.
Pope, A.
Smith, M.~W.~L.
Perlmutter, S.
Tudorica, A.
Attention
2299/21056
Abstract
We have discovered an optically rich galaxy cluster at z = 1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey, and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of Ngal (500 kpc) = 30 ± 8 implies a total halo mass, within 500 kpc, of ~3.8 ± 1.2 × 1014 M⊙, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada–France–Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope. The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with LIR = 6.2 ± 0.9 × 1012 L⊙. The detection of polycyclic aromatic hydrocarbons at z = 1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ~860 ± 130 M⊙ yr−1. The optical source corresponding to the IR emission is likely a chain of >10 individual clumps arranged as "beads on a string" over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy (BCG) imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.
Publication date
2015-08-21Published in
The Astrophysical JournalPublished version
https://doi.org/10.1088/0004-637X/809/2/173Other links
http://hdl.handle.net/2299/21056Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ... -
Galaxy Zoo: the fundamentally different co-evolution of supermassive black holes and their early- and late-type host galaxies
Schawinski, K.; Urry, C.M.; Virani, S.; Coppi, P.; Bamford, S.; Treister, E.; Lintott, C.; Sarzi, M.; Keel, W.; Kaviraj, S.; Cardamone, C.; Masters, K.L.; Ross, N.P.; Andreescu, D.; Murray, P.; Nichol, R.C.; Raddick, M.J.; Slosar, A.; Szalay, A.; Thomas, D.; Vandenberg, J. (2010)We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus ...