Show simple item record

dc.contributor.authorZhang, Jiangyun
dc.contributor.authorLi, Xinxi
dc.contributor.authorZhang, Guoqing
dc.contributor.authorWu, Hongwei
dc.contributor.authorShao, Dan
dc.contributor.authorGe, Xin
dc.contributor.authorHuang, Qiqiu
dc.contributor.authorZhen, Zhicheng
dc.contributor.authorChen, Xuanzhuang
dc.date.accessioned2022-12-09T13:32:24Z
dc.date.available2022-12-09T13:32:24Z
dc.date.issued2021-09-19
dc.identifier.citationZhang , J , Li , X , Zhang , G , Wu , H , Shao , D , Ge , X , Huang , Q , Zhen , Z & Chen , X 2021 , ' Experimental investigations on the correlations between the structure and thermal-electrochemical properties of over-discharged ternary/Si-C power batteries ' , International Journal of Energy Research , vol. 46 , no. 2 . https://doi.org/10.1002/er.7274
dc.identifier.issn0363-907X
dc.identifier.urihttp://hdl.handle.net/2299/25944
dc.description© 2021 John Wiley & Sons Ltd. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1002/er.7274
dc.description.abstractThe thermal safety of power lithium-ion batteries(LIBs) has seriously affected the booming development of electric vehicles (EVs). Especially, owing to the requirement of high energy density, thermal runaway (TR) easily occurs in LIBs, resulting in a higher heat generation rate. Over-discharging is recognized as a common cause for TR. In the present research, the correlations between the structure and thermal-electrochemical properties of an over-discharged ternary/Si-C battery at room and high temperatures were investigated. The heat generation mechanisms of the batteries due to the maximum surface temperature and peak temperature difference variations during fast charging and discharging processes were investigated. Moreover, the electrochemical performances parameters of the batteries, such as voltage changing trend, discharge time, discharge capacity, internal resistance, electrochemical impedance spectroscopy (EIS) spectra, were analyzed. When the battery was discharged at 2.0C and 55°C, its maximum temperature and highest temperature difference reached 91.34°C and 13.24°C, respectively, finally resulting in a sharp decline in electrochemical performance. Furthermore, the root reasons for performance degradation and heat generation intensification of the over-discharged battery (ODB) were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The cause of the aforementioned phenomenon is due to irreversible damage of the electrode materials. This research not only reveals the relevant relationship between the thermal behavior and the microscopic structure of the over-discharged ternary/Si-C battery under various temperature conditions but also provides valuable insights for improving the safety of LIBs modules even packs.en
dc.format.extent13
dc.format.extent4766861
dc.language.isoeng
dc.relation.ispartofInternational Journal of Energy Research
dc.titleExperimental investigations on the correlations between the structure and thermal-electrochemical properties of over-discharged ternary/Si-C power batteriesen
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionEnergy and Sustainable Design Research Group
dc.contributor.institutionCentre for Climate Change Research (C3R)
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1002/er.7274
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record