Show simple item record

dc.contributor.authorLi, Xiaosong
dc.contributor.authorSun, Jingru
dc.contributor.authorMa, Wenjing
dc.contributor.authorSun, Yichuang
dc.contributor.authorWang, Chunhua
dc.contributor.authorZhang, Jiliang
dc.date.accessioned2024-03-25T13:32:27Z
dc.date.available2024-03-25T13:32:27Z
dc.date.issued2024-01-25
dc.identifier.citationLi , X , Sun , J , Ma , W , Sun , Y , Wang , C & Zhang , J 2024 , ' Adaptive Biomimetic Neuronal Circuit System Based on Myelin Sheath Function ' , IEEE Transactions on Consumer Electronics . https://doi.org/10.1109/TCE.2024.3356563
dc.identifier.issn1558-4127
dc.identifier.urihttp://hdl.handle.net/2299/27552
dc.description© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/TCE.2024.3356563
dc.description.abstractBrain-inspired neuromorphic computing architectures are receiving significant attention in the consumer electronics field owing to their low power consumption, high computational capacity, and strong adaptability, where highly biomimetic circuit design is at the core of neuromorphic network research. Myelin sheaths are crucial cellular components in building stable circuits in biological neurons, capable of adaptively adjusting the conduction speed of neural signals. However, current research on neuronal circuits relies on simplified mathematical models and overlooks the adaptive functionality of myelin sheaths. This paper is based on the dynamic mechanism of myelination, utilizing physical devices such as memristors and voltage-controlled variable capacitors to simulate the physiological functions of myelin sheaths, and other organelles. Furthermore, adaptive biomimetic neuronal circuit system (ABNCS) is constructed by connecting various devices according to the physiological structure of neurons. PSpice simulations show that the ABNCS can adjust its parameters autonomously as the number of action potentials (APs) increase, which modifies the neuron’s activation criteria and firing rate. Through circuit experiments, PSpice simulations were further validated. Implementing myelin sheath functions in the neuronal circuit improves adaptability and reduces power consumption, and when combined with artificial synapses to construct neural networks, can form more stable neural circuits.en
dc.format.extent1
dc.format.extent10417933
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Consumer Electronics
dc.titleAdaptive Biomimetic Neuronal Circuit System Based on Myelin Sheath Functionen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionCentre for Future Societies Research
dc.contributor.institutionCommunications and Intelligent Systems
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1109/TCE.2024.3356563
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record