Show simple item record

dc.contributor.authorWood, Daniel G.
dc.contributor.authorBrown, Marc
dc.contributor.authorJones, Stuart A.
dc.date.accessioned2011-03-17T14:46:58Z
dc.date.available2011-03-17T14:46:58Z
dc.date.issued2011-02-14
dc.identifier.citationWood , D G , Brown , M & Jones , S A 2011 , ' Controlling barrier penetration via exothermic iron oxidation ' , International Journal of Pharmaceutics , vol. 404 , no. 1-2 , pp. 42-48 . https://doi.org/10.1016/j.ijpharm.2010.10.047
dc.identifier.issn0378-5173
dc.identifier.otherPURE: 183137
dc.identifier.otherPURE UUID: ef14dd69-6bc0-4f03-8556-c760c1ea572c
dc.identifier.otherdspace: 2299/5502
dc.identifier.otherWOS: 000289220400006
dc.identifier.otherScopus: 78650677693
dc.identifier.urihttp://hdl.handle.net/2299/5502
dc.descriptionOriginal article can be found at: http://www.sciencedirect.com Copyright Elsevier [Full text of this article is not available in the UHRA]
dc.description.abstractExothermic iron oxidation is an elegant means to generate heat, with the potential to modulate barrier penetration if reaction kinetics can be controlled. This aim of this study was to gain a fundamental understanding of how these temperature change kinetics influenced barrier diffusion rate. Lidocaine transport through a hydrophilic carboxymethyl cellulose (CMC) gel was compared using two rapid iron oxidation reactions initiated by water (ExoRap50, Tmax—47.7 ± 0.6 °C, tmax—3.3 ± 0.6 min, ExoRap60, Tmax—60.4 ± 0.3 °C, tmax—9.3 ± 0.6 min) and a slower reaction initiated by oxygen (ExoSl45 Tmax—ca. 44 °C, tmax ca. 240 min). Temperature change induced by the oxygen initiated reaction (ExoSl45) was almost double those initiated by water (over 4 h), but lidocaine diffusion was approximately 4 times higher for the latter (ExoRap50, 555.61 ± 22.04 μg/cm2/h; ExoRap60, 663.1 ± 50.95 μg/cm2/h; compared to ExoSl45, 159.36 ± 29.44 μg/cm2/h). The large influence of temperature change kinetics on lidocaine diffusion suggested that transport was heavily dependent on temperature induced structural changes of the barrier. CMC, like many polymers adsorbs more water when exposed to moderate increases in temperature and this appeared to be a critical determinant of lidocaine barrier diffusion rate.en
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofInternational Journal of Pharmaceutics
dc.subjectIron oxidation
dc.subjectDiffusion
dc.subjectLidocaine
dc.subjectHeat
dc.subjectKinetics
dc.subjectHydrophilic matrix
dc.subjectHUMAN STRATUM-CORNEUM
dc.subjectPERCUTANEOUS-ABSORPTION
dc.subjectSYSTEM
dc.subjectHEAT
dc.subjectMECHANISM
dc.subjectSKIN
dc.subjectTEMPERATURE
dc.subjectSTABILITY
dc.subjectMEMBRANES
dc.subjectKINETICS
dc.titleControlling barrier penetration via exothermic iron oxidationen
dc.contributor.institutionHealth & Human Sciences Research Institute
dc.contributor.institutionSchool of Life and Medical Sciences
dc.contributor.institutionDepartment of Pharmacy
dc.contributor.institutionCentre for Research into Topical Drug Delivery and Toxicology
dc.contributor.institutionPharmaceutics
dc.contributor.institutionSkin and Nail Group
dc.contributor.institutionAirway Group
dc.contributor.institutionBioadhesive Drug Delivery Group
dc.contributor.institutionNanopharmaceutics
dc.contributor.institutionPharmaceutical Analysis and Product Characterisation
dc.contributor.institutionToxicology
dc.description.statusPeer reviewed
rioxxterms.versionofrecordhttps://doi.org/10.1016/j.ijpharm.2010.10.047
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record