University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        D, E, and F layers in the daytime at high-latitude terminator ionosphere of Mars : Comparison with Earth's ionosphere using COSMIC data

        Author
        Haider, S.A.
        Abdu, M.A.
        Batista, I.S.
        Sobral, J.H.
        Luan, X.
        Kallio, E.
        Maguire, W.C.
        Verigin, M.I.
        Singh, V.
        Attention
        2299/10117
        Abstract
        We report the first model result for ion production rates and densities of positive ions, negative ions, and electrons in the dayside Martian ionosphere from 0 to 220 km. These calculations are made at solar zenith angle 77° for low solar activity periods. The calculated electron density is compared with the radio occultation measurements made by Mars Global Surveyor (MGS) and Mars 4/5 on Mars and by Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) on Earth. Our calculation suggests that the daytime ionosphere of Mars can be divided into D, E, and F layers at altitude ranges ̃25-35 km, ̃100-112 km, and ̃125-145 km with the concentrations 7 × 10 ... cm ... , 2.4 × 10 ... cm ... , and 8.4 × 10 ... cm ... owing to the impact of galactic cosmic rays, X rays (10-90 Å), and solar EUV (90-1026 Ä) radiations, respectively. The water cluster ions H ... O ... (H ... O) ... , NO ... -(H2O)n, and CO ... -(H ... O)n are dominated in the D region, while NO ... , CO .... , and O ... are major ions in the E and F regions. The calculated E and F peak heights are in good agreement with MGS observation. The value of D peak density is lowered by 1 and 2 orders of magnitude from the measurements on Mars and Earth, respectively. The height of F layer peak is lower by factor of 1.8 in the Martian ionosphere as compared to that observed in the ionosphere of Earth. E regions are created at nearly the same heights in the ionospheres of both planets, but the layer thickness is considerably less on Mars than on Earth. This implies that solar EUV energy is deposited within smaller-altitude range in the upper ionosphere of Mars as compared to the corresponding altitude range in the upper ionosphere of Earth.
        Publication date
        2009-03-01
        Published in
        Journal of Geophysical Research
        Published version
        https://doi.org/10.1029/2008JA013709
        Other links
        http://hdl.handle.net/2299/10117
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan