Show simple item record

dc.contributor.authorDenyer, Joanna
dc.date.accessioned2013-04-12T13:14:49Z
dc.date.available2013-04-12T13:14:49Z
dc.date.issued2013-04-12
dc.identifier.urihttp://hdl.handle.net/2299/10400
dc.description.abstractContext: Despite an association between foot structure and the incidence of lower limb injury in sport, few studies have measured the effects of neutral, pronated and supinated foot structures during dynamic activity. Furthermore, despite its widespread use as an injury prevention method, the effects of athletic taping on individuals with pronated and supinated foot structures are unclear. Objectives: To explore whether individuals with pronated and supinated foot structures have poorer lower limb neuromuscular control as measured by postural stability and muscle reaction time in comparison to those with neutral feet. Additionally, the effects of athletic taping on individuals with neutral, pronated and supinated foot structures on aspects of lower limb neuromuscular control are also examined. Subjects: All subjects used in this thesis were aged from 18 – 30 years and took part in at least two hours of exercise each week. Subjects were categorised in to groups according to navicular drop height measures; neutral 5 – 9 mm; pronated ≥ 10 mm; supinated ≤ 4 mm. Methods: Neuromuscular control was analysed in subjects with neutral, pronated and supinated feet using dynamic postural stability and muscular reaction time measures. These measures were then repeated with four athletic taping conditions (arch tape, ankle tape, proprioceptive tape and no-tape) both before and after a period of exercise. Results: Individuals with pronated and supinated foot structures were shown to have reduced postural stability in comparison to those with neutral foot structures during some dynamic tasks. Pronated and supinated foot structures also resulted in slower muscle reaction times in comparison to those with neutral feet during a tilt platform perturbation. No differences were identified between dominant and non-dominant limbs on subjects with neutral, pronated or supinated foot structures; however the high incidence of foot structure asymmetry did appear to result in differences between contralateral limbs in both postural stability and reaction time parameters. Arch and ankle taping resulted in increased neuromuscular control after application, yet these effects diminished after a period of exercise. Conclusions: The results of this thesis provide evidence to suggest that foot structure does affect lower limb neuromuscular control as measured by postural stability and muscle reaction time. In addition athletic taping has been shown to affect neuromuscular control on subjects with neutral, pronated and supinated foot structures both before and after exercise. These findings may have wide implications in sport where individuals with pronated and supinated feet may be more susceptible to injury in comparison to those with neutral feet.en_US
dc.language.isoenen_US
dc.subjectbiomechanicsen_US
dc.subjectfoot structureen_US
dc.subjectreaction timeen_US
dc.subjectpostural stabilityen_US
dc.subjectneuromuscular controlen_US
dc.titleThe Effects of Foot Structure and Athletic Taping on Lower Limb Biomechanicsen_US
dc.typeThesisen_US
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record