University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks

        Author
        Erić, Slavica
        Kalinić, Marko
        Popović, Aleksandar
        Zloh, Mire
        Kuzmanovski, Igor
        Attention
        2299/10402
        Abstract
        In this work, we present a novel approach for the development of models for prediction of aqueous solubility, based on the implementation of an algorithm for the automatic adjustment of descriptor's relative importance (AARI) in counter-propagation artificial neural networks (CPANN). Using this approach, the interpretability of the models based on artificial neural networks, which are traditionally considered as "black box" models, was significantly improved. For the development of the model, a data set consisting of 374 diverse drug-like molecules, divided into training (n=280) and test (n=94) sets using self-organizing maps, was used. Heuristic method was applied in preselecting a small number of the most significant descriptors to serve as inputs for CPANN training. The performances of the final model based on 7 descriptors for prediction of solubility were satisfactory for both training (RMSEP(train)=0.668) and test set (RMSEP(test)=0.679). The model was found to be a highly interpretable in terms of solubility, as well as rationalizing structural features that could have an impact on the solubility of the compounds investigated. Therefore, the proposed approach can significantly enhance model usability by giving guidance for structural modifications of compounds with the aim of improving solubility in the early phase of drug discovery.
        Publication date
        2012
        Published in
        International Journal of Pharmaceutics
        Published version
        https://doi.org/10.1016/j.ijpharm.2012.08.022
        Other links
        http://hdl.handle.net/2299/10402
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan