Show simple item record

dc.contributor.authorMackay, N.
dc.contributor.authorYoung, Charles A. S.
dc.date.accessioned2013-04-17T08:44:34Z
dc.date.available2013-04-17T08:44:34Z
dc.date.issued2004-05
dc.identifier.citationMackay , N & Young , C A S 2004 , ' Classically integrable boundary conditions for symmetric-space sigma models ' , Physical Letters B , vol. 588 , no. 3-4 , pp. 221-227 . https://doi.org/10.1016/j.physletb.2004.03.037
dc.identifier.otherPURE: 777395
dc.identifier.otherPURE UUID: 7d64fbea-551d-42dd-be6a-aa8f3c712b00
dc.identifier.otherArXiv: http://arxiv.org/abs/hep-th/0402182v2
dc.identifier.otherScopus: 2342621483
dc.identifier.otherORCID: /0000-0002-7490-1122/work/55503509
dc.identifier.urihttp://hdl.handle.net/2299/10445
dc.description.abstractWe investigate boundary conditions for the nonlinear sigma model on the compact symmetric space $G/H$, where $H \subset G$ is the subgroup fixed by an involution $\sigma$ of $G$. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions in correspondence with involutions which commute with $\sigma$. Applied to $SO(3)/SO(2)$, the nonlinear sigma model on $S^2$, these yield the great circles as boundary submanifolds. Applied to $G \times G/G$, they reproduce known results for the principal chiral modelen
dc.language.isoeng
dc.relation.ispartofPhysical Letters B
dc.rightsOpen
dc.subjecthep-th
dc.titleClassically integrable boundary conditions for symmetric-space sigma modelsen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.contributor.institutionScience & Technology Research Institute
dc.description.statusPeer reviewed
dc.relation.schoolSchool of Physics, Astronomy and Mathematics
dc.description.versiontypeFinal Accepted Version
dcterms.dateAccepted2004-05
rioxxterms.versionAM
rioxxterms.versionofrecordhttps://doi.org/10.1016/j.physletb.2004.03.037
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue
herts.rights.accesstypeOpen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record