dc.contributor.author | Young, Charles A. S. | |
dc.contributor.author | Zegers, R. | |
dc.date.accessioned | 2013-04-17T10:24:33Z | |
dc.date.available | 2013-04-17T10:24:33Z | |
dc.date.issued | 2008-07-17 | |
dc.identifier.citation | Young , C A S & Zegers , R 2008 , ' On kappa-deformation and triangular quasibialgebra structure ' , Nuclear Physics B , vol. 809 , no. 3 , pp. 439-451 . https://doi.org/10.1016/j.nuclphysb.2008.09.025 | |
dc.identifier.issn | 1873-1562 | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/0807.2745v2 | |
dc.identifier.other | ORCID: /0000-0002-7490-1122/work/55503500 | |
dc.identifier.uri | http://hdl.handle.net/2299/10453 | |
dc.description.abstract | We show that, up to terms of order 1/kappa^5, the kappa-deformed Poincare algebra can be endowed with a triangular quasibialgebra structure. The universal R matrix and coassociator are given explicitly to the first few orders. In the context of kappa-deformed quantum field theory, we argue that this structure, assuming it exists to all orders, ensures that states of any number of identical particles, in any representation, can be defined in a kappa-covariant fashion | en |
dc.format.extent | 200860 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nuclear Physics B | |
dc.subject | hep-th | |
dc.title | On kappa-deformation and triangular quasibialgebra structure | en |
dc.contributor.institution | Mathematics and Theoretical Physics | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Department of Physics, Astronomy and Mathematics | |
dc.description.status | Peer reviewed | |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=57649104888&partnerID=8YFLogxK | |
rioxxterms.versionofrecord | 10.1016/j.nuclphysb.2008.09.025 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |