dc.contributor.author | Young, Charles A. S. | |
dc.contributor.author | Zegers, R. | |
dc.date.accessioned | 2013-04-17T11:59:34Z | |
dc.date.available | 2013-04-17T11:59:34Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Young , C A S & Zegers , R 2011 , ' Dorey's Rule and the q-Characters of Simply-Laced Quantum Affine Algebras ' , Communications in Mathematical Physics , vol. 302 , no. 3 , pp. 789-813 . https://doi.org/10.1007/s00220-011-1189-x | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/0910.4477v2 | |
dc.identifier.other | ORCID: /0000-0002-7490-1122/work/55503508 | |
dc.identifier.uri | http://hdl.handle.net/2299/10454 | |
dc.description.abstract | Let Uq(ghat) be the quantum affine algebra associated to a simply-laced simple Lie algebra g. We examine the relationship between Dorey's rule, which is a geometrical statement about Coxeter orbits of g-weights, and the structure of q-characters of fundamental representations V_{i,a} of Uq(ghat). In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product V_{i,a} x V_{j,b} x V_{k,c} | en |
dc.format.extent | 350942 | |
dc.language.iso | eng | |
dc.relation.ispartof | Communications in Mathematical Physics | |
dc.subject | math.QA | |
dc.title | Dorey's Rule and the q-Characters of Simply-Laced Quantum Affine Algebras | en |
dc.contributor.institution | Mathematics and Theoretical Physics | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Department of Physics, Astronomy and Mathematics | |
dc.description.status | Peer reviewed | |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=79951855374&partnerID=8YFLogxK | |
rioxxterms.versionofrecord | 10.1007/s00220-011-1189-x | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |