University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Opportunities to constrain astrophysical reaction rates for the s-process via determination of the ground-state cross-sections

        View/Open
        1106.1728v2.pdf (PDF, 299Kb)
        Author
        Rauscher, T.
        Mohr, P.
        Dillmann, I.
        Plag, R.
        Attention
        2299/10497
        Abstract
        Modern models of s-process nucleosynthesis in stars require stellar reaction rates of high precision. Most neutron-capture cross-sections in the s-process have been measured, and for an increasing number of reactions the required precision is achieved. This does not necessarily mean, however, that the stellar rates are constrained equally well, because only the capture of the ground state of a target is measured in the laboratory. Captures of excited states can contribute considerably to stellar rates that are already at typical s-process temperatures. We show that the ground-state contribution X to a stellar rate is the relevant measure to identify reactions that are or could be well constrained by experiments and apply it to (n,gamma) reactions in the s-process. We further show that the maximum possible reduction in uncertainty of a rate via determination of the ground-state cross-section is given directly by X. An error analysis of X is presented, and it is found that X is a robust measure with mostly small uncertainties. Several specific examples (neutron capture of (79)Se, (95)Zr, (121)Sn, (187)Os, and (193)Pt) are discussed in detail. The ground-state contributions for a set of 412 neutron-capture reactions around the s-process path are presented in a table. This allows identification of reactions that may be better constrained by experiments and that cannot be constrained solely by measuring ground-state cross-sections (and thus require supplementary studies). General trends and implications are discussed.
        Publication date
        2011-09-10
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.1088/0004-637X/738/2/143
        Other links
        http://hdl.handle.net/2299/10497
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan