dc.contributor.author | Kiss, G. G. | |
dc.contributor.author | Rauscher, T. | |
dc.contributor.author | Gyurky, Gy. | |
dc.contributor.author | Simon, A. | |
dc.contributor.author | Fueloep, Zs. | |
dc.contributor.author | Somorjai, E. | |
dc.date.accessioned | 2013-04-30T07:25:01Z | |
dc.date.available | 2013-04-30T07:25:01Z | |
dc.date.issued | 2008-11-07 | |
dc.identifier.citation | Kiss , G G , Rauscher , T , Gyurky , G , Simon , A , Fueloep , Z & Somorjai , E 2008 , ' Coulomb Suppression of the Stellar Enhancement Factor ' , Physical Review Letters , vol. 101 , no. 19 , 191101 . https://doi.org/10.1103/PhysRevLett.101.191101 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.uri | http://hdl.handle.net/2299/10598 | |
dc.description.abstract | It is commonly assumed that reaction measurements for astrophysics should be preferably performed in the direction of a positive Q value to minimize the impact of the stellar enhancement factor, i.e., the difference between the laboratory rate and the actual stellar rate. We show that the stellar effects can be minimized in the charged particle channel, even when the reaction Q value is negative. As a demonstration, the cross section of the astrophysically relevant (85)Rb(p,n)(85)Sr reaction has been measured by activation between 2.16 | en |
dc.format.extent | 4 | |
dc.format.extent | 166431 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review Letters | |
dc.subject | MODEL | |
dc.subject | PROCESS NUCLEOSYNTHESIS | |
dc.subject | FINITE NUCLEI | |
dc.subject | REACTION-RATES | |
dc.subject | P-PROCESS | |
dc.subject | HARD-CORE INTERACTION | |
dc.title | Coulomb Suppression of the Stellar Enhancement Factor | en |
dc.contributor.institution | Centre for Astrophysics Research (CAR) | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.description.status | Peer reviewed | |
rioxxterms.versionofrecord | 10.1103/PhysRevLett.101.191101 | |
rioxxterms.type | Other | |
herts.preservation.rarelyaccessed | true | |