Show simple item record

dc.contributor.authorChari, Vyjayanthi
dc.contributor.authorMoura, Adriano
dc.contributor.authorYoung, Charles A. S.
dc.date.accessioned2013-06-17T10:45:43Z
dc.date.available2013-06-17T10:45:43Z
dc.date.issued2013-06
dc.identifier.citationChari , V , Moura , A & Young , C A S 2013 , ' Prime representations from a homological perspective ' , Mathematische Zeitschrift , vol. 274 , no. 1-2 , pp. 613-645 . https://doi.org/10.1007/s00209-012-1088-7
dc.identifier.issn0025-5874
dc.identifier.otherORCID: /0000-0002-7490-1122/work/55503484
dc.identifier.urihttp://hdl.handle.net/2299/10777
dc.description.abstractWe explore the relation between self extensions of simple representations of quantum affine algebras and the property of a simple representation being prime. We show that every nontrivial simple representation has a nontrivial self extension. Conversely, we prove that if a simple representation has a unique nontrivial self extension up to isomorphism, then its Drinfeld polynomial is a power of the Drinfeld polynomial of a prime representation. It turns out that, in the sl 2 -case, a simple module is prime if and only if it has a unique nontrivial self extension up to isomorphism. It is tempting to conjecture that this is true in general and we present a large class of prime representations satisfying this homological propertyen
dc.format.extent334997
dc.language.isoeng
dc.relation.ispartofMathematische Zeitschrift
dc.subjectQuantum Affine Algebras
dc.subjectExtensions
dc.subjectPrime
dc.titlePrime representations from a homological perspectiveen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.contributor.institutionScience & Technology Research Institute
dc.description.statusPeer reviewed
dc.identifier.urlhttp://arxiv.org/abs/1112.6376
rioxxterms.versionofrecord10.1007/s00209-012-1088-7
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record