dc.contributor.author | Chari, Vyjayanthi | |
dc.contributor.author | Moura, Adriano | |
dc.contributor.author | Young, Charles A. S. | |
dc.date.accessioned | 2013-06-17T10:45:43Z | |
dc.date.available | 2013-06-17T10:45:43Z | |
dc.date.issued | 2013-06 | |
dc.identifier.citation | Chari , V , Moura , A & Young , C A S 2013 , ' Prime representations from a homological perspective ' , Mathematische Zeitschrift , vol. 274 , no. 1-2 , pp. 613-645 . https://doi.org/10.1007/s00209-012-1088-7 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.other | ORCID: /0000-0002-7490-1122/work/55503484 | |
dc.identifier.uri | http://hdl.handle.net/2299/10777 | |
dc.description.abstract | We explore the relation between self extensions of simple representations of quantum affine algebras and the property of a simple representation being prime. We show that every nontrivial simple representation has a nontrivial self extension. Conversely, we prove that if a simple representation has a unique nontrivial self extension up to isomorphism, then its Drinfeld polynomial is a power of the Drinfeld polynomial of a prime representation. It turns out that, in the sl 2 -case, a simple module is prime if and only if it has a unique nontrivial self extension up to isomorphism. It is tempting to conjecture that this is true in general and we present a large class of prime representations satisfying this homological property | en |
dc.format.extent | 334997 | |
dc.language.iso | eng | |
dc.relation.ispartof | Mathematische Zeitschrift | |
dc.subject | Quantum Affine Algebras | |
dc.subject | Extensions | |
dc.subject | Prime | |
dc.title | Prime representations from a homological perspective | en |
dc.contributor.institution | School of Physics, Astronomy and Mathematics | |
dc.contributor.institution | Science & Technology Research Institute | |
dc.description.status | Peer reviewed | |
dc.identifier.url | http://arxiv.org/abs/1112.6376 | |
rioxxterms.versionofrecord | 10.1007/s00209-012-1088-7 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |