University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        In vitro skin absorption and decontamination of sulphur mustard : Comparison of human and pig-ear skin

        Author
        Chilcott, Robert
        Jenner, J.
        Hotchkiss, S. A. M.
        Rice, P.
        Attention
        2299/10840
        Abstract
        The aim of this study was to evaluate the use of an in vitro skin diffusion cell system as a model for assessing decontaminants against the chemical warfare agent sulphur mustard (SM). The in vitro absorption rates of SM through heat-separated human (157 +/- 66 mug cm(-2) h(-1)) and pig-ear (411 +/- 175 mug cm(-2) h(-1)) epidermal membranes were in agreement with previous in vivo studies that quoted skin absorption rates of 150 and 366 mug cm(-1) h(-1), respectively. Decontaminants (fuller's earth, Ambergard and BDH spillage granules) were ranked in order of effectiveness by measuring the skin absorption rates and the percentage of applied dose of SM that penetrated human and pig-ear epidermal membranes. The effectiveness of fuller's earth measured in this in vitro study using human epidermal membranes was in agreement with a previous in vivo human volunteer study. Similarly, the effectiveness of fuller's earth and Ambergard measured in vitro with pig-ear epidermal membranes was in agreement with a previous in vivo study conducted on rats. However, there was complete disparity in the ranking of decontaminants between human and pig-ear epidermal membranes measured in vitro. Thus, although pig-ear skin may be a relatively good model for predicting the human skin absorption of SM, it is a poor model for testing decontamination systems. The results of this study further validate the use of Franz-type glass diffusion cells containing human epidermal membranes as a model for predicting in vivo human skin absorption. (C) Crown Copyright 2001. Reproduced by permission of Her Majesty's Stationery Office.
        Publication date
        2001
        Published in
        Journal of Applied Toxicology
        Other links
        http://hdl.handle.net/2299/10840
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan