University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        High-resolution neutron capture and transmission measurements, and the stellar neutron-capture cross section of Sr-88

        Author
        Koehler, P. E.
        Winters, R.R.
        Guber, K. H.
        Rauscher, T.
        Harvey, J. A.
        Raman, S.
        Spencer, R.R.
        Blackmon, J.C.
        Larson, D.C.
        Bardayan, D.W.
        Lewis, T.A.
        Attention
        2299/10853
        Abstract
        We have made new and improved measurements of the neutron capture and total cross sections for Sr-88 at the Oak Ridge Electron Linear Accelerator (ORELA). Improvements over previous measurements include a wider incident neutron energy range, better resolution, the use of metallic rather than carbonate samples, better background subtraction, reduced sensitivity to sample-dependent backgrounds, and better pulse-height weighting functions. Because of its small cross section, the Sr-88(n,gamma) reaction is an important bottleneck during s-process nucleosynthesis. Hence, an accurate determination of this rate is needed to better constrain the neutron exposure in s-process models and to better understand the recently discovered isotopic anomalies in certain meteorites. We performed an R-matrix analysis of our capture and transmission data to extract parameters for 101 resonances between 100 eV and 350 keV. In addition, we fitted our transmission data alone to extract parameters for 342 additional resonances between 350 and 950 keV. We used this information to calculate average properties of the Sr-88+ n system for comparison to previous work. Although previous data and resonance analyses were much less extensive, they are, in general, in good agreement with our results except that the average radiation widths as well as the p-wave correlation coefficients we determined are significantly smaller, and the s-wave correlation coefficient we determined has opposite sign from that reported in previous work. We used these resonance parameters together with a calculation of the small, but significant direct-capture contribution to determine the astrophysical reaction rate for the Sr-88(n,gamma) reaction to approximately 3% accuracy across the entire range of temperatures needed by s-process models. Our new rate is in good agreement with the results from a high-precision activation measurement at kT=25 keV, but it is approximately 9.5% lower than the rate used in most previous nucleosynthesis calculations in the temperature range (kT=6-8 keV), where most of the neutron exposure occurs in current stellar models of the s process. We discuss the possible astrophysical impact of this new, lower rate.
        Publication date
        2000-11
        Published in
        Physical Review C (nuclear physics)
        Other links
        http://hdl.handle.net/2299/10853
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan