dc.contributor.author | Stotz, Henrik | |
dc.contributor.author | Pittendrigh, B.R. | |
dc.contributor.author | Kroymann, J. | |
dc.contributor.author | Weniger, K. | |
dc.contributor.author | Fritsche, J. | |
dc.contributor.author | Bauke, A. | |
dc.contributor.author | Mitchell-Olds, T. | |
dc.date.accessioned | 2013-06-20T07:30:47Z | |
dc.date.available | 2013-06-20T07:30:47Z | |
dc.date.issued | 2000 | |
dc.identifier.citation | Stotz , H , Pittendrigh , B R , Kroymann , J , Weniger , K , Fritsche , J , Bauke , A & Mitchell-Olds , T 2000 , ' Induced plant defense responses against chewing insects : Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth ' , Plant and Cell Physiology , vol. 124 , no. 3 , pp. 1007-1017 . | |
dc.identifier.issn | 0032-0781 | |
dc.identifier.uri | http://hdl.handle.net/2299/10869 | |
dc.description | Medline is the source for the MeSH terms of this document. | |
dc.description.abstract | The induction of plant defenses by insect feeding is regulated via multiple signaling cascades. One of them, ethylene signaling, increases susceptibility of Arabidopsis to the generalist herbivore Egyptian cotton worm (Spodoptera littoralis; Lepidoptera: Noctuidae). The hookless1 mutation, which affects a downstream component of ethylene signaling, conferred resistance to Egyptian cotton worm as compared with wild-type plants. Likewise, ein2, a mutant in a central component of the ethylene signaling pathway, caused enhanced resistance to Egyptian cotton worm that was similar in magnitude to hookless1. Moreover, pretreatment of plants with ethephon (2-chloroethanephosphonic acid), a chemical that releases ethylene, elevated plant susceptibility to Egyptian cotton worm. By contrast, these mutations in the ethylene-signaling pathway had no detectable effects on diamondback moth (Plutella xylostella) feeding. It is surprising that this is not due to nonactivation of defense signaling, because diamondback moth does induce genes that relate to wound-response pathways. Of these wound-related genes, jasmonic acid regulates a novel β-glucosidase 1 (BGL1), whereas ethylene controls a putative calcium-binding elongation factor hand protein. These results suggest that a specialist insect herbivore triggers general wound-response pathways in Arabidopsis but, unlike a generalist herbivore, does not react to ethylene-mediated physiological changes. | en |
dc.format.extent | 11 | |
dc.language.iso | eng | |
dc.relation.ispartof | Plant and Cell Physiology | |
dc.title | Induced plant defense responses against chewing insects : Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth | en |
dc.contributor.institution | School of Life and Medical Sciences | |
dc.contributor.institution | Agriculture, Food and Veterinary Sciences | |
dc.contributor.institution | Crop Protection and Climate Change | |
dc.contributor.institution | Extracellular Vesicle Research Unit | |
dc.contributor.institution | Department of Clinical, Pharmaceutical and Biological Science | |
dc.contributor.institution | Centre for Agriculture, Food and Environmental Management Research | |
dc.description.status | Peer reviewed | |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=0033729468&partnerID=8YFLogxK | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |