University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Polarimetry of young stellar objects - III : Circular polarimetry of OMC-1

        Author
        Chrysostomou, A.
        Gledhill, T.M.
        Ménard, F.
        Hough, J.H.
        Tamura, M.
        Bailey, J.
        Attention
        2299/10880
        Abstract
        We present the first imaging circular polarimetry of the Orion Molecular Cloud, OMC-1. The observations, taken in the J, H, K and nbL bands, reveal a complex pattern of circular polarization. Globally, there is a background circular polarization of the order of ±2 per cent in the K band, conforming to the typical quadrupolar patterns that have been observed in other outflow sources. Overlying this pattern are regions of relatively high degrees of circular polarization to the east and west of the source IRc2, with degrees as high as +17 per cent in the K band, the highest circular polarization yet measured for any young stellar object No circular polarization is seen in the J band, indicating that the circular polarization detected at longer wavelengths originates from within OMC-1 and not from scattering off the foreground ionization front associated with the M42 nebula. We demonstrate a correlation between these patches of high circular polarization and regions of enhanced linear polarization, and argue that these observations are best explained using a model that incorporates scattering of radiation off oblate grains, which have been aligned by the local magnetic field. Modelling of the ellipticity (the ratio of circular to linear polarization) suggests that the grains are composed of silicate and/or organic refractory material, and that grains larger than are typically found in the interstellar medium are needed. The lower, background, circular polarization is produced by scattering off randomly oriented grains in the outflow cavities, the grain alignment being destroyed by the passage of shocks. We put forward a morphological model for OMC-1 which has the regions of high polarization separate from, but near to, the main outflow region. Those regions exhibiting high polarization must somehow have a direct view of the illuminating source of the nebula. Implications of this work to the origins of life are briefly discussed.
        Publication date
        2000-02-11
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1046/j.1365-8711.2000.03126.x
        Other links
        http://hdl.handle.net/2299/10880
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan