University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine

        Author
        McKellar, Quintin
        Sanchez Bruni, S.F.
        Jones, D.G.
        Attention
        2299/10902
        Abstract
        The rise in incidence of antimicrobial resistance, consumer demands and improved understanding of antimicrobial action has encouraged international agencies to review the use of antimicrobial drugs. More detailed understanding of relationships between the pharmacokinetics (PK) of antimicrobial drugs in target animal species and their action on target pathogens [pharmacodynamics (PD)] has led to greater sophistication in design of dosage schedules which improve the activity and reduce the selection pressure for resistance in antimicrobial therapy. This, in turn, may be informative in the pharmaceutical development of antimicrobial drugs and in their selection and clinical utility. PK/PD relationships between area under the concentration time curve from zero to 24 h (AUC(0-24)) and minimum inhibitory concentration (MIC), maximum plasma concentration and MIC and time during which plasma concentrations exceed the MIC have been particularly useful in optimizing efficacy and minimizing resistance. Antimicrobial drugs have been classified as concentration-dependent where increasing concentrations at the locus of infection improve bacterial kill, or time-dependent where exceeding the MIC for a prolonged percentage of the inter-dosing interval correlates with improved efficacy. For the latter group increasing the absolute concentration obtained above a threshold does not improve efficacy. The PK/PD relationship for each group of antimicrobial drugs is 'bug and drug' specific, although ratios of 125 for AUC(0-24):MIC and 10 for C-max:MIC have been recommended to achieve high efficacy for concentration-dependent antimicrobial drugs, and exceeding MIC by 1-5 multiples for between 40 and 100% of the inter-dosing interval is appropriate for most time-dependent agents. Fluoroquinolones, aminoglycosides and metronidazole are concentration-dependent and beta-lactams. macrolides, lincosamides and glycopeptides are time-dependent. For drugs of other classes there is limited and conflicting information on their classification. Resistance selection may be reduced for concentration-dependent antimicrobials by achieving an AUC(0-24):MIC ratio of greater than 100 or a C-max:MIC ratio of greater than 8. The relationships between time greater than MIC and resistance selection for time-dependent antimicrobials have not been well characterized.
        Publication date
        2004-12
        Published in
        Journal of Veterinary Pharmacology and Therapeutics
        Published version
        https://doi.org/10.1111/j.1365-2885.2004.00603.x
        Other links
        http://hdl.handle.net/2299/10902
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan