University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Spore dispersal and plant disease gradients : a comparison between two empirical models

        Author
        Fitt, Bruce D.L.
        Gregory , P. H.
        Todd, A.D.
        McCartney, H. A.
        Macdonald, O.C.
        Attention
        2299/11123
        Abstract
        Power law and exponential models were fitted to 325 sets of observations which described decreases with distance in deposition of air-borne or splash-borne spores, or pollen, or in amounts of plant disease caused by fungi, bacteria or viruses. There, was generally little difference between the models in the goodness of fit to these data, although deposition gradients for spores borne in splash droplets were fitted better by exponential models and gradients for fungi with air-borne spores less than 10 μm in diameter were fitted better by power law models. The exponential model has the property that the observed variable decreases by half as the distance from the source increases by a constant increment (the half-distance); this provides a measureof the gradient that is more easy to visualize than the exponent in power law model. The half-distances of gradients for air-borne pathogens were greater than those for splash-borne or soil-borne pathogens. The exponential model is easier to incorporate into models of disease development than the power law model because the boundary condition at the source (the estimated number of spores or amount of disease at the source) is finite rather than infinite. However, both these empirical models have limitations and should not be extrapolated to distances outside the observed range.
        Publication date
        1987-03
        Published in
        Journal of Phytopathology
        Published version
        https://doi.org/10.1111/j.1439-0434.1987.tb00452.x
        Other links
        http://hdl.handle.net/2299/11123
        Relations
        School of Life and Medical Sciences
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan