Show simple item record

dc.contributor.authorKües, U.
dc.contributor.authorAsante-Owusu, R. N.
dc.contributor.authorMutasa-Gottgens, Euphemia
dc.contributor.authorTymon, A. M.
dc.contributor.authorPardo, E. H.
dc.contributor.authorO'Shea, S. F.
dc.contributor.authorGöttgens, B.
dc.contributor.authorCasselton, L.A.
dc.identifier.citationKües , U , Asante-Owusu , R N , Mutasa-Gottgens , E , Tymon , A M , Pardo , E H , O'Shea , S F , Göttgens , B & Casselton , L A 1994 , ' Two classes of homeodomain proteins specify the multiple a mating types of the mushroom Coprinus cinereus ' , The Plant cell , vol. 6 , no. 10 , pp. 1467-75 .
dc.identifier.otherPURE: 1904857
dc.identifier.otherPURE UUID: 1a9a728c-7a98-47eb-8552-93c5e4faeb2c
dc.identifier.otherPubMed: 7994179
dc.identifier.otherScopus: 0028519925
dc.description.abstractThe A mating type locus of the mushroom Coprinus cinereus regulates essential steps in sexual development. The locus is complex and contains several functionally redundant, multiallelic genes that encode putative transcription factors. Here, we compare four genes from an A locus designated A42. Overall, the DNA sequences are very different (approximately 50% homology), but two classes of genes can be distinguished on the basis of a conserved homeodomain motif in their predicted proteins (HD1 and HD2). Development is postulated to be triggered by an HD1 and an HD2 gene from different A loci. Thus, proteins encoded by genes of the same locus must be distinguished from those encoded by another locus. Individual proteins of both classes recognize each other using the region N-terminal to the homeodomain. These N-terminal specificity regions (COP1 and COP2) are predicted to be helical and are potential dimerization interfaces. The amino acid composition of the C-terminal regions of HD1 proteins suggests a role in activation, and gene truncations indicate that this region is essential for function in vivo. A corresponding C-terminal region in HD2 proteins can be dispensed with in vivo. We will discuss these predicted structural features of the C. cinereus A proteins, their proposed interactions following a compatible cell fusion, and their similarities to the a1 and alpha 2 mating type proteins of the yeast Saccharomyces cerevisiae.en
dc.relation.ispartofThe Plant cell
dc.subjectProtein Structure, Secondary
dc.subjectHomeodomain Proteins
dc.subjectGenes, Fungal
dc.subjectAmino Acid Sequence
dc.subjectSequence Analysis, DNA
dc.subjectGenome, Fungal
dc.subjectFungal Proteins
dc.subjectGenes, Mating Type, Fungal
dc.subjectDNA, Complementary
dc.subjectBase Sequence
dc.subjectTranscription Factors
dc.subjectTransformation, Genetic
dc.subjectMolecular Sequence Data
dc.titleTwo classes of homeodomain proteins specify the multiple a mating types of the mushroom Coprinus cinereusen
dc.contributor.institutionSchool of Life and Medical Sciences
dc.contributor.institutionDepartment of Human and Environmental Sciences
dc.contributor.institutionHealth & Human Sciences Research Institute
dc.contributor.institutionAgriculture, Veterinary and Food Sciences
dc.contributor.institutionGeography, Environment and Agriculture
dc.contributor.institutionCrop and Environmental Protection
dc.description.statusPeer reviewed
dc.relation.schoolSchool of Life and Medical Sciences
rioxxterms.typeJournal Article/Review

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record