University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Intestinal Secretory and Absorptive Function in the Trichinella spiralis mouse model of Post-Infective Gut Dysfunction : role of bile acids

        Author
        Kalia, N.
        Hardcastle, J.
        Grassi, Laura
        Keating, Christopher
        Pelegrin, Pablo
        Bardhan, K.D.
        Grundy, David
        Attention
        2299/11465
        Abstract
        Objective: Observations showing that bile acid malabsorption is frequent in irritable bowel syndrome (IBS) suggest that alterations in bile acid-induced secretion and absorption could contribute to IBS-associated diarrhoea. The secretory response to bile acids, fluid transport and bile absorption was examined in intestinal tissues from a Trichinella spiralis mouse model of postinfectious gut dysfunction in vitro. Changes in the protein expression of apical sodium-dependent bile acid transporter (ASBT) were also measured. Design: T. spiralis-infected mice were killed at 18 and 25 days postinfection. Jejunal, ileal, proximal and distal colon segments were exposed to taurodeoxycholic acid (TDCA) or cholic acid. Short circuit current (SCC) increases were determined. Tritiated taurocholic acid (3H-TCA) absorption was determined in everted jejunal and ileal sacs. ASBT protein expression was determined by Western blot analysis and immunohistochemistry. Results: Basal SCC increased in ileum and distal colon at 18 and 25 days postinfection, respectively. Ileal SCC responses to TDCA and cholic acid were enhanced at 18 days postinfection. Distal colon SCC response to TDCA was raised at 18 days postinfection but was significantly reduced by 25 days. Ileal 3H-TCA uptake was significantly reduced at 18 and 25 days postinfection. Surprisingly, increased ASBT expression was observed in infected animals. Conclusions: In a T. spiralis model of postinfectious gut dysfunction, decreased bile absorption and enhanced secretion in response to bile acids was observed. Decreased absorption was not, however, caused by decreased ASBT as increased expression was observed. If similar events occur postinfection, the combined effects of these disturbances may contribute to some symptoms observed in postinfectious IBS patients
        Publication date
        2008
        Published in
        Gut
        Published version
        https://doi.org/10.1136/gut.2006.118356
        Other links
        http://hdl.handle.net/2299/11465
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan