University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Nucleotide oligomerization domain 1 is a dominant pathway for NOS2 induction in vascular smooth muscle cells : Comparison with Toll-like receptor 4 responses in macrophages

        View/Open
        Bucci_et_al.doc (Unknown, 96Kb)
        Author
        Moreno, L.
        McMaster, S.K.
        Gatheral, T.
        Bailey, L.
        Harrington, L.
        Cartwright, N.
        Armstrong, P.C.J.
        Warner, T.D.
        Paul-Clark, M.
        Mitchell, J.A.
        Attention
        2299/11509
        Abstract
        Background and purpose: Gram-negative bacteria contain ligands for Toll-like receptor (TLR) 4 and nucleotide oligomerization domain (NOD) 1 receptors. Lipopolysaccharide (LPS) activates TLR4, while peptidoglycan products activate NOD1. Activation of NOD1 by the specific agonist FK565 results in a profound vascular dysfunction and experimental shock in vivo. Experimental approach: Here, we have analysed a number of pharmacological inhibitors to characterize the role of key signalling pathways in the induction of NOS2 following TLR4 or NOD1 activation. Key results: Vascular smooth muscle (VSM) cells expressed NOD1 mRNA and protein, and, after challenge with Escherichia coli or FK565, NOS2 protein and activity were induced. Macrophages had negligible levels of NOD1 and were unaffected by FK565, but responded to E. coli and LPS by releasing increased NO and expression of NOS2 protein. Classic pharmacological inhibitors for NF-κB (SC-514) and mitogen-activated protein kinase (SB203580, PD98059) signalling pathways inhibited responses in both cell types regardless of agonist. While TLR4-mediated responses in macrophages were specifically inhibited by the pan-caspase inhibitor z-VAD-fmk and the PKC inhibitor Gö6976, NOD1-mediated responses in VSM cells were inhibited by the Rip2 inhibitor PP2. Conclusions and implications: Our findings suggest a selective role for NOD1 in VSM cells, and highlight NOD1 as a potential novel therapeutic target for the treatment of vascular inflammation.
        Publication date
        2010-08
        Published in
        British Journal of Pharmacology
        Published version
        https://doi.org/10.1111/j.1476-5381.2010.00814.x
        Other links
        http://hdl.handle.net/2299/11509
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan