University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Applying the multi-zone model in predicting the operating range of HCCI engines

        Author
        Jia, M.
        Xie, M.
        Peng, Z.J.
        Attention
        2299/11555
        Abstract
        In this paper, a multi-zone model is developed to predict the operating range of homogeneous charge compression ignition (HCCI) engines. The boundaries of the operating range were determined by knock (presented by ringing intensity), partial burn (presented by combustion efficiency), and cycle-to-cycle variations (presented by the sensitivity of indicated mean effective pressure to initial temperature). By simulating an HCCI engine fueled with iso-octane, the knock and cycle-to-cycle variations predicted by the model showed satisfactory agreement with measurements made under different initial temperatures and equivalence ratios; the operating range was also well reproduced by the model. Furthermore, the model was applied to predict the operating range of the HCCI engine under different engine speeds by varying the intake temperatures and equivalence ratios. The potential to extend the operating range of the HCCI engine through two strategies, i. e., variable compression ratio and intake pressure boosting, was then investigated. Results indicate that the ignition point can be efficiently controlled by varying the compression ratio. A low load range can be extended by increasing the intake temperature while reducing the compression ratio. Higher intake temperatures and lower compression ratios can also extend the high load range. Boosting intake pressure is helpful in controlling the combustion of the HCCI engine, resulting in an extended high load range.
        Publication date
        2010-09
        Published in
        Frontiers of Energy and Power Engineering in China
        Published version
        https://doi.org/10.1007/s11708-010-0108-8
        Other links
        http://hdl.handle.net/2299/11555
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan