University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        rp-process nucleosynthesis at extreme temperature and density conditions

        Author
        Schatz, H.
        Aprahamian, A.
        Gorres, J.
        Wiescher, M.
        Rauscher, T.
        Rembges, J.F.
        Thielemann, F.K.
        Pfeiffer, B.
        Moller, P.
        Kratz, K.L.
        Herndl, H.
        Brown, B.A.
        Rebel, H.
        Attention
        2299/11688
        Abstract
        We present nuclear reaction network calculations to investigate the influence of nuclear structure on the rp-process between Ge and Sn in various scenarios. Due to the lack of experimental data for neutron-deficient nuclei in this region, we discuss currently available model predictions for nuclear masses and deformations as well as methods of calculating reaction rates (Hauser-Feshbach) and beta-decay rates (QRPA and shell model). In addition, we apply a valence nucleon (NpNn) correlation scheme for the prediction of masses and deformations. We also describe the calculations of 2p-capture reactions, which had not been considered before in this mass region. We find that in X-ray bursts 2p-capture reactions accelerate the reaction flow into the Z greater than or equal to 36 region considerably. Therefore, the rp-process in most X-ray bursts does not end in the Z = 32-36 region as previously assumed and overproduction factors of 10(7)-10(8) are reached for some light p-nuclei in the A = 80-100 region. This might be of interest in respect of the yet unexplained large observed solar system abundances of these nuclei. Nuclei in this region can also be produced via the rp-proces in accretion disks around low mass black holes. Our results indicate that the rp-process energy production in the Z > 32 region cannot be neglected in these scenarios. We discuss in detail the influence of the various nuclear structure input parameters and their current uncertainties on these results. It turns out that rp-process nucleosynthesis is mainly determined by nuclear masses and beta-decay rates of nuclei along the proton drip line. We present a detailed list of nuclei for which mass or beta-decay rate measurements would be crucial to further constrain the models. (C) 1998 Elsevier Science B.V.
        Publication date
        1998-02
        Published in
        Physics Reports
        Other links
        http://hdl.handle.net/2299/11688
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan