University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Characterization of oscillatory motions in the stable atmosphere of a deep valley

        View/Open
        Submitted Version (PDF, 2Mb)
        Author
        Largeron, Yann
        Staquet, Chantal
        Chemel, C.
        Attention
        2299/11770
        Abstract
        In a valley sheltered from strong synoptic effects, the dynamics of the valley atmosphere at night is dominated by katabatic winds. In a stably stratified atmosphere, these winds undergo temporal oscillations, whose frequency is given by for an infinitely long slope of constant slope angle , being the buoyancy frequency. Such an unsteady flow in a stably stratified atmosphere may also generate internal gravity waves (IGWs). The numerical study by Chemel et al. (Meteorol Atmos Phys 203:187-194, 2009) showed that, in the stable atmosphere of a deep valley, the oscillatory motions associated with the IGWs generated by katabatic winds are distinct from those of the katabatic winds. The IGW frequency was found to be independent of and about . Their study did not consider the effects of the background stratification and valley geometry on these results. The present work extends this study by investigating those effects for a wide range of stratifications and slope angles, through numerical simulations for a deep valley. The two oscillatory systems are reproduced in the simulations. The frequency of the oscillations of the katabatic winds is found to be equal to times the sine of the maximum slope angle. Remarkably, the IGW frequency is found to also vary as , with in the range -. These values for are similar to those reported for IGWs radiated by any turbulent field with no dominant frequency component. Results suggest that the IGW wavelength is controlled by the valley depth.
        Publication date
        2013-09
        Published in
        Boundary-Layer Meteorology
        Published version
        https://doi.org/10.1007/s10546-013-9825-y
        Other links
        http://hdl.handle.net/2299/11770
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan