University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        In situ self assembly of soft diclofenac loaded microparticles in superstructured fluids

        Author
        Benaouda, F.
        Bachoo, Z.
        Brown, Marc
        Martin, Gary P
        Jones, S. A.
        Attention
        2299/12462
        Abstract
        This study investigated how the in situ construction and payload delivery from soft diclofenac loaded hydroxypropylmethylcellulose (HPMC) coated microparticles was influenced by the superstructure of the cosolvent in which the particles were suspended. A dual nozzle spray was used to produce microparticles in a propylene glycol (PG)–water mixture and data generated from the structural features of the vehicle, the physical properties of the particles and drug transport from the suspensions were used to characterise the particle–vehicle interactions. Infrared spectroscopy indicated supramolecular structures were formed in the bulk PG–water cosolvent upon mixing, but no solvent structural modification was observed as a consequence of microparticle self-assembly. Forming the microparticles in a premixed cosolvent, i.e., with a preformed superstructure, did not allow the polymer to deposit on the surface of the microparticles. The suspensions that did not contain the HPMC coated microparticles demonstrated a reduced diclofenac transmembrane transport rate (7.9 ± 0.4 μg cm−2 h−1) compared to soft HPMC coated particles (27.7 ± 3.0 μg cm−2 h−1). The HPMC–diclofenac hydrogen bonding interactions observed in the polymer coated material, the increased availability of the diclofenac in the solution state (drug degree of saturation rose from 3.0 ± 0.2 to 11.0 ± 1.2) and the slower microparticle formation kinetics (>1 order of magnitude) supported the conclusion that the cosolvent supramolecular structuring controlled HPMC deposition at the particle interface. Analysis of the solid material recovered from the suspensions suggested that the cosolvent supramolecular structures could be used to modify the diclofenac solid–liquid equilibrium and generate a complex liquid with an unusually high chemical potential. Graphical abstract: In situ self assembly of soft diclofenac loaded microparticles in superstructured fluids bottom
        Publication date
        2013-09
        Published in
        Soft Matter
        Published version
        https://doi.org/10.1039/C3SM51796A
        Other links
        http://hdl.handle.net/2299/12462
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan